Acessibilidade / Reportar erro

First record of the exotic Indothais lacera (Gastropoda, Muricidae) in Brazil

Abstract

Bioinvasions are one of the main causes of the decline of native biodiversity. Indothais lacera (Born, 1778) is a carnivorous gastropod, native to the Indo-Pacific. We present the first records of I. lacera on the Brazilian coast and the first record of this invasive species in the Western Atlantic. The specimens were found in two locations in the Baía de Todos os Santos, Bahia state, northeast of Brazil. Live specimens were collected in the Itapagipe Peninsula, in Ribeira, Salvador, and dry samples (empty shells) were collected in the extreme north of Itaparica Island. Molecular analyses indicate that there was more than one event of introduction of I. lacera in the bay and alert to the potential impacts that this species can have on the benthic community in the region. We suspect that this exotic species is affecting a native population of Thaisella, which was previously locally abundant but has since become rare.

Keywords
Bioinvasions; Coastal ecosystems; Exotic species; Rapaninae

INTRODUCTION

Bioinvasions have become a growing concern in recent years due to the potential threat that the introduction of exotic species poses to native biodiversity. In environments profoundly altered by humans, bioinvasions can lead to a substantial change in the structure and composition of native communities, causing significant changes in natural ecosystems (Ruiz et al., 1997Ruiz, G.M.; Carlton, J.T.; Grosholz, E.D. & Hines, A.H. 1997. Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. American zoologist, 37(6): 621-632.; Byers, 2002Byers, J.E. 2002. Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos, 97: 449-458.).

In estuaries, bays and other coastal environments, the inadvertent introduction of exotic species, mediated by anthropogenic actions, is mainly related to activities of socio-economic interest, such as maritime transport and aquaculture. As a result, transfer via ballast water in ships has acted as the main vehicle in the dispersion of bioinvaders across coastal environments (Wonham et al., 2001Wonham, M.J.; Walton, W.C.; Ruiz, G.M.; Frese, A.M. & Galil, B. 2001. Going to the source: role of the invasion pathway in determining potential invaders. Marine Ecology Progress Series, 215: 1-12. https://doi.org/10.3354/meps215001.
https://doi.org/10.3354/meps215001...
; Silva & Barros, 2011Silva, E.C. & Barros, F. 2011. Macrofauna bentônica introduzida no Brasil: lista de espécies marinhas e dulcícolas e distribuição atual. Oecologia Australis, 15(2): 326-344.). For mollusks, in particular, Brazil has not been an exception, and several recent discoveries have been made in coastal marine environments, including gastropods, bivalves and a chiton (Simone & Gonçalves, 2006Simone, L.R.L. & Gonçalves, E.P. 2006. Anatomical study on Myophorceps aristatus, an invasive boring bivalve in S.E. Brazilian coast (Mytilidae). Papéis Avulsos de Zoologia , 46(6): 57-65.; Breves-Ramos et al., 2010Breves-Ramos, A.; Junqueira A.O.R.; Lavrado, H.P.; Silva S.H.G. & Ferreira-Silva, M.A.G. 2010. Population structure of the invasive bivalve Isognomon bicolor on rocky shores of Rio de Janeiro State (Brazil). Journal of the Marine Biological Association of the United Kingdom, 90(3): 453-459. https://doi.org/10.1017/S0025315409990919.
https://doi.org/10.1017/S002531540999091...
; Rocha et al., 2013Rocha, R.M.; Vieira, L.M.; Migotto, A.E.; Amaral, A.C.Z.; Ventura, C.R.R.; Pitombo, F.B.; Santos, K.C.; Simone, L.R.L.; Tavares, M.; Lopes, R.M.; Pinheiro, U. & Marques, A.C. 2013. The need of more rigorous assessments of marine species introductions: A counter example from the Brazilian coast. Marine Pollution Bulletin, 67(1-2): 241-243. https://doi.org/10.1016/j.marpolbul.2012.12.009.
https://doi.org/10.1016/j.marpolbul.2012...
; Oliveira et al., 2017Oliveira, M.J.S.; Beasley, C.R.; Barros, N.G.V.; Marques-Silva, N.S.; Simone, L.R.L.; Lima, E.S. & Tagliaro, C.H. 2017. Two African origins of naturalized brown mussel (Perna perna) in Brazil: past and present bioinvasions. Hydrobiologia, 794(1): 59-72. https://doi.org/10.1007/s10750-016-3082-2.
https://doi.org/10.1007/s10750-016-3082-...
; Spotorno-Oliveira et al., 2018Spotorno-Oliveira, P.; Coutinho, R. & Tâmega F.T.S. 2018. Recent introduction of non-indigenous vermetid species (Mollusca, Vermetidae) to the Brazilian coast. Marine Biodiversity, 48(4): 1931-1941. https://doi.org/10.1007/s12526-017%2D0702%2D7.
https://doi.org/10.1007/s12526-017%2D070...
, 2020; Amaral et al., 2019Amaral, V.S.; Simone, L.R.L.; de Souza Tâmega, F.T.; Barbieri, E.; Calazans, S.H.; Coutinho, R. & Spotorno-Oliveira, P. 2019. New records of the non-idingenous oyster Saccostrea cucullata (Bivalvia: Ostreidae) from the southeast and south Brazilian Coast. Regional Studies in Marine Science, 33: 100924. https://doi.org/10.1016/j.rsma.2019.100924.
https://doi.org/10.1016/j.rsma.2019.1009...
; Gernet et al., 2019Gernet, M.D.V.; Belz, C.E.; Baggio, R.A.; Birckolz, C.J.; Santos, E.D.V.; Simone, L.R.L. & Metri, R. 2019. Nassarius foveolatus (Gastropoda, Nassariidae), a new record of an exotic species in Brazil. Papéis Avulsos de Zoologia , v.59: e20195955. 8p. https://doi.org/10.11606/1807-0205/2019.59.55.
https://doi.org/10.11606/1807-0205/2019....
; Belz et al., 2020Belz, C.E.; Simone, L.R.L.; Silveira-Júnior, N.; Baggio, R.A.; Gernet, M.V. & Birckolz, C.J. 2020. First record of the Mediterranean mussel Mytilus galloprovincialis (Bivalvia, Mytilidae) in Brazil. Papéis Avulsos de Zoologia, v.60: e20206007. 5p. https://doi.org/10.11606/1807-0205/2020.60.07.
https://doi.org/10.11606/1807-0205/2020....
; Jardim & Pedro, 2021Jardim, J.A. & Pedro, N.C. 2021. New records of Acanthochitona spiculosa (Reeve, 1847) from Brazil. Spixiana, 44(1): 19-20.).

In a study dealing with Western Atlantic estuarine muricids, focusing on the genus Thaisella Clench, 1947 (Rapaninae), an anomalous population has been found in the region of Baía de Todos os Santos, Bahia state, Brazil. The shells have a tall spire with highly shouldered, even carinated whorls, with peripheric tubercles in the form of spirally elongated blades. These characters are unusual in Thaisella, but are found in the related Indo-Pacific genus IndothaisClaremont, Vermeij, Williams & Reid, 2013Claremont, M.; Vermeij, G.J.; Williams, S.T. & Reid, D.G. 2013. Global phylogeny and new classification of the Rapaninae (Gastropoda: Muricidae), dominant molluscan predators on tropical rocky seashores. Molecular Phylogenetics and Evolution, 66(1): 91-102. https://doi.org/10.1016/j.ympev.2012.09.014.
https://doi.org/10.1016/j.ympev.2012.09....
. Both Thaisella and Indothais share the estuarine habitat and a well-developed thread flanking the umbilical area of the shell. In the genus Indothais, the type species I. lacera (Born, 1778) has already been recorded outside its native range, namely in the Eastern Mediterranean (Gofas & Zenetos, 2003Gofas, S. & Zenetos, A. 2003. Exotic molluscs in the Mediterranean basin: current status and perspectives. Oceanography and Marine Biology: an Annual Review, 41: 237-277.). This shallow-water muricid is native to the Indo-Pacific, occurring from the Arabian Peninsula to Southeast Asia (Rosenberg, 2006Rosenberg, G. 2006. OBIS Indo-Pacific Molluscan Datase. Available: Available: http://clade.ansp.org/obis/search.php/region3078 . Access: 19/05/2022.
http://clade.ansp.org/obis/search.php/re...
; Kumar et al., 2015Kumar, R.; Jaiswar, A.K.; Kumar, A.P.; Chakraborthy, S.K.; Jahageerdhar, S.J. & Lakra, S.W. 2015. DNA barcoding of Thais species (Family: Muricidae) from west coast of India. Indian Journal of Fisheries, 62(2): 92-97.; Kantharajan et al., 2017Kantharajan, G.; Pandey, P.K.; Krishnan, P.; Samuel, V.D.; Bharti, V.S. & Purvaja, R. 2017. Molluscan diversity in the mangrove ecosystem of Mumbai, west coast of India. Regional Studies in Marine Science , 14: 102-111. https://doi.org/10.1016/j.rsma.2017.06.002.
https://doi.org/10.1016/j.rsma.2017.06.0...
; Niamaimandi et al., 2017Niamaimandi, N.; Javadzadeh, N.; Kabgani, N.; Vaghei, R.G. & Rajabzadeh, I. 2017. Biodiversity of the gastropods in different periods in intertidal zone of the Iranian waters of the Persian Gulf. Regional Studies in Marine Science , 13: 59-63. https://doi.org/10.1016/j.rsma.2017.04.001.
https://doi.org/10.1016/j.rsma.2017.04.0...
; Zhong et al., 2017Zhong, S.; Zhao, Y.; Wang, X.; Song, Z.; & Zhang, Q. 2017. The complete mitochondrial genome of Indothais lacera (Neogastropoda: Muricidae). Mitochondrial DNA Part B, 2(2): 877-878. https://doi.org/10.1080/23802359.2017.1407697.
https://doi.org/10.1080/23802359.2017.14...
; Abu-Zied & Bantan, 2018Abu-Zied, R.H. & Bantan, R.A. 2018. Late Pleistocene gastropods from the raised reefal limestone of Jeddah, Saudi Arabia: taxonomic and palaeoenvironmental implications. PalZ, (Paläontologische Zeitschrift), 92(1): 65-86. https://doi.org/10.1080/08912963.2019.1628226.
https://doi.org/10.1080/08912963.2019.16...
; Jeeva et al., 2018Jeeva, C.; Mohan, P.M.; Sabith, K.D.B.; Ubare, V.V.; Muruganantham, M. & Kumari, R.K. 2018. Distribution of gastropods in the intertidal environment of south, middle and north Andaman Islands, India. Open Journal of Marine Science, 8: 173-195. https://doi.org/10.4236/ojms.2018.81009.
https://doi.org/10.4236/ojms.2018.81009...
; Mahapatro et al., 2018Mahapatro, D.; Panigrahy, R.; Panda, S. & Mishra, R.K. 2018. Malcofaunal diversity of Chilika Lake, Odisha, India. Proceedings of the Zoological Society, 71(3): 272-280. https://doi.org/10.1007/s12595-016-0204-9.
https://doi.org/10.1007/s12595-016-0204-...
; Al-Asif et al., 2020Al-Asif, A.; Hamli, H.; Abu Hena, M.K.; Idris, M.H.; Gerusu, G.J.; Ismail, J.B. & Karim, N.U. 2020. Benthic macrofaunal assemblage in seagrass-mangrove complex and adjacent ecosystems of Punang-Sari Estuary, Lawas, Sarawak, Malaysia. Biodiversitas, 21(10): 4606-4615. https://doi.org/10.13057/biodiv/d211019.
https://doi.org/10.13057/biodiv/d211019...
; Sultana et al., 2021Sultana, K.S.; Brishti, P.S.; Ahmed, S.; Billah, M.B. & Habib, K.A. 2021. Morphological and molecular characterization of several neogastropod species (Mollusca: Gastropoda) from coastal waters of Bangladesh with one new record. Journal of Bio-Science, 29(1): 79-91. https://doi.org/10.3329/jbs.v29i0.54824.
https://doi.org/10.3329/jbs.v29i0.54824...
). It has a biconical shell, with strong spiral cords, whorls often bearing strong triangular tubercles, aperture ovate and a broad and apparent pseudoumbilicus (Kumar et al., 2017Kumar, R.; Jaiswar, A.K.; Jahageerdar, S.; Chakraborty, S.K.; Kumar, A.P. & Prasad, L. 2017. Comparative taxonomic evaluation of Thais species (Order: Gastropoda; Family: Muricidae) of Mollusca from Maharashtra coast of India. Indian Journal of Geo-Marine Sciences, 44(6): 1098-1104.).

The conchological and molecular analysis of specimens from the anomalous population from Baía de Todos os Santos demonstrates that they actually belong to I. lacera. Thus, a new exotic species is reported here from the Brazilian coast, being likewise the first report from the Western Atlantic. We also discuss its possible mode of transportation and the potential implications of its introduction to Brazilian coastal ecosystems.

MATERIAL AND METHODS

The specimens in this study were manually collected in two locations in Baía de Todos os Santos, Bahia state, Brazil (Fig. 1). The dry samples (empty shells) (Fig. 2A-B) were collected at Praia do Forte (12°52′43.11″S, 38°41′02.09″W), located at the northern end of Itaparica Island (Fig. 1) and the live specimens (Fig. 2C-D) were collected north of Praia da Penha (also called Caribe da Ribeira) (Fig. 1) on the Itapagipe Peninsula, in Ribeira, Salvador (12°54′35.32″S, 38°29′50.62″W). The material was deposited in the mollusc collection of the Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil (MZUSP 136190, 4 shells.; MZUSP 136193, 5 spm.; MZUSP 149013 6 spm.).

Figure 1
Baía de Todos os Santos and sites where Indothais lacera was found: 1 = Itaparica Island; 2 = Itapagipe Peninsula. The other symbols indicate the major ports in the region: square = Port of Aratu; circle = Port of Salvador.

Figure 2
Indothais lacera from Baía de Todos os Santos. H = Shell height; D = shell greatest diameter. (A-B) I. lacera from Itaparica Island, MZUSP 136190. (A) Ventral view; (B) Dorsal view; H = 39.78 mm; D = 30.40 mm. (C-D) I. lacera from Itapagipe Peninsula, MZUSP 149013. (C) Ventral view; (D) Dorsal view; H = 44.18 mm; D = 32.46 mm.

DNA extraction, amplification and sequencing

Selected ethanol-preserved specimens (three from lot MZSP136193 and two from lot MZSP149013) had a small section of their foot clipped for DNA extraction. The extraction was conducted following the standard protocol of the QIAGEN DNEasy® Blood & Tissue Kit, repeating the final step to increase the yield.

Two mitochondrial markers were targeted for this study: the circa 650 bp long barcoding fragment of the mitochondrial COI (cytochrome c oxidase subunit I) gene, using the primers LCO and HCO of Folmer et al. (1994Folmer, O.; Black, M.; Hoeh, W.; Lutz, R. & Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5): 294-299.); and the circa 450 bp long 16S rRNA (large subunit rRNA) gene, using the primers 16SarL and 16SbrH of Simon et al. (1994Simon, C.; Frati, F.; Beckenbach, A.; Crespi, B.; Liu, H. & Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and compilation of Conserved Polymerase Chain Reaction primers. Annals of the Entomological Society of America, 87: 651-701. https://doi.org/10.1093/aesa/87.6.651.
https://doi.org/10.1093/aesa/87.6.651...
). The protocol for PCR amplification for both markers was: initial denaturation at 96℃ (3 min); 35 cycles of denaturation at 95℃ (30 s), annealing at 48℃ (1 min), and extension at 72℃ (2 min); final extension at 72℃ (5 min). The success of the PCR was assessed via agarose gel electrophoresis and the PCR products were cleaned using ExoSAP-IT™ (Affymetrix Inc.) according to the manufacturer’s protocol. The samples were sent to Massey Genome Service (Massey University, Palmerston North, New Zealand) for Sanger sequencing. The resulting sequences were quality-proofed and assembled in Geneious Prime (v.2020.2.2, Biomatters Ltd.), and the consensus sequences were uploaded to GenBank (seeTable 1 for registration numbers).

Table 1
List of species used in the phylogenetic analysis (including our specimens), with GenBank registration numbers of the COI and 16S markers, and provenance data of the specimens sequenced.

Phylogenetic analysis

To confirm the identity of the Brazilian specimens, a phylogenetic analysis was conducted including GenBank sequences of the species of interest (Indothais lacera), as well as seven further Indothais spp. and four other species belonging to related Rapaninae genera (Table 1). The Muricinae species Murex pecten [Lightfoot], 1786 was used as an outgroup.

The alignment of the sequences of each marker was done in Geneious Prime using the MUSCLE plugin (Edgar, 2004Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5): 1792-1797. https://doi.org/10.1093/nar/gkh340.
https://doi.org/10.1093/nar/gkh340...
) with default settings (i.e., optimized for accuracy). The alignments were visually proofed for inconsistencies and then run through Gblocks (Castresana, 2000Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17(4): 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334.
https://doi.org/10.1093/oxfordjournals.m...
; Talavera & Castresana, 2007Talavera, G. & Castresana, J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology , 56(4): 564-577. https://doi.org/10.1080/10635150701472164.
https://doi.org/10.1080/1063515070147216...
) with the least restrictive settings, to eliminate poorly-aligned or data-deficient positions that could interfere with the analysis. The resulting COI and 16S alignments were then concatenated for the phylogenetic analysis.

The Bayesian inference phylogenetic analysis was done using MrBayes (v.3.2.7, Ronquist et al., 2012Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A. & Huelsenbeck, J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539-542. https://doi.org/10.1093/sysbio/sys029.
https://doi.org/10.1093/sysbio/sys029...
) via the CIPRES Science Gateway (v.3.3, Miller et al., 2015Miller, M.A., Schwartz, T., Pickett, B.E., He, S., Klem, E.B., Scheuermann, R.H., Passarotti, M., Kaufman, S. & O’Leary, M.A. 2015. A RESTful API for access to phylogenetic tools via the CIPRES Science Gateway. Evolutionary Bioinformatics, 11: 43-48. https://doi.org/10.4137/ebo.s21501.
https://doi.org/10.4137/ebo.s21501...
). Two concurrent analyses were run, each with 4 Markov chains of 30 million generations (the first 20% of generations were discarded as ‘burn-in’), the default priors, nst = 6, rates = invgamma, temperature parameter = 0.1, sampling every 1,000 generations, and with substitution model parameters unlinked across the two markers. MCMC convergence was assessed by the standard deviation of split frequencies (< 0.01) and the potential scale reduction factor (PSRF ~ 1.0), as well as by observing the trace plots in Geneious (Ronquist et al., 2009Ronquist, F.; van der Mark, P. & Huelsenbeck, J.P. 2009. Bayesian phylogenetic analysis using MrBayes. In: Lemey, P.; Salemi, M. & Vandamme, A.-M. (Eds.). The Phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge, Cambridge University Press. p. 210-266.).

RESULTS

The specimens of Indothais from the Brazilian coast exhibit shell features consistent with those of I. lacera, which are: a biconical shell with strong spiral cords, the presence of a ridge on the sutural ramp, whorls provided of strong triangular tubercles, aperture ovate and a broad and apparent pseudoumbilicus (Tan & Sigurdsson, 1996Tan, K.S. & Sigurdsson, J.B. 1996. New species of Thais (Neogastropoda, Muricidae) from Singapore, with a re-description of Thais javanica (Philippi, 1848). Journal of Molluscan Studies, 62(4): 517-535. https://doi.org/10.1093/mollus/62.4.517.
https://doi.org/10.1093/mollus/62.4.517...
; Kumar et al., 2017Kumar, R.; Jaiswar, A.K.; Jahageerdar, S.; Chakraborty, S.K.; Kumar, A.P. & Prasad, L. 2017. Comparative taxonomic evaluation of Thais species (Order: Gastropoda; Family: Muricidae) of Mollusca from Maharashtra coast of India. Indian Journal of Geo-Marine Sciences, 44(6): 1098-1104.).

In total, 31 terminal taxa were used in the molecular phylogenetic analysis, including the outgroup (Table 1). After the exclusion of poorly-aligned or data-deficient positions with Gblocks, the resulting COI sequences were 654 bp long, and 16S were 445 bp long, resulting in concatenated sequences 1099 bp long. The Bayesian analysis obtained a well-resolved tree, with mostly well-supported nodes throughout (posterior probabilities, PP ≥ 0.95; Fig. 3).

Figure 3
Bayesian inference phylogenetic tree based on CO1 and 16S, with the specimens collected in Brazil highlighted. Posterior probabilities are shown on nodes; scale bar is substitutions per site.

The sequences of I. lacera are all gathered in a single clade with full support (PP = 1), which includes all specimens collected on the Brazilian coast (Fig. 3). Three of the Brazilian specimens form a strongly-supported (PP = 1) monophyletic taxon that is sister to all other I. lacera. The other two specimens form another strongly-supported (PP = 0.99) monophyletic branch that is sister to a clade formed by two specimens of I. lacera from Bangladesh (PP = 1). This confirms the identity of the Brazilian specimens as I. lacera and also indicates that the population of this species on the Brazilian coast could have more than one origin, i.e., it was introduced more than once, from different localities.

Another result of note, albeit unrelated to the present question, is that the specimens of I. javanica from China are potentially misidentified specimens of I. rufotincta (Fig. 3). The description and diagnostic features of I. javanica have been flagged as potentially problematic in other recent studies that made use of both morphological features and molecular data (Marshall & Taha, 2021Marshall, D.J. & Taha, H. 2021. An evolutionary estuarine incursion: molecular differentiation and niche separation in Bornean Indothais snails (Rapaninae, Muricidae). Journal of the Marine Biological Association of the United Kingdom , 101(2): 319-329. https://doi.org/10.1017/S002531542100014X.
https://doi.org/10.1017/S002531542100014...
).

DISCUSSION

Baía de Todos os Santos is the second largest coastal bay in Brazil, covering a maximum area of 1,233 km² (Cirano & Lessa, 2007Cirano, M. & Lessa, G.C. 2007. Oceanographic characteristics of Baía de Todos os Santos, Brazil. Revista brasileira de geofísica, 25(4): 363-387.). That bay is located in the northeast region of the country, close to the city of Salvador, the capital of the state of Bahia, and has ten large port terminals (Hatje & Andrade, 2009Hatje, V. & Andrade, J.B.D. 2009. Baía de Todos os Santos - aspectos oceanográficos. Salvador, EDUFBA. 306p.), which means intense maritime activities in the region. Judging by the high port activity in the bay, it is expected that the dispersion of I. lacera to Brazil has occurred through inter-oceanic travel. This can take place either through ballast water (the species has a long planktonic larval stage) or biofouling (i.e., as an epibiont on ship hulls).

Considering that the Brazilian specimens of I. lacera form two distinct clades in the resulting phylogenetic tree (Fig. 3), it can be surmised that there was more than one introduction event of this species in Brazil, from at least two different localities. One of these localities is the region around Bangladesh, given the small genetic distance between them (Fig. 3). The remaining specimens from Brazil display a greater genetic distance from other sequenced specimens of I. lacera from China and Malaysia (Fig. 3). Given the absence of sequenced specimens from additional localities, it is presently not possible to narrow down the locality of origin for the second introduction of I. lacera in Brazil. Nevertheless, given that each branch of Brazilian I. lacera on the tree contains specimens of the two localities sampled, it can be assumed that the populations from each introduction event have spread throughout the bay.

Rapaninae species are known to be generalist predators of other molluscs, exerting great influence on the structure of faunal communities (Vermeij & Carlson, 2000Vermeij, G.J. & Carlson, S.J. 2000. The muricid gastropod subfamily Rapaninae: phylogeny and ecological history. Paleobiology, 26(1): 19-46.). Consequently, this invasion may pose a potential risk to native mollusc assemblages in the region. Although rapanines are widely known to inhabit rocky shores and reef ecosystems, the broad hyaline tolerance of I. lacera (Claremont et al., 2013Claremont, M.; Vermeij, G.J.; Williams, S.T. & Reid, D.G. 2013. Global phylogeny and new classification of the Rapaninae (Gastropoda: Muricidae), dominant molluscan predators on tropical rocky seashores. Molecular Phylogenetics and Evolution, 66(1): 91-102. https://doi.org/10.1016/j.ympev.2012.09.014.
https://doi.org/10.1016/j.ympev.2012.09....
) may also signify a risk to estuarine ecosystems. This fact may be related to the apparent disappearance of the native species Thaisella mariae (Morretes, 1954) on Itaparica Island (NCP, unpublished data), although it is impossible to ascertain this at present. Thaisella mariae is a muricid endemic to Brazil that occurs in estuarine areas, with a northern limit in Bahia state (Itaparica) and a southern limit in Paraná state (Rios, 2009Rios, E.C. 2009. Compendium of Brazilian Sea Shells. Rio Grande, Evangraf. 662p.). This species has a fusiform shell, relatively smaller in size compared to the invasive species (about 30 mm), characterized by sharp nodules that form fissured needles (although quite variable), a wide umbilical area surrounded by a thick keel, and by the presence of 3 to 4 bands of colour ranging from bluish-purple to brown inside the outer lip. However, in recent collections (2018) carried out in the region, no evidence of its occurrence was found. As specimens of T. mariae were relatively common in those areas, it is possible to speculate that the native species may have been displaced and locally extinct by the Indo-Pacific exotic species (T. mariae apparently occupies the same niche as I. lacera).

Although the real impact of this invader in Baía de Todos os Santos is only speculative for the moment, its introduction (from at least two source populations) is a reminder that there are still few efforts dedicated to the prevention of marine bioinvaders in Brazilian ports (e.g.,Gernet et al., 2019Gernet, M.D.V.; Belz, C.E.; Baggio, R.A.; Birckolz, C.J.; Santos, E.D.V.; Simone, L.R.L. & Metri, R. 2019. Nassarius foveolatus (Gastropoda, Nassariidae), a new record of an exotic species in Brazil. Papéis Avulsos de Zoologia , v.59: e20195955. 8p. https://doi.org/10.11606/1807-0205/2019.59.55.
https://doi.org/10.11606/1807-0205/2019....
; Spotorno-Oliveira et al., 2020Spotorno-Oliveira, P.; Lopes, R.P.; Larroque, A.; Monteiro, D.; Dentzien-Dias, P. & Tâmega, F.T.S. 2020. First detection of the non-indigenous gastropod Rapana venosa in the southernmost coast of Brazil. Continental Shelf Research, 194: 1-10, 104047. https://doi.org/10.1016/j.csr.2020.104047.
https://doi.org/10.1016/j.csr.2020.10404...
). Considering the ecological importance of molluscs within the marine benthic fauna, a significant change in the species composition of mollusc assemblages could have cascading effects on the entire benthic community, especially considering a fauna that already suffers from the impacts generated by port activity (Hatje & Andrade, 2009Hatje, V. & Andrade, J.B.D. 2009. Baía de Todos os Santos - aspectos oceanográficos. Salvador, EDUFBA. 306p.). Considering that bays and other coastal regions with intense port activity are frequent sites of marine invasions (Ruiz et al., 1999Ruiz, G.M.; Fofonoff, P.W.; Hines, A.H. & Grosholz, E.D. 1999. Nonindigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. Limnology and Oceanography, 44(3, pt.2): 950-972. https://doi.org/10.4319/lo.1999.44.3_part_2.0950.
https://doi.org/10.4319/lo.1999.44.3_par...
), stricter and more optimized methods of controlling and preventing bioinvasions in those areas are urgently needed (Darrigran et al., 2020Darrigran, G.; Agudo-Padrón, I.; Baez, P.; Belz, C.; Cardoso, F.; Carranza, A.; Collado, G.; Correoso, M.; Cuezzo, M.G.; Fabres, A.; Gregoric, D.E.G.; Letelier, S.; Ludwing, S.; Mansur, M.C.; Pastorino, G.; Penchaszadeh, P.; Peralta, C.; Rebolledo, A.; Rumi, A.; Santos, S.; Thiengo, S.; Vidigal, T. & Damborenea, C. 2020. Non-native mollusks throughout South America: emergent patterns in an understudied continent. Biological Invasions, 22(3): 853-871. https://doi.org/10.1007/s10530-019-02178-4.
https://doi.org/10.1007/s10530-019-02178...
).

ACKNOWLEDGMENTS

We are very grateful to Fernanda S. Silva and Simone Lira (MZSP) for organizing the loan of the material to be sequenced.

REFERENCES

  • Abu-Zied, R.H. & Bantan, R.A. 2018. Late Pleistocene gastropods from the raised reefal limestone of Jeddah, Saudi Arabia: taxonomic and palaeoenvironmental implications. PalZ, (Paläontologische Zeitschrift), 92(1): 65-86. https://doi.org/10.1080/08912963.2019.1628226
    » https://doi.org/10.1080/08912963.2019.1628226
  • Al-Asif, A.; Hamli, H.; Abu Hena, M.K.; Idris, M.H.; Gerusu, G.J.; Ismail, J.B. & Karim, N.U. 2020. Benthic macrofaunal assemblage in seagrass-mangrove complex and adjacent ecosystems of Punang-Sari Estuary, Lawas, Sarawak, Malaysia. Biodiversitas, 21(10): 4606-4615. https://doi.org/10.13057/biodiv/d211019
    » https://doi.org/10.13057/biodiv/d211019
  • Amaral, V.S.; Simone, L.R.L.; de Souza Tâmega, F.T.; Barbieri, E.; Calazans, S.H.; Coutinho, R. & Spotorno-Oliveira, P. 2019. New records of the non-idingenous oyster Saccostrea cucullata (Bivalvia: Ostreidae) from the southeast and south Brazilian Coast. Regional Studies in Marine Science, 33: 100924. https://doi.org/10.1016/j.rsma.2019.100924
    » https://doi.org/10.1016/j.rsma.2019.100924
  • Belz, C.E.; Simone, L.R.L.; Silveira-Júnior, N.; Baggio, R.A.; Gernet, M.V. & Birckolz, C.J. 2020. First record of the Mediterranean mussel Mytilus galloprovincialis (Bivalvia, Mytilidae) in Brazil. Papéis Avulsos de Zoologia, v.60: e20206007. 5p. https://doi.org/10.11606/1807-0205/2020.60.07
    » https://doi.org/10.11606/1807-0205/2020.60.07
  • Breves-Ramos, A.; Junqueira A.O.R.; Lavrado, H.P.; Silva S.H.G. & Ferreira-Silva, M.A.G. 2010. Population structure of the invasive bivalve Isognomon bicolor on rocky shores of Rio de Janeiro State (Brazil). Journal of the Marine Biological Association of the United Kingdom, 90(3): 453-459. https://doi.org/10.1017/S0025315409990919
    » https://doi.org/10.1017/S0025315409990919
  • Byers, J.E. 2002. Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos, 97: 449-458.
  • Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17(4): 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
    » https://doi.org/10.1093/oxfordjournals.molbev.a026334
  • Cirano, M. & Lessa, G.C. 2007. Oceanographic characteristics of Baía de Todos os Santos, Brazil. Revista brasileira de geofísica, 25(4): 363-387.
  • Claremont, M.; Vermeij, G.J.; Williams, S.T. & Reid, D.G. 2013. Global phylogeny and new classification of the Rapaninae (Gastropoda: Muricidae), dominant molluscan predators on tropical rocky seashores. Molecular Phylogenetics and Evolution, 66(1): 91-102. https://doi.org/10.1016/j.ympev.2012.09.014
    » https://doi.org/10.1016/j.ympev.2012.09.014
  • Darrigran, G.; Agudo-Padrón, I.; Baez, P.; Belz, C.; Cardoso, F.; Carranza, A.; Collado, G.; Correoso, M.; Cuezzo, M.G.; Fabres, A.; Gregoric, D.E.G.; Letelier, S.; Ludwing, S.; Mansur, M.C.; Pastorino, G.; Penchaszadeh, P.; Peralta, C.; Rebolledo, A.; Rumi, A.; Santos, S.; Thiengo, S.; Vidigal, T. & Damborenea, C. 2020. Non-native mollusks throughout South America: emergent patterns in an understudied continent. Biological Invasions, 22(3): 853-871. https://doi.org/10.1007/s10530-019-02178-4
    » https://doi.org/10.1007/s10530-019-02178-4
  • Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5): 1792-1797. https://doi.org/10.1093/nar/gkh340
    » https://doi.org/10.1093/nar/gkh340
  • Folmer, O.; Black, M.; Hoeh, W.; Lutz, R. & Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5): 294-299.
  • Gernet, M.D.V.; Belz, C.E.; Baggio, R.A.; Birckolz, C.J.; Santos, E.D.V.; Simone, L.R.L. & Metri, R. 2019. Nassarius foveolatus (Gastropoda, Nassariidae), a new record of an exotic species in Brazil. Papéis Avulsos de Zoologia , v.59: e20195955. 8p. https://doi.org/10.11606/1807-0205/2019.59.55
    » https://doi.org/10.11606/1807-0205/2019.59.55
  • Gofas, S. & Zenetos, A. 2003. Exotic molluscs in the Mediterranean basin: current status and perspectives. Oceanography and Marine Biology: an Annual Review, 41: 237-277.
  • Hatje, V. & Andrade, J.B.D. 2009. Baía de Todos os Santos - aspectos oceanográficos. Salvador, EDUFBA. 306p.
  • Jardim, J.A. & Pedro, N.C. 2021. New records of Acanthochitona spiculosa (Reeve, 1847) from Brazil. Spixiana, 44(1): 19-20.
  • Jeeva, C.; Mohan, P.M.; Sabith, K.D.B.; Ubare, V.V.; Muruganantham, M. & Kumari, R.K. 2018. Distribution of gastropods in the intertidal environment of south, middle and north Andaman Islands, India. Open Journal of Marine Science, 8: 173-195. https://doi.org/10.4236/ojms.2018.81009
    » https://doi.org/10.4236/ojms.2018.81009
  • Kantharajan, G.; Pandey, P.K.; Krishnan, P.; Samuel, V.D.; Bharti, V.S. & Purvaja, R. 2017. Molluscan diversity in the mangrove ecosystem of Mumbai, west coast of India. Regional Studies in Marine Science , 14: 102-111. https://doi.org/10.1016/j.rsma.2017.06.002
    » https://doi.org/10.1016/j.rsma.2017.06.002
  • Kumar, R.; Jaiswar, A.K.; Jahageerdar, S.; Chakraborty, S.K.; Kumar, A.P. & Prasad, L. 2017. Comparative taxonomic evaluation of Thais species (Order: Gastropoda; Family: Muricidae) of Mollusca from Maharashtra coast of India. Indian Journal of Geo-Marine Sciences, 44(6): 1098-1104.
  • Kumar, R.; Jaiswar, A.K.; Kumar, A.P.; Chakraborthy, S.K.; Jahageerdhar, S.J. & Lakra, S.W. 2015. DNA barcoding of Thais species (Family: Muricidae) from west coast of India. Indian Journal of Fisheries, 62(2): 92-97.
  • Mahapatro, D.; Panigrahy, R.; Panda, S. & Mishra, R.K. 2018. Malcofaunal diversity of Chilika Lake, Odisha, India. Proceedings of the Zoological Society, 71(3): 272-280. https://doi.org/10.1007/s12595-016-0204-9
    » https://doi.org/10.1007/s12595-016-0204-9
  • Marshall, D.J. & Taha, H. 2021. An evolutionary estuarine incursion: molecular differentiation and niche separation in Bornean Indothais snails (Rapaninae, Muricidae). Journal of the Marine Biological Association of the United Kingdom , 101(2): 319-329. https://doi.org/10.1017/S002531542100014X
    » https://doi.org/10.1017/S002531542100014X
  • Miller, M.A., Schwartz, T., Pickett, B.E., He, S., Klem, E.B., Scheuermann, R.H., Passarotti, M., Kaufman, S. & O’Leary, M.A. 2015. A RESTful API for access to phylogenetic tools via the CIPRES Science Gateway. Evolutionary Bioinformatics, 11: 43-48. https://doi.org/10.4137/ebo.s21501
    » https://doi.org/10.4137/ebo.s21501
  • Niamaimandi, N.; Javadzadeh, N.; Kabgani, N.; Vaghei, R.G. & Rajabzadeh, I. 2017. Biodiversity of the gastropods in different periods in intertidal zone of the Iranian waters of the Persian Gulf. Regional Studies in Marine Science , 13: 59-63. https://doi.org/10.1016/j.rsma.2017.04.001
    » https://doi.org/10.1016/j.rsma.2017.04.001
  • Oliveira, M.J.S.; Beasley, C.R.; Barros, N.G.V.; Marques-Silva, N.S.; Simone, L.R.L.; Lima, E.S. & Tagliaro, C.H. 2017. Two African origins of naturalized brown mussel (Perna perna) in Brazil: past and present bioinvasions. Hydrobiologia, 794(1): 59-72. https://doi.org/10.1007/s10750-016-3082-2
    » https://doi.org/10.1007/s10750-016-3082-2
  • Rios, E.C. 2009. Compendium of Brazilian Sea Shells. Rio Grande, Evangraf. 662p.
  • Rocha, R.M.; Vieira, L.M.; Migotto, A.E.; Amaral, A.C.Z.; Ventura, C.R.R.; Pitombo, F.B.; Santos, K.C.; Simone, L.R.L.; Tavares, M.; Lopes, R.M.; Pinheiro, U. & Marques, A.C. 2013. The need of more rigorous assessments of marine species introductions: A counter example from the Brazilian coast. Marine Pollution Bulletin, 67(1-2): 241-243. https://doi.org/10.1016/j.marpolbul.2012.12.009
    » https://doi.org/10.1016/j.marpolbul.2012.12.009
  • Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A. & Huelsenbeck, J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539-542. https://doi.org/10.1093/sysbio/sys029
    » https://doi.org/10.1093/sysbio/sys029
  • Ronquist, F.; van der Mark, P. & Huelsenbeck, J.P. 2009. Bayesian phylogenetic analysis using MrBayes. In: Lemey, P.; Salemi, M. & Vandamme, A.-M. (Eds.). The Phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge, Cambridge University Press. p. 210-266.
  • Rosenberg, G. 2006. OBIS Indo-Pacific Molluscan Datase. Available: Available: http://clade.ansp.org/obis/search.php/region3078 Access: 19/05/2022.
    » http://clade.ansp.org/obis/search.php/region3078
  • Ruiz, G.M.; Carlton, J.T.; Grosholz, E.D. & Hines, A.H. 1997. Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. American zoologist, 37(6): 621-632.
  • Ruiz, G.M.; Fofonoff, P.W.; Hines, A.H. & Grosholz, E.D. 1999. Nonindigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. Limnology and Oceanography, 44(3, pt.2): 950-972. https://doi.org/10.4319/lo.1999.44.3_part_2.0950
    » https://doi.org/10.4319/lo.1999.44.3_part_2.0950
  • Silva, E.C. & Barros, F. 2011. Macrofauna bentônica introduzida no Brasil: lista de espécies marinhas e dulcícolas e distribuição atual. Oecologia Australis, 15(2): 326-344.
  • Simon, C.; Frati, F.; Beckenbach, A.; Crespi, B.; Liu, H. & Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and compilation of Conserved Polymerase Chain Reaction primers. Annals of the Entomological Society of America, 87: 651-701. https://doi.org/10.1093/aesa/87.6.651
    » https://doi.org/10.1093/aesa/87.6.651
  • Simone, L.R.L. & Gonçalves, E.P. 2006. Anatomical study on Myophorceps aristatus, an invasive boring bivalve in S.E. Brazilian coast (Mytilidae). Papéis Avulsos de Zoologia , 46(6): 57-65.
  • Spotorno-Oliveira, P.; Coutinho, R. & Tâmega F.T.S. 2018. Recent introduction of non-indigenous vermetid species (Mollusca, Vermetidae) to the Brazilian coast. Marine Biodiversity, 48(4): 1931-1941. https://doi.org/10.1007/s12526-017%2D0702%2D7
    » https://doi.org/10.1007/s12526-017%2D0702%2D7
  • Spotorno-Oliveira, P.; Lopes, R.P.; Larroque, A.; Monteiro, D.; Dentzien-Dias, P. & Tâmega, F.T.S. 2020. First detection of the non-indigenous gastropod Rapana venosa in the southernmost coast of Brazil. Continental Shelf Research, 194: 1-10, 104047. https://doi.org/10.1016/j.csr.2020.104047
    » https://doi.org/10.1016/j.csr.2020.104047
  • Sultana, K.S.; Brishti, P.S.; Ahmed, S.; Billah, M.B. & Habib, K.A. 2021. Morphological and molecular characterization of several neogastropod species (Mollusca: Gastropoda) from coastal waters of Bangladesh with one new record. Journal of Bio-Science, 29(1): 79-91. https://doi.org/10.3329/jbs.v29i0.54824
    » https://doi.org/10.3329/jbs.v29i0.54824
  • Talavera, G. & Castresana, J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology , 56(4): 564-577. https://doi.org/10.1080/10635150701472164
    » https://doi.org/10.1080/10635150701472164
  • Tan, K.S. & Sigurdsson, J.B. 1996. New species of Thais (Neogastropoda, Muricidae) from Singapore, with a re-description of Thais javanica (Philippi, 1848). Journal of Molluscan Studies, 62(4): 517-535. https://doi.org/10.1093/mollus/62.4.517
    » https://doi.org/10.1093/mollus/62.4.517
  • Vermeij, G.J. & Carlson, S.J. 2000. The muricid gastropod subfamily Rapaninae: phylogeny and ecological history. Paleobiology, 26(1): 19-46.
  • Wonham, M.J.; Walton, W.C.; Ruiz, G.M.; Frese, A.M. & Galil, B. 2001. Going to the source: role of the invasion pathway in determining potential invaders. Marine Ecology Progress Series, 215: 1-12. https://doi.org/10.3354/meps215001
    » https://doi.org/10.3354/meps215001
  • Zhong, S.; Zhao, Y.; Wang, X.; Song, Z.; & Zhang, Q. 2017. The complete mitochondrial genome of Indothais lacera (Neogastropoda: Muricidae). Mitochondrial DNA Part B, 2(2): 877-878. https://doi.org/10.1080/23802359.2017.1407697
    » https://doi.org/10.1080/23802359.2017.1407697
  • FUNDING INFORMATION:

    This project did not use any external financial support.
  • Published with the financial support of the “Programa de Apoio às Publicações Científicas da Universidade de São Paulo”

Edited by

Edited by:

Marcelo Veronesi Fukuda

Data availability

Data citations

Rosenberg, G. 2006. OBIS Indo-Pacific Molluscan Datase. Available: Available: http://clade.ansp.org/obis/search.php/region3078 Access: 19/05/2022.

Publication Dates

  • Publication in this collection
    27 Feb 2023
  • Date of issue
    2023

History

  • Received
    14 June 2022
  • Accepted
    03 Nov 2022
  • Published
    23 Jan 2023
Museu de Zoologia da Universidade de São Paulo Av. Nazaré, 481, Ipiranga, 04263-000 São Paulo SP Brasil, Tel.: (55 11) 2065-8133 - São Paulo - SP - Brazil
E-mail: einicker@usp.br