Acessibilidade / Reportar erro

Bats (Mammalia, Chiroptera) from Yuscarán in Eastern Honduras: Conservation and acoustic characterization for the insectivorous species

Abstract

In Honduras, most bat inventories have been carried out with mist nets as the main sampling method, skewing knowledge towards the Phyllostomidae family, therefore the diversity and distribution of insectivorous bats is underrepresented. In order to have a more complete knowledge of the diversity of bats in the municipality of Yuscarán and mainly in the Yuscarán Biological Reserve, an inventory was carried out using the techniques of mist-netting and acoustic monitoring. The samplings were carried out between 910 and 1,827 m.a.s.l., covering agroecosystems, broadleaf forest, pine forest and urban environment. A total of 32 species of bats were registered, which represents 28% of the species diversity present in Honduras. Species belonging to five families were recorded: Emballonuridae (6.25%), Mormoopidae (15.22%), Phyllostomidae (56.25%), Molossidae (9.37%) and Vespertilionidae (12.5%). With the mist nets, a sampling effort of 7,128 m²/h was reached, which allowed the capture of 20 species and 186 individuals. Through the acoustic method, with 84 h/r, 13 species of insectivorous bats were recorded. The values of the acoustic parameters analysed from the search phase of each insectivorous species are provided, which can serve as a reference for the identification of species from Hondurans. To advance our understanding of the distribution patterns, composition, and vocal signatures of insectivore bats, we suggest the complementary use of mist nets and acoustic recorders in the inventories.

Keywords
Biological Reserve; Central America; Insectivorous bats; Acoustic sampling; Echolocation

INTRODUCTION

Bats (order Chiroptera), with more than 1,400 species are after of rodents, the second-largest group of mammals in the world (Simmons, 2005Simmons, N.B. 2005. Order Chiroptera. In: Wilson, D.E. & Reeder, D.M. (Eds.). Mammal species of the World: a taxonomic and geographic reference. Baltimore, Johns Hop kins University Press. p. 1207.; Fenton & Simmons, 2014Fenton, M.B. & Simmons, N.B. 2014. Bats: a world of science and mystery. Chicago, University of Chicago Press,. pp. 305.; Solari et al., 2019Solari, S.C.; Sotero, C.G. & Backer, R.J. 2019. Advances in systematics of bats: towards a consensus on species delimitation and classifications through integrative taxonomy. Journal of Mammalogy , 100(3): 838-851. http://doi.org/10.1093/jmammal/gyy168
http://doi.org/10.1093/jmammal/gyy168...
). They represent approximately half of the diversity of mammalian species in tropical forests (Simmons & Voss, 1998Simmons, N.B. & Voss, R.S. 1998. The mammals of Paracou, French Guiana: a Neotropical lowland rainforest fauna. Part 1. Bats. Bulletin of the American Museum of Natural History, 237: 1-219.; Estrada & Coates-Estrada, 2001Estrada, A. & Coates-Estrada, R. 2001. Species composition and reproductive phenology of bats in a tropical landscape at Los Tuxtlas, Mexico. Journal of Tropical Ecology, 17(5): 627-646. http://doi.org/10.1017/S026646740100147X
http://doi.org/10.1017/S026646740100147X...
; Aguirre, 2002Aguirre, L.F. 2002. Structure of a neotropical savanna bat community. Journal of Mammalian, 83(3): 775-784. http://doi.org/10.1644/1545-1542(2002)083%3c0775:SOANSB%3e2.0.CO;2
http://doi.org/10.1644/1545-1542(2002)08...
). Bats carry out important and complex ecological processes in forests, since they act as important pest controllers, pollinators and seed dispersers, including several plant species used by humans (Medellín & Gaona, 1999Medellín, R.A. & Geona, O. 1999. Seed dispersal by bats and birds in forest and disturbed habitats of Chiapas, Mexico. Biotropica, 31(3): 478-485. http://doi.org/10.1111/j.1744-7429.1999.tb00390.x
http://doi.org/10.1111/j.1744-7429.1999....
; Aguirre, 2002Aguirre, L.F. 2002. Structure of a neotropical savanna bat community. Journal of Mammalian, 83(3): 775-784. http://doi.org/10.1644/1545-1542(2002)083%3c0775:SOANSB%3e2.0.CO;2
http://doi.org/10.1644/1545-1542(2002)08...
; Kunz et al., 2011Kunz, T.H.; Torrez, E.B.; Bauer, D.; Lavoba, T. & Fleming, T.H. 2011. Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223: 1-38. http://doi.org/10.1111/j.1749-6632.2011.06004.x
http://doi.org/10.1111/j.1749-6632.2011....
). Furthermore, they are used as indicators of the quality, biodiversity and disturbance of ecosystems and due to their ecological role, they contribute to the restoration of disturbed areas, secondary succession and re-establishment of primary forest species (Stevens & Willig, 2000Stevens, R.D. & Willig, M.R. 2000. Density compensation in New World bat communities. Oikos, 89(2): 367-377. http://doi.org/10.1034/j.1600-0706.2000.890218.x
http://doi.org/10.1034/j.1600-0706.2000....
; Botto-Nuñez et al., 2019Botto-Nuñez, G.; Gonzales, M.E. & Rodales, A.L. 2019. Conservación de los murciélagos (Mammalia: Chiroptera) de Uruguay: Estado actual y perspectivas. Mastozoología Neotropical, 26: 49-64. http://doi.org/10.31687/saremMN.19.26.1.0.05
http://doi.org/10.31687/saremMN.19.26.1....
; García-Luis et al., 2019García-Luis, M.; Briones-Salas, M. & Lavariega, M.C. 2019. Bat species richness in the region of the Central Valleys of Oaxaca, Mexico. Arxius de Miscellania Zoologica, 17: 1-11. http://doi.org/10.32800/amz.2019.17.0001
http://doi.org/10.32800/amz.2019.17.0001...
). Despite their importance, they face multiple threats: habitat loss and fragmentation, loss of roosting sites, disease, pesticide use, wind farms and rabies control (Mickleburgh et al., 2002Mickleburgh, S.P.; Hutson, A.M. & Racey, P.A. 2002. A review of the global conservation status of bats. Oryx, 36: 18-34. http://doi.org/10.1017/S0030605302000054
http://doi.org/10.1017/S0030605302000054...
; RELCOM, 2010RELCOM [Red Latinoamericana de Conservación de los Murciélagos]. 2010. Estrategia para la conservación de los murciélagos de Latinoamérica y el Caribe. Available: Available: http://www.relcomlatinoamerica.net/images/PDFs/Estrategia.pdf (19 October 2016). Access: 05/03/2021.
http://www.relcomlatinoamerica.net/image...
; Botto-Nuñez et al., 2019Botto-Nuñez, G.; Gonzales, M.E. & Rodales, A.L. 2019. Conservación de los murciélagos (Mammalia: Chiroptera) de Uruguay: Estado actual y perspectivas. Mastozoología Neotropical, 26: 49-64. http://doi.org/10.31687/saremMN.19.26.1.0.05
http://doi.org/10.31687/saremMN.19.26.1....
).

In the Neotropical region, monitoring of bats depends to a great part on the use of mist nets, skewing knowledge towards the Phyllostomidae family (Kalko et al., 1996Kalko, E.K.V.; Handley, C.O. & Handley, D. 1996. Organization, diversity, and long term dynamics of a Neotropical bat community . In: Cody, M. & Smallwood, J. (Eds.). Long term studies in vertebrate communities. Academic Press. p. 503-553.). Therefore, many aspects of the non-Phyllostomid species (insectivores), that are difficult to capture with traditional methods, or that are found in inaccessible sites, are still unknown (Kalko et al., 1996Kalko, E.K.V.; Handley, C.O. & Handley, D. 1996. Organization, diversity, and long term dynamics of a Neotropical bat community . In: Cody, M. & Smallwood, J. (Eds.). Long term studies in vertebrate communities. Academic Press. p. 503-553.). These aerial insectivorous bat species are a diverse group and typically use specialized echolocation calls and are able to easily detect and avoid mist nets or fly too high above the tree canopy (MacSwiney et al., 2008MacsWiney, M.C.; Clarke, F.M. & Racey, P.A. 2008. What you see is not what you get: the role of ultrasonic de tectors in increasing inventory completeness in Neotropical bat assemblages. Journal of Applied Ecology, 45: 1364-1371. http://doi.org/10.1111/j.1365-2664.2008.01531.x
http://doi.org/10.1111/j.1365-2664.2008....
; Marques et al., 2015Marques, J.T.; Ramos Pereira, M. & Palmeirim, J. 2015. Patterns in the use of rainforest vertical space by Neotropical aerial insectivorous bats: all the action is up in the canopy. Ecography, 38: 001-011. http://doi.org/10.1111/ecog.01453
http://doi.org/10.1111/ecog.01453...
). The echolocation calls are emitted and used to orient themselves in flight, detect and capture prey; in addition the vocalizations have a social character, being the product of adaptations to specific environments, which provides valuable information for the knowledge of biology and ecology of insectivorous species (Arita & Fenton, 1997Arita, H.T. & Fenton M.B. 1997. Flight and echolocation in the ecology and evolution of bats. Trends in Ecology & Evolution, 12: 53-58. http://doi.org/10.1016/S0169-5347(96)10058-6
http://doi.org/10.1016/S0169-5347(96)100...
; Neuweiler, 2000Neuweiler, G. 2000. Echolocation. In: Neuweiler, G. (Ed.). The Biology of bats. Oxford, Oxford University Press. p. 140-260.). At present, in the Neotropical region, the number of ecological studies and inventory of bat species that involve the use of echolocation detectors has increased due to the greater availability and a wide variety of acoustic detection, recording and analysis equipment (Jung et al., 2007Jung, K.; Kalko, E.K.V. & von Helversen, O. 2007. Echolocation calls in Central American emballonurid bats: Signal design and call frequency alternation. Journal of Zoology, 272(2): 125-137. http://doi.org/10.1111/j.1469-7998.2006.00250.x
http://doi.org/10.1111/j.1469-7998.2006....
; Barataud et al., 2013Barataud, M.; Giosa, S.; Leblanc, F.; Rufray, V.; Disca, T.; Tillon, L.; Delaval, M.; Haquart, A. & Dewynter, M. 2013. Identification et écologie acoustiquedes chiroptères de Guyane Française. Le Rhinolophe, 19: 103-145.; Jung et al., 2014Jung, K.; Molinari, J. & Kalko, E.K.V. 2014. Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (Molossidae). PLOS ONE, 9: e85279. http://doi.org/10.1371/journal.pone.0085279
http://doi.org/10.1371/journal.pone.0085...
).

In Honduras, the eastern region and specifically the municipality of Yuscarán, constitutes an area of great importance for the conservation of Honduran biodiversity due to this it was included within the Union Biological Corridor (JICA, 2018JICA [Agencia de Cooperación Internacional del Japón]. 2018. Proyecto Corredor Biológico de La Unión, para el uso sostenible y conservación de la biodiversidad. DiBio-MiAmbiente/JICA. 318p. Available: Available: https://www.jica.go.jp/project/spanish/honduras/004/materials/c8h0vm0000bk9y9y-att/materials_10.pdf . Access: 05/02/2021.
https://www.jica.go.jp/project/spanish/h...
), and was designated as an “Área de Importancia para la Conservación de los Murciélagos” (AICOM), with 37 registered species (Mejía et al., 2019Mejía, D.; Elvir F.; Portillo, H. & Flores, M. 2019. AICOM A-H-006 Corredor Biológico La Unión. PCMH/RELCOM. 9p. Available: Available: https://www.relcomlatinoamerica.net/%C2%BFqu%C3%A9-hacemos/conservacion/aicoms-sicoms/aicoms-sicoms-buscador/ad/aicoms,1/la-union,89.html . Access: 05/03/2021.
https://www.relcomlatinoamerica.net/%C2%...
). Although the municipality of Yuscarán is forested, currently the landscape has been modified due to the pressures exerted on the forested areas, with the loss of habitat being the main threat. Promoting the management and conservation of bats in Yuscarán requires knowledge of the species found there. For this reason, our objective was to record the taxonomic diversity of bats present in this region, using mist nets and acoustic recording, in different ecosystems. This allows us to know and qualitatively and quantitatively characterize the calls of insectivorous bats in the search phase, which can serve as a reference for future bioacoustics studies in Honduras.

MATERIAL AND METHODS

Study area

Honduras has a territorial extension of 112,492 km2 divided into 18 departments. In the eastern zone of Honduras is located the department of El Paraíso, to which the Municipality of Yuscarán belongs with a territorial extension of 348.9 km2 and has a protected area, the Yuscarán Biological Reserve (YBR), (Fig. 1). Originally the YBR had a total area of 41.87 km2, however this was extended, since approximately 21 km2 were added (JICA, 2018JICA [Agencia de Cooperación Internacional del Japón]. 2018. Proyecto Corredor Biológico de La Unión, para el uso sostenible y conservación de la biodiversidad. DiBio-MiAmbiente/JICA. 318p. Available: Available: https://www.jica.go.jp/project/spanish/honduras/004/materials/c8h0vm0000bk9y9y-att/materials_10.pdf . Access: 05/02/2021.
https://www.jica.go.jp/project/spanish/h...
). The average annual temperature is ~ 24.5°C and the average annual precipitation in the area is ~ 1,562.2 mm (elevations > 1,000 meters above sea level m.a.s.l., with ranges greater than 2,000 mm), (AFOCO, 2001AFOCO [Proyecto de apoyo a la forestaría comunitaria] 2001. Plan de manejo de la Reserva Biológica de Yuscarán 2000-2004. Honduras, Yuscarán. 65p.; JICA, 2018JICA [Agencia de Cooperación Internacional del Japón]. 2018. Proyecto Corredor Biológico de La Unión, para el uso sostenible y conservación de la biodiversidad. DiBio-MiAmbiente/JICA. 318p. Available: Available: https://www.jica.go.jp/project/spanish/honduras/004/materials/c8h0vm0000bk9y9y-att/materials_10.pdf . Access: 05/02/2021.
https://www.jica.go.jp/project/spanish/h...
). Less than 14% of the total area of the reserve is covered by dense broadleaf forest, 21% by intervened broadleaf forest, 10% by mixed forest and about 14% corresponds to pine forest; the remaining area destined for subsistence agriculture or coffee growing (AFOCO, 2001AFOCO [Proyecto de apoyo a la forestaría comunitaria] 2001. Plan de manejo de la Reserva Biológica de Yuscarán 2000-2004. Honduras, Yuscarán. 65p.). In this area, five field samplings were carried out, in five previously defined study sites, in an altitudinal range of 910 to 1,827 m.a.s.l., covering different ecosystems: agroecosystems, broadleaf forest, pine forest and urban environment (Table 1).

Figure 1
Geographic location of the study sites in the Yuscarán Biological Reserve and Municipality of Yuscarán, Department of El Paraíso, Honduras, Central America. Geographic coordinates and other details are in Table 1.

Table 1
Sampling locations with their respective geographic information, sampling efforts m²/h (SE), number of individuals captured by each sampling site (IC), Richness observed (RO) and Average richness (AR).

Mist nets and species classifications

The field data were obtained between December 2017 to November 2019. We used the mist-netting technique, with a length of 12 m and 9 m long × 3 m high, (38 mm mesh), ground-level (~ 0.5­-4 m height). We surveyed two nights at each site with an operating time of 17:00 to 24:00 hours, with nets cheked for captured bats at 15 minute intervals. The mist nets were located ad libitum, taking into account the characteristics of the sampled locations, trails, glades, near streams, caves, and shelters (Kunz et al., 2009Kunz, T.H.; Hodgkison, R. & Weise, C. 2009. Methods of capturing and handling bats. In: Kunz, T.H. & Parsons, S. (Eds.). Ecological and behavioral methods for the study of bats. 2.ed. Baltimore, Johns Hopkins University Press . p. 3-35.) and avoiding the days close to the full moon (Saldaña-Vázquez & Munguía-Rosas, 2013Saldaña-Vázquez, R.A. & Munguía-Rosas, M.A. 2013. Lunar phobia in bats and its ecological correlates: A meta-analysis. Mammalian Biology, 78(3): 216-219. http://doi.org/10.1016/j.mambio.2012.08.004
http://doi.org/10.1016/j.mambio.2012.08....
). Standard morphometric measurements (mm) and body mass (g) were taken from each captured bat. The measurements were made in millimetres, with a digital caliper to 0.01 mm accuracy, and body mass, using a Pesola spring scale (20, 50 and 100 g capacity). The bats captured in the mist nets were individually placed in cloth bags for later handling. For taxonomic identification, we used reference descriptions, comparing external measurements with the works of Timm et al. (1999Timm, R.M.; Laval, R.K. & Rodrigues, B. 1999. Clave de campo para los Murciélagos de Costa Rica. Brenesia, 52: 1-32.); Medellín et al., (2008Medellín, R.A.; Arita, H. & Sánchez, O. 2008. Identificación de los murciélagos de México. Clave de campo. Segunda Edición. Instituto de Ecología. Universidad Nacional Autónoma de México. 80p.); Reid (2009Reid, F.A. 2009. A field guide to the mammals of Central America and Southeast Mexico. 2.ed. Oxford University Press.) and Medina-Fitoria (2014Medina-Fitoria, A. 2014. Murciélagos de Nicaragua, guía de campo. Managua, Nicaragua. MARENA/PCMN. 280p.). Each individual captured was classified according to the sex class (males and females), age (adults and juveniles), determined by the degree of ossification of the pharyngeal epiphyses (Brunet-Rossini & Wilkinson, 2009Brunet-Rossini, A.K. & Wilkinson, G.S. 2009. Methods for age estimation and the study of senescence in bats. In: Kunz, T.H. & Parsons, S. (Eds.). Ecological and behavioral methods for the study of bats. Baltimore, Johns Hopkins University Press. p. 315-325.) and reproductive status (female: non-reproductive, pregnant, lactating, post-lactating; male: enlarged and descended testicles: scrotal or non-scrotal) Racey (2009Racey, P.A. 2009. Reproductive assessment of bats. In: Kunz, T.H. & Parsons, S. (Eds.). Ecological and behavioral methods for the study of bats. 2. ed. Maryland, The Johns Hopkins University Press. p. 249-264.). After their identification and taking a photograph, the bats were released. Bats were captured and handled in the field following guidelines approved by the American Society of Mammalogists (Sikes & the Animal Care and Use Committee of the American Society of Mammalogists, 2016Sikes, R.S. & the Animal Care and Use Committee of the American Society of Mammalogists. 2016. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy , 97(3): 663-688. http://doi.org/10.1093/jmammal/gyw078
http://doi.org/10.1093/jmammal/gyw078...
).

For bat species named in our study, we followed the currently valid taxonomic nomenclature as outlined in Wilson & Mittermeier (2019Wilson, D.E. & Mittermeier, R.A. 2019. Handbook of the mammals of the world. Barcelona, Lynx Ediciones.) and Simmons & Cirranello (2020Simmons, N.B. & Cirranello A.L. 2020. Bat Species of the World: A taxonomic and geographic database. Available: Available: https://batnames.org . Access: 08/03/2021.
https://batnames.org...
). For the genus Sturnira,Velazco & Patterson (2013Velazco, P.M. & Patterson, B.D. 2013. Diversification of the yellow-shouldered bats genus Sturnira (Phyllostomidae), in the new world tropics. Molecular Phylogenetics and Evolution , 68(3): 683-698. http://doi.org/10.1016/j.ympev.2013.04.016
http://doi.org/10.1016/j.ympev.2013.04.0...
) was followed, Dermanura is considered as a separate genus from Artibeus (Hoofer et al., 2008Hoofer, S.R.; Solari, S.; Larsen, P.A.; Bradley, R.D. & Baker, R.J. 2008. Phylogenetics of the fruit-eating bats (Phyllostomidae: Artibeina) inferred from mitochondrial DNA sequences. Occasional Papers Museum Texas Tech University, 277: 1-15. http://doi.org/10.5962/bhl.title.156929
http://doi.org/10.5962/bhl.title.156929...
), and Glossophaga soricina represents a taxonomic complex and the valid species is adopted, Calahorra-Oliart et al. (2021Calahorra-Oliart, A.; Ospina-Garcés, S.M. & León-Paniagua, L. 2021. Cryptic species in Glossophaga soricina (Chiroptera: Phyllostomidae): do morphological data support molecular evidence? Journal of Mammalogy, 102: 54-68. http://doi.org/10.1093/jmammal/gyaa116
http://doi.org/10.1093/jmammal/gyaa116...
). The arrangement of the family Mormoopidae follows Pavan & Marroig (2016Pavan, A.C. & Marroig, G. 2016. Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Molecular Phylogenetics and Evolution , 103: 184-198. http://doi.org/10.1016/j.ympev.2016.07.011
http://doi.org/10.1016/j.ympev.2016.07.0...
) and the genus Molossus follows Loureiro et al. (2019Loureiro, L.O.; Engstrom, M.; Lim, B.; López-González, C. & Juste, J. 2019. Not all Molossus are created equal: genetic variation in the mastiff bat reveals diversity masked by conservative morphology. Acta Chiropterologica, 21: 51-64. http://doi.org/10.3161/15081109ACC2019.21.1.004
http://doi.org/10.3161/15081109ACC2019.2...
, 2020Loureiro, L.O.; Engstrom, M.D. & Lim, B.K. 2020. Single nucleotide polymorphisms (SNPs) provide unprecedented resolution of species boundaries, phylogenetic relationships, and genetic diversity in the mastiff bats (Molossus). Molecular Phylogenetics and Evolution, 143: 106690. http://doi.org/10.1016/j.ympev.2019.106690
http://doi.org/10.1016/j.ympev.2019.1066...
). The species were classified according to the primary feeding guild based on the works of Kalko et al. (1996Kalko, E.K.V.; Handley, C.O. & Handley, D. 1996. Organization, diversity, and long term dynamics of a Neotropical bat community . In: Cody, M. & Smallwood, J. (Eds.). Long term studies in vertebrate communities. Academic Press. p. 503-553.), Schnitzler & Kalko (2001Schnitzler, H.U. & Kalko, E.K.V. 2001. Echolocation by insect-eating bats: we define four distinct functional groups of bats and find differences in signal structure that correlate with the typical echolocation tasks faced by each group. BioScience, 51(7): 557-569. http://doi.org/10.1641/0006-3568(2001)051%5b0557:EBIEB%5d2.0.CO;2
http://doi.org/10.1641/0006-3568(2001)05...
), Schnitzler et al. (2003Schnitzler, H.U.; Moss, C.F. & Denzinger, A. 2003. From spatial orientation to food acquisition in echolocating bats. Trends Ecology & Evolution, 18(8): 386-394. http://doi.org/10.1016/S0169-5347(03)00185-X
http://doi.org/10.1016/S0169-5347(03)001...
), and the guilds are: Insectivore (I); Animalivore (A); Frugivore (F); Nectarivore (N); Omnivore (O); Hematophagous (H). The conservation status was assigned according to the Red List of Threatened Species of the International Union for Conservation of Nature (IUCN), considering the following categories: Critically Endangered (CR); Endangered (EN); Vulnerable (VU); Threatened (NT); Least Concern (LC); No data (NC) (IUCN, 2021International Union for Conservation of Nature and Natural Resources (IUCN). 2021. Version 2021-1. The IUCN Red List of Threatened Species. Available: Available: https://www.iucnredlist.org . Access: 15/03/2021.
https://www.iucnredlist.org...
).

Bioacoustic recording and analysis

A bat recorder (Song Meter SM3Bat +) was used with an omnidirectional ultrasound microphone SMX-US (Wildlife Acoustics, Maynard, Massachusetts, USA). The recorder was installed in open urban areas at a height of approximately one meter above ground level, with an inclination of 45° (Adams et al., 2012Adams, A.M.; Jantzen, M.K.; Hamilton, R.M. & Fenton, M.B. 2012. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods in Ecology and Evolution, 3(6): 992-998. http://doi.org/10.1111/j.2041-210X.2012.00244.x
http://doi.org/10.1111/j.2041-210X.2012....
) oriented towards the flight path of the bats. All vocalizations were recorded through the heterodyne system, with frequencies between 20 and 100 kHz and in a WAV (Waveform Audio Format) audio format. The recordings started at 18:00 hours and ended at 6:00 hours, on nights without strong winds or rain (Parsons & Szewczak, 2009Parsons, S. & Szewczak, J. 2009. Detecting, recording and analysing the vocalizations of bats. In: Kunz, T.H. & Parsons, S. (Eds.). Ecological and behavioural methods for the study of bats. Baltimore, Johns Hopkins University Press .p. 91-111). The Kaleidoscope software (version 5.1.9) (Wildlife Acoustics, Maynard, Massachusetts, USA) was used to visualize the spectrograms. Kaleidoscope settings were as follows: FFT size 256, window size 128 and cache size 256 MB. Recordings with very weak bat passes or indistinguishable callout passes were excluded. We define the sample unit as a ‘bat pass’, to a sequence with a minimum of two recognizable echolocation pulses per species (Azam et al., 2015Azam, C.; Kerbiriou, C.; Vernet, A.; Julien, J.F.; Bas, Y.; Plichard, L.; Maratrat, J. & Le Viol, I. 2015. Is part-night lighting an effective measure to limit the impacts of artificial lighting on bats? Global Change Biology, 21(12): 4333-4341. http://doi.org/10.1111/gcb.13036
http://doi.org/10.1111/gcb.13036...
; Millon et al., 2015Millon, L.; Julien, J.F.; Julliard, R. & Kerbiriou, C. 2015. Bat activity in intensively farmed landscapes with wind turbines and offset measures. Ecological Engineering, 75: 250-257. http://doi.org/10.1016/j.ecoleng.2014.11.050
http://doi.org/10.1016/j.ecoleng.2014.11...
).

Bat calls were manually identified through a series of acoustic characteristics and standard measurements: maximum frequency (Fmax), minimum frequency (Fmin), mean frequency (Fmean), characteristic frequency (Fc), characteristic slope (Sc), duration of each pulse (Dur). Finally, the structure (shape) and quantitative characteristics of the vocalizations were compared with reference works by Kalko (1995Kalko, E.K.V. 1995. Echolocation signal design, foraging habitats and guild structure in six Neotropical sheath-tailed bats (Emballonuridae). Symposia of the Zoological Society of London, 67: 259-273.); O’Farrell & Miller (1997O’Farrell, M.J. & Miller, B.W. 1997. A new examination of echolocation calls of some Neotropical bats (Emballonuridae and Mormoopidae). Journal of Mammalogy , 78(3): 954-963. http://doi.org/10.2307/1382955
http://doi.org/10.2307/1382955...
); Miller (2003Miller, B.M. 2003. Community ecology of the non-phyllostomid bats of Northwestern Belize, with a landscape level assessment of the bats of Belize (Doctoral Thesis). University of Kent Dureell Institute of Conservation and Ecology, UK.); Barataud et al., 2013Barataud, M.; Giosa, S.; Leblanc, F.; Rufray, V.; Disca, T.; Tillon, L.; Delaval, M.; Haquart, A. & Dewynter, M. 2013. Identification et écologie acoustiquedes chiroptères de Guyane Française. Le Rhinolophe, 19: 103-145.; Jung et al. (2007Jung, K.; Kalko, E.K.V. & von Helversen, O. 2007. Echolocation calls in Central American emballonurid bats: Signal design and call frequency alternation. Journal of Zoology, 272(2): 125-137. http://doi.org/10.1111/j.1469-7998.2006.00250.x
http://doi.org/10.1111/j.1469-7998.2006....
, 2014Jung, K.; Molinari, J. & Kalko, E.K.V. 2014. Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (Molossidae). PLOS ONE, 9: e85279. http://doi.org/10.1371/journal.pone.0085279
http://doi.org/10.1371/journal.pone.0085...
), MacSwiney et al. (2008MacsWiney, M.C.; Clarke, F.M. & Racey, P.A. 2008. What you see is not what you get: the role of ultrasonic de tectors in increasing inventory completeness in Neotropical bat assemblages. Journal of Applied Ecology, 45: 1364-1371. http://doi.org/10.1111/j.1365-2664.2008.01531.x
http://doi.org/10.1111/j.1365-2664.2008....
); Orozco-Lugo et al. (2013Orozco-Lugo, L.; Guillén-Servent, A.; Valenzuela-Galván, D. & Arita, H.T. 2013. Descripción de los pulsos de ecolocalización de once especies de murciélagos insectívoros aéreos de una selva baja caducifolia en Morelos, México. Therya, 4(1): 33-46. http://doi.org/10.12933/therya-13-103
http://doi.org/10.12933/therya-13-103...
); Gómez-Corea et al. (2021Gómez-Corea, W.; Hernández, J.; Antúnez-Fonseca, C.; Mejía-Quintanilla, D. & Vega, H. 2021. Leucism and updated geographic distribution of Molossus nigricans Miller, 1902, (Chiroptera: Molossidae) In Honduras. Mammalia, 85: 64-70. http://doi.org/10.1515/mammalia-2019-0153
http://doi.org/10.1515/mammalia-2019-015...
) and the records of a reference acoustic library, obtained from previous monitoring in different regions of Honduras, using the hand release method in open areas; recordings at the exit of the shelters and in flight rooms. Functional traits of insectivorous bats that will be used to describe the structure of calls: frequency modulated (FM), quasi-constant frequency (QCF), constant frequency (FC) and frequency maximum energy (FME) (Schnitzler & Kalko, 2001Schnitzler, H.U. & Kalko, E.K.V. 2001. Echolocation by insect-eating bats: we define four distinct functional groups of bats and find differences in signal structure that correlate with the typical echolocation tasks faced by each group. BioScience, 51(7): 557-569. http://doi.org/10.1641/0006-3568(2001)051%5b0557:EBIEB%5d2.0.CO;2
http://doi.org/10.1641/0006-3568(2001)05...
; Schnitzler et al., 2003Schnitzler, H.U.; Moss, C.F. & Denzinger, A. 2003. From spatial orientation to food acquisition in echolocating bats. Trends Ecology & Evolution, 18(8): 386-394. http://doi.org/10.1016/S0169-5347(03)00185-X
http://doi.org/10.1016/S0169-5347(03)001...
).

Analysis of data

The species accumulation curve was calculated to measure the effectiveness of the inventory (Fig. 2).

Figure 2
Species accumulation curve using mist nets, in the Yuscarán Biological Reserve and Municipality of Yuscarán, Department of El Paraíso, Honduras, Central America.

Previously, the samples were randomized 100 times with the software Estimates version 9.1.0 (Colwell, 2013Colwell, R.K. 2013. EstimateS, Version 9.1: statistical estimation of species richness and shared species from samples (Software and User’s Guide). Freeware for Windows and Mac OS. Available: Available: http://viceroy.eeb.uconn.edu/EstimateS/EstimateSPages/EstSUsersGuide/EstimateSUsersGuide.htm . Access: 20/04/2021.
http://viceroy.eeb.uconn.edu/EstimateS/E...
) to avoid the order effect and smooth the curve (Moreno & Halffter, 2000Moreno, C.E. & Halffter, G. 2000. Assessing the completeness of bat biodiversity inventory using species accumulation curves. Journal of Applied Ecology , 37(1): 149-158. http://doi.org/10.1046/j.1365-2664.2000.00483
http://doi.org/10.1046/j.1365-2664.2000....
). The percentage of representativeness was calculated using the Chao 1 (Chao & Lee, 1992Chao, A. & Lee, S.M. 1992. Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87(417): 210-217. http://doi.org/10.2307/2290471
http://doi.org/10.2307/2290471...
), Jacknife 1 (Walther & Moore, 2005Walther, B.A. & Moore, J.L. 2005. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28(6): 815-829. http://doi.org/10.1111/j.2005.0906-7590.04112.x
http://doi.org/10.1111/j.2005.0906-7590....
) and Bootstrap estimators these being regarded as particularly suitable for extrapolating richness estimates within biological communities (Colwell & Coddington, 1994Colwell, R.K. & Coddington, J.A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society B: Biological Sciences, 345(1311): 101-118. http://doi.org/10.1098/rstb.1994.0091
http://doi.org/10.1098/rstb.1994.0091...
; Walther & Moore, 2005Walther, B.A. & Moore, J.L. 2005. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28(6): 815-829. http://doi.org/10.1111/j.2005.0906-7590.04112.x
http://doi.org/10.1111/j.2005.0906-7590....
; Hortal et al., 2006Hortal, J.; Borges, P.A.V. & Gaspar, C. 2006. Evaluating the performance of species richness estimators: sensitivity to sample grainsize. Journal of Animal Ecology, 75(1): 274-287. http://doi.org/10.1111/j.1365-2656.2006.01048.x
http://doi.org/10.1111/j.1365-2656.2006....
). The completeness of the inventory was obtained by calculating the percentage of species observed with respect to those calculated by the estimators (Moreno & Halffter, 2000Moreno, C.E. & Halffter, G. 2000. Assessing the completeness of bat biodiversity inventory using species accumulation curves. Journal of Applied Ecology , 37(1): 149-158. http://doi.org/10.1046/j.1365-2664.2000.00483
http://doi.org/10.1046/j.1365-2664.2000....
). Following Sodhi et al. (2005Sodhi, N.S.; Koh, L.P.; Prawiradilaga, D.M.; Tinulele, I.; Putra, D.D. & Tan, T.H.T. 2005. Land use and conservation value for forest birds in central Sulawesi. Biological Conservation, 122(4): 547-558.), we take the mean value of these three estimators (rounded to the nearest integer value) as an estimate of “true” species richness, since the effectiveness of the different estimators varies according to the composition of the data set. The sampling effort was calculated by multiplying the number of hours that the nets were kept open by the area of the nets (m2), (Straube & Bianconi, 2002Straube, F.C. & Bianconi, G.V. 2002. Sobre a grandeza e a unidade utilizada para estimar esforço de captura com utilização de redes de neblina. Chiroptera Neotropical, 8: 150-152.).

RESULTS

Registered species

Thirty-two species of bats belonging to 5 families and 19 genus were recorded (Table 2). The Phyllostomidae family was the most diverse (18 species; 56.25%), followed by the Mormoopidae Family (5 species; 15.22%). The least diverse families were Vespertilionidae (4 species; 12.5%), Molossidae (3 species; 9.37%) and finally the Emballonuridae family (2 species; 6.25%). Using mist nets with a sampling effort of 7,128 m2/h, 20 species were captured, with a total of 186 individuals, and the proportion of the sex class favoured males with 103 males and 83 females (Fig. 3). Regarding the age class, 149 adults and 37 juveniles were captured. The species accumulation curve obtained with the mist nets did not show a stabilizing trend, indicating that the number of species would have increased if we had sampled more nights. The relationship between the observed wealth and the estimated wealth according to the estimators: Chao 1, 97.69%; Jacknife 1, 70.79% and Bootstrap 84.21%.

Table 2
List of species captured using the mist-netting technique (individuals captured IC) and acoustic recordings (indicated with *), also shows the respective primary feeding guild (GT) and the state of conservation of the IUCN.

Figure 3
Part of the bat species captured with mist nets, in the Yuscarán Biological Reserve and Municipality of Yuscarán, Department of El Paraíso, Honduras, Central America. (A) M. megalophylla; (B) D. rotundus; (C) L. aurita; (D) P. discolor; (E) A. geoffroyi; (F) G. leachii; (G) G. mutica; (H) C. perspicillata; (I) A. jamaicensis; (J) A. lituratus; (K) C. salvini; (L) D. azteca; (M) D. phaeotis; (N) S. hondurensis; (O) S. parvidens; (P) E. fuscus. Photos: (C) D.J.M.Q.; (A-P) W.N.G.C.

According to the qualitative and quantitative characteristics of the ultrasounds emitted by the bats, 13 species belonging to the families Emballonuridae, Mormoopidae, Molosidae and Vespertilionidae were identified. The Fig. 4 shows the pulses of the echolocation calls emitted by insectivorous species during the foraging phase and Table 3 the quantitative characteristics of the pulses. Species from 6 trophic guilds were recorded: insectivorous (I = 14), frugivorous (F = 10), nectarivorous (N = 4), animalivorous (A = 2), omnivorous (O = 1), and haematophagous (H = 1).

Figure 4
Echolocation pulses of aerial insectivorous bats. Spectrograms (bottom) and oscillograms (top) correspond to search calls. X axis milliseconds (ms) and Y axis Kilohertz (kHz). Emballonuridae: (BPl) B. plicata, (PMA) P. macrotis; Molossidae: (MAL) M. alvarezi, (MNI) M. nigricans, (MMO) M. molossus. Mormoopidae: (PFU) P. fulvus, (PGY) P. gymnonotus, (PME) P. mesoamericanus, (PPS) P. psilotis. Vespertilionidae: (NIG) M. nigricans, (BRA) E. brasiliensis, (FUR) E. furinalis, (FUS) E. fuscus.

Table 3
Acoustic parameters analysed from echolocation calls during the search phase of insectivore bats.

Acoustic characterization of aerial insectivorous species

Family Emballonuridae: based on their vocal signatures, we identified two species, which do not show overlap in the average frequency measurements and are characterized by emitting QCF pulses, with an initial or terminal FM component and with 3 harmonics, of which the second is the fundamental. Balantiopteryx plicata, emits pulses, with a final FM segment, the averages of the Fmax-Fim are 41.09-39.94 kHz and a Fc of 40.33 kHz, while Peropteryx macrotis for the same frequencies 39.18-37.82 kHz and 38.55 kHz in the dominant harmonic. Family Mormoopidae: we identify and describe four species, with a basic component arrangement, CF-FM-QCF. For the identification of Pteronotus gymnonotus and P. fulvus, the range of Fmax-Fmin was considered since the calls of the first species were located on average between 53.99-45.04 kHz and the second between 57.13-48.26 kHz, with an Fc of 55.93 kHz and the pulse with a “Z” shape. Pteronotus mesoamericanus has a range of Fmax-Fim of 61.30-59.18 kHz and pulses lasting 6.94 ms. Pteronotus psilotis, presents averages of Fmax 74.09 and Fim 64.02 and the pulses have a “Z” shape.

Family Molossidae: we identify and characterize three species of the genus Molossus, which are characterized by emitting FM or CF pulses and by presenting an overlap of the calls in the search phase in the Fmax and Fmin, but with well-marked differences in the Sc. The averages of the parameters of Fmax-Fmin and Sc: 34.79-32.82, 5.17 for M. alvarezi; 32.50-30.31, 1.81 for M. molossus and 31.20-25.66, 21.18 kHz for M. nigricans, the pulses of the latter species are modulated in FM in the first part of the call, while the rest is CF. Family Vespertilionidae: based on their vocal signatures, we identify and characterize four species, one species from the genus Myotis and three from the genus Eptesicus, which are characterized by emitting pulses of FM structure, sometimes with an QCF ending. For the identification of the species of the genus Eptesicus, Fmin was considered and later the shape of the pulses. The Fmax-Fmin and Dur was: 63.28-49.04 kHz and 3.60 ms for M. nigricans; 35.59-31.49 kHz and 2.96 ms for E. brasiliensis; 59.53-46.45 kHz and 2.39 ms for E. furinalis and 45.51-30.53 kHz and 4.76 ms for E. fuscus, this last species the Fmin presents a partial overlap with E. brasiliensis.

DISCUSSION

Vocalizations of insectivorous bats

The species registered in the YBR and the municipality of Yuscarán, represent 28% of the 113 species of bats reported for Honduras (Turcios-Casco et al., 2020Turcios-Casco, M.A.; Avila-Palma, H.D.; LaVal, R.K.; Steven, R.D.; Ordoñez-Trejo, E.J.; Soler-Orellana, J.A. & Ordoñez-Mazier, D.I. 2020. A systematic revision of the bats (Chiroptera) of Honduras: an updated checklist with corroboration of historical specimens and new records. Zoosystematics and Evolution, 96(2): 411-429. http://doi.org/10.3897/zse.96.51059
http://doi.org/10.3897/zse.96.51059...
; Mora et al., 2021Mora, J.M.; López, L.I. & Espinal, M.R. 2021. Clave de campo para la identificación de los murciélagos de Honduras. Notas sobre Mamíferos Sudamericanos, 3: e21.6.1.). It is evidenced once again that the mist net is the best method to capture bats of the Phyllostomidae family (nectarivorous, frugivorous and hematophagous), (Kalko et al., 1996Kalko, E.K.V.; Handley, C.O. & Handley, D. 1996. Organization, diversity, and long term dynamics of a Neotropical bat community . In: Cody, M. & Smallwood, J. (Eds.). Long term studies in vertebrate communities. Academic Press. p. 503-553.) and that acoustic detectors are devices very useful for registering insectivorous bats. The calls of aerial insectivorous bats are highly variable due to numerous factors, such as the type of activity, the surrounding environmental disorder, search behaviour, the acoustic complexity of the emitted sound, the number of sequences analysed and the availability of material for comparison (Faure & Barclay, 1994Faure, P.A. & Barclay, R.M.R. 1994. Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis. Journal of Comparative Physiology A, 174(5): 651-660. http://doi.org/10.1007/BF00217386
http://doi.org/10.1007/BF00217386...
; Simmons & O’Farrell, 1977Simmons, J.A. & O’Farrell, M.J. 1977. Echolocation by the long-eared bat, Plecotus phyllotis. Journal of Comparative Physiology, 122(2): 201-214. http://doi.org/10.1007/BF00611890
http://doi.org/10.1007/BF00611890...
). According to Jiang et al. (2010Jiang, T.; Metzner, W.; You, Y.; Liu, S.: Lu G.; Li, S.; Wang, L. & Feng, J. 2010. Variation in the resting frequency of Rhinolophus pusillus in Mainland China: effect of climate and implications for conservation. The Journal of the Acoustical Society of America, 128(4): 2204-2211. http://doi.org/10.1121/1.3478855
http://doi.org/10.1121/1.3478855...
), some geographic or intraspecific variations of the calls show allelic discontinuity between populations, which suggests a genetic basis for these differences. These variations can lead to the overlapping of the characteristics of the calls of certain species that can complicate their identification. The complexity tends to be even greater with forest species, which mostly emit low intensity broadband FM signals (Siemers & Schnitzler, 2004Siemers, B.M. & Schnitzler, H.U. 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429(6992): 657-661. http://doi.org/10.1038/nature02547
http://doi.org/10.1038/nature02547...
). For the families Emballonuridae and Mormoopidae, the acoustic identification of the species seems to be simple (O’Farrell & Miller, 1997O’Farrell, M.J. & Miller, B.W. 1997. A new examination of echolocation calls of some Neotropical bats (Emballonuridae and Mormoopidae). Journal of Mammalogy , 78(3): 954-963. http://doi.org/10.2307/1382955
http://doi.org/10.2307/1382955...
, 1999O’Farrell, M.J. & Miller, B.W. 1999. Use of vocal signatures for the inventory of free-flying neotropical bats. Biotropica, 31(3): 507-516. http://doi.org/10.1111/j.1744-7429.1999.tb00394.x
http://doi.org/10.1111/j.1744-7429.1999....
), whereas it can be complicated for the family Vespertilionidae and Molossidae.

The echolocation calls in the family Emballonuridae are multi-harmonic; however, the energy distribution differs strongly since the FME of the search calls resides mainly in the second harmonic or in the higher harmonics (Jung et al., 2007Jung, K.; Kalko, E.K.V. & von Helversen, O. 2007. Echolocation calls in Central American emballonurid bats: Signal design and call frequency alternation. Journal of Zoology, 272(2): 125-137. http://doi.org/10.1111/j.1469-7998.2006.00250.x
http://doi.org/10.1111/j.1469-7998.2006....
; Arias-Aguilar et al., 2018Arias-Aguilar, A.; Hintze, F.; Aguiar, L.M.; Rufray, R.; Bernard, E. & Ramos P.M.J. 2018. Who’s calling? Acoustic identification of Brazilian bats. Mammal Research, 63(3): 231-253. http://doi.org/10.1007/s13364-018-0367-z
http://doi.org/10.1007/s13364-018-0367-z...
). B. plicata and P. macrotis exhibit a different Fc that allows them to be discriminated from the rest of the emballonurid bats (Williams-Guillén & Perfecto, 2011Williams-Guillén, K. & Perfecto, I. 2011. Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry Systems. PLOS ONE , 6: 1-10. http://doi.org/10.1371/journal.pone.0016502
http://doi.org/10.1371/journal.pone.0016...
). For B. plicata, the Fmax and Fim that we document is within that recorded by Briones-Salas et al. (2013Briones-Salas, M.; Peralta-Pérez, M. & García-Luis, M. 2013. Acoustic characterization of new species of bats for the State of Oaxaca Mexico. Therya, 4: 15-32. http://doi.org/10.12933/therya-13-106
http://doi.org/10.12933/therya-13-106...
) and partially coincides with that of García-Luis & Briones-Salas (2017García-Luis, M. & Briones-Salas, M. 2017. Composición y actividad de la comunidad de murciélagos artropodívoros en parques eólicos del trópico mexicano. Revista Mexicana de Biodiversidad, 88(4): 888-898. http://doi.org/10.1016/j.rmb.2017.10.018
http://doi.org/10.1016/j.rmb.2017.10.018...
), both are sequences of individuals in Mexico. While Jung et al. (2007Jung, K.; Kalko, E.K.V. & von Helversen, O. 2007. Echolocation calls in Central American emballonurid bats: Signal design and call frequency alternation. Journal of Zoology, 272(2): 125-137. http://doi.org/10.1111/j.1469-7998.2006.00250.x
http://doi.org/10.1111/j.1469-7998.2006....
), for this same species in Costa Rica and Panama register maximum frequencies around 42.60 ± 0.80 kHz, (Peak frequency). In P. macrotis, the averages of the parameters fit with the frequencies documented by Miller (2003Miller, B.M. 2003. Community ecology of the non-phyllostomid bats of Northwestern Belize, with a landscape level assessment of the bats of Belize (Doctoral Thesis). University of Kent Dureell Institute of Conservation and Ecology, UK.), in Belize, the Fmax and Fmin fit the one documented by Barataud et al. (2013Barataud, M.; Giosa, S.; Leblanc, F.; Rufray, V.; Disca, T.; Tillon, L.; Delaval, M.; Haquart, A. & Dewynter, M. 2013. Identification et écologie acoustiquedes chiroptères de Guyane Française. Le Rhinolophe, 19: 103-145.) in Guyana, partially with those registered by Briones-Salas et al. (2013Briones-Salas, M.; Peralta-Pérez, M. & García-Luis, M. 2013. Acoustic characterization of new species of bats for the State of Oaxaca Mexico. Therya, 4: 15-32. http://doi.org/10.12933/therya-13-106
http://doi.org/10.12933/therya-13-106...
) in Mexico and with the FME values around 38.9 ± 0.91 kHz in Panama and Costa Rica (Jung et al., 2007Jung, K.; Kalko, E.K.V. & von Helversen, O. 2007. Echolocation calls in Central American emballonurid bats: Signal design and call frequency alternation. Journal of Zoology, 272(2): 125-137. http://doi.org/10.1111/j.1469-7998.2006.00250.x
http://doi.org/10.1111/j.1469-7998.2006....
). The bandwidth of search calls for emballonurid bats flying in rim space is still narrow compared to molossid and vespertilionid bats where it can extend 30-50 kHz or more (e.g.,Schnitzler & Kalko, 2001Schnitzler, H.U. & Kalko, E.K.V. 2001. Echolocation by insect-eating bats: we define four distinct functional groups of bats and find differences in signal structure that correlate with the typical echolocation tasks faced by each group. BioScience, 51(7): 557-569. http://doi.org/10.1641/0006-3568(2001)051%5b0557:EBIEB%5d2.0.CO;2
http://doi.org/10.1641/0006-3568(2001)05...
; Siemers et al., 2001Siemers, B.M.; Kalko, E.K.V. & Schnitzler, H.U. 2001. Echolocation behavior and signal plasticity in the Neotropical bat Myotis nigricans (Schinz, 1821) (Vespertiionidae): a convergent case with European species of Pipistrellus? Behavioral Ecology Sociobiology, 50(4): 317-328. http://doi.org/10.1007/s002650100379
http://doi.org/10.1007/s002650100379...
). The frequency stratification between the species of this family constitutes a perfect example of acoustic niches within this group; the vocalizations of each species have undergone a displacement to avoid interspecific overlap (Barataud et al., 2013Barataud, M.; Giosa, S.; Leblanc, F.; Rufray, V.; Disca, T.; Tillon, L.; Delaval, M.; Haquart, A. & Dewynter, M. 2013. Identification et écologie acoustiquedes chiroptères de Guyane Française. Le Rhinolophe, 19: 103-145.).

The echolocation in the species of family Mormoopidae, can be easily recognized, since their vocalizations are considered as acoustic signatures. They can exhibit pulses made up of an easily recognizable CF or FM, with very characteristic shapes of each species, and there is practically no problem during the assignment of species (Miller, 2003Miller, B.M. 2003. Community ecology of the non-phyllostomid bats of Northwestern Belize, with a landscape level assessment of the bats of Belize (Doctoral Thesis). University of Kent Dureell Institute of Conservation and Ecology, UK.; Williams-Guillén & Perfecto, 2011Williams-Guillén, K. & Perfecto, I. 2011. Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry Systems. PLOS ONE , 6: 1-10. http://doi.org/10.1371/journal.pone.0016502
http://doi.org/10.1371/journal.pone.0016...
). In general, the calls we recorded were multi-harmonic, the FME is in the second harmonic and the pulses have at least one CF section. Pteronotus fulvus differs 7 kHz below the range documented in Belize and in Mexico by O’Farrell & Miller (1997O’Farrell, M.J. & Miller, B.W. 1997. A new examination of echolocation calls of some Neotropical bats (Emballonuridae and Mormoopidae). Journal of Mammalogy , 78(3): 954-963. http://doi.org/10.2307/1382955
http://doi.org/10.2307/1382955...
), Miller (2003Miller, B.M. 2003. Community ecology of the non-phyllostomid bats of Northwestern Belize, with a landscape level assessment of the bats of Belize (Doctoral Thesis). University of Kent Dureell Institute of Conservation and Ecology, UK.) and Ibáñez et al. (1999Ibáñez, C.; Guillén, A.; Juste, J. & Pérez-Jordá, J.L. 1999. Echolocation calls of Pteronotus davyi (Chiroptera: Mormoopidae) form Panamá. Journal of Mammalogy , 80: 924-928. http://doi.org/10.2307/1383261
http://doi.org/10.2307/1383261...
) (cited as, P. davyi Gray, 1838). Pteronotus psilotis, fits with respect to the frequencies previously described in the region, (Fmax between 72-87 kHz and Fmin between 60-69 kH), (O’Farrell & Miller, 1997O’Farrell, M.J. & Miller, B.W. 1997. A new examination of echolocation calls of some Neotropical bats (Emballonuridae and Mormoopidae). Journal of Mammalogy , 78(3): 954-963. http://doi.org/10.2307/1382955
http://doi.org/10.2307/1382955...
; Miller, 2003Miller, B.M. 2003. Community ecology of the non-phyllostomid bats of Northwestern Belize, with a landscape level assessment of the bats of Belize (Doctoral Thesis). University of Kent Dureell Institute of Conservation and Ecology, UK.) (cited as P. personatus (Wagner, 1843)).

In the family Molossidae, the species are characterized by emitting low FM pulses and have an FME in fundamental harmonics with long surface modulation signals emitted at quite low frequencies (Jung et al., 2014Jung, K.; Molinari, J. & Kalko, E.K.V. 2014. Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (Molossidae). PLOS ONE, 9: e85279. http://doi.org/10.1371/journal.pone.0085279
http://doi.org/10.1371/journal.pone.0085...
). These species usually show irregular frequency alternation, narrowband, variable amplitude and great plasticity (Arias-Aguilar et al., 2018Arias-Aguilar, A.; Hintze, F.; Aguiar, L.M.; Rufray, R.; Bernard, E. & Ramos P.M.J. 2018. Who’s calling? Acoustic identification of Brazilian bats. Mammal Research, 63(3): 231-253. http://doi.org/10.1007/s13364-018-0367-z
http://doi.org/10.1007/s13364-018-0367-z...
). According to Jung et al. (2014Jung, K.; Molinari, J. & Kalko, E.K.V. 2014. Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (Molossidae). PLOS ONE, 9: e85279. http://doi.org/10.1371/journal.pone.0085279
http://doi.org/10.1371/journal.pone.0085...
), the wide frequency range emitted by some molossid bats is related to foraging strategies, allowing these species a greater feeding success. Regarding some species, identification at the species level is complicated due to the lack of reference calls in the literature and the overlap of frequency parameters (Williams-Guillén & Perfecto, 2011Williams-Guillén, K. & Perfecto, I. 2011. Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry Systems. PLOS ONE , 6: 1-10. http://doi.org/10.1371/journal.pone.0016502
http://doi.org/10.1371/journal.pone.0016...
). Even so, the genus Molossus is easily identified by the paired pattern of the pulses (Miller, 2003Miller, B.M. 2003. Community ecology of the non-phyllostomid bats of Northwestern Belize, with a landscape level assessment of the bats of Belize (Doctoral Thesis). University of Kent Dureell Institute of Conservation and Ecology, UK.). In this study, M. molosus, presented frequencies similar to those of low frequencies registered by Miller (2003Miller, B.M. 2003. Community ecology of the non-phyllostomid bats of Northwestern Belize, with a landscape level assessment of the bats of Belize (Doctoral Thesis). University of Kent Dureell Institute of Conservation and Ecology, UK.), nevertheless the frequencies found here contrast with the descriptions of O’Farrell & Miller (1999O’Farrell, M.J. & Miller, B.W. 1999. Use of vocal signatures for the inventory of free-flying neotropical bats. Biotropica, 31(3): 507-516. http://doi.org/10.1111/j.1744-7429.1999.tb00394.x
http://doi.org/10.1111/j.1744-7429.1999....
), which provide a mean frequency of 34.1 kHz for the lowest pulses and 39.7 kHz for the highest frequency. M. nigricans emitted vocalizations that are within the range documented by Gómez-Corea et al. (2021Gómez-Corea, W.; Hernández, J.; Antúnez-Fonseca, C.; Mejía-Quintanilla, D. & Vega, H. 2021. Leucism and updated geographic distribution of Molossus nigricans Miller, 1902, (Chiroptera: Molossidae) In Honduras. Mammalia, 85: 64-70. http://doi.org/10.1515/mammalia-2019-0153
http://doi.org/10.1515/mammalia-2019-015...
) in different regions of Honduras, and conforms to the portion of high frequency recorded by Miller (2003Miller, B.M. 2003. Community ecology of the non-phyllostomid bats of Northwestern Belize, with a landscape level assessment of the bats of Belize (Doctoral Thesis). University of Kent Dureell Institute of Conservation and Ecology, UK.), the Fmax and Fmin coincide with that reported by Kraker-Castañeda et al. (2013Kraker-Castañeda, C.; Santos-Moreno, A. & García-García, J.L. 2013. Riqueza de especies y actividad relativa de murciélagos insectívoros aéreos en una selva tropical y pastizales en Oaxaca, México. Mastozoología Neotropical , 20(2): 255-267.) in Mexico, (cited as M. rufus). It should be noted the presence of these three species in urban environments, it can be attributed to the fact that some species of this genus have a certain adaptive plasticity to disturbance conditions (Jung & Kalko, 2011Jung, K. & Kalko, E.K.V. 2011. Adaptability and vulnerability of high flying Neotropical aerial insectivorous bats to urbanization. Diversity and Distribution, 17(2): 262-274. http://doi.org/10.1111/j.1472-4642.2010.00738.x
http://doi.org/10.1111/j.1472-4642.2010....
).

The differentiating of the species in the Vespertilionidae family is particularly difficult, and some authors recommend using Fmin, FME and Dur as diagnostic characters (O’Farrell & Miller, 1999O’Farrell, M.J. & Miller, B.W. 1999. Use of vocal signatures for the inventory of free-flying neotropical bats. Biotropica, 31(3): 507-516. http://doi.org/10.1111/j.1744-7429.1999.tb00394.x
http://doi.org/10.1111/j.1744-7429.1999....
; Williams-Guillén & Perfecto 2011Williams-Guillén, K. & Perfecto, I. 2011. Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry Systems. PLOS ONE , 6: 1-10. http://doi.org/10.1371/journal.pone.0016502
http://doi.org/10.1371/journal.pone.0016...
; Arias-Aguilar et al., 2018Arias-Aguilar, A.; Hintze, F.; Aguiar, L.M.; Rufray, R.; Bernard, E. & Ramos P.M.J. 2018. Who’s calling? Acoustic identification of Brazilian bats. Mammal Research, 63(3): 231-253. http://doi.org/10.1007/s13364-018-0367-z
http://doi.org/10.1007/s13364-018-0367-z...
). According to Williams-Guillén & Perfecto (2011Williams-Guillén, K. & Perfecto, I. 2011. Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry Systems. PLOS ONE , 6: 1-10. http://doi.org/10.1371/journal.pone.0016502
http://doi.org/10.1371/journal.pone.0016...
), the genus Myotis emits Fmin between 48 kHz and 58 kHz and the identification is complicated due to the superposition of parameters, in this case the Fmin that we found for M. nigricans was 49.04 kHz. M. nigricans presents a call structure, with narrow bandwidth and quite long signals adapted to the search for food predominantly in open spaces, it is also capable of searching aerial food with short broadband signals in edge and space situations, emitting an average maximum energy peak frequency of 54.2 (Siemers et al., 2001Siemers, B.M.; Kalko, E.K.V. & Schnitzler, H.U. 2001. Echolocation behavior and signal plasticity in the Neotropical bat Myotis nigricans (Schinz, 1821) (Vespertiionidae): a convergent case with European species of Pipistrellus? Behavioral Ecology Sociobiology, 50(4): 317-328. http://doi.org/10.1007/s002650100379
http://doi.org/10.1007/s002650100379...
). In general, the calls of the genus Eptesicus are bilinear, with a clear break in the slope that precedes the flat part of the call, and they are also separated by the Fmin (Miller, 2003Miller, B.M. 2003. Community ecology of the non-phyllostomid bats of Northwestern Belize, with a landscape level assessment of the bats of Belize (Doctoral Thesis). University of Kent Dureell Institute of Conservation and Ecology, UK.). The frequencies recorded here for E. furinalis fit with studies carried out by Miller (2003Miller, B.M. 2003. Community ecology of the non-phyllostomid bats of Northwestern Belize, with a landscape level assessment of the bats of Belize (Doctoral Thesis). University of Kent Dureell Institute of Conservation and Ecology, UK.), and Kraker-Castañeda et al. (2013Kraker-Castañeda, C.; Santos-Moreno, A. & García-García, J.L. 2013. Riqueza de especies y actividad relativa de murciélagos insectívoros aéreos en una selva tropical y pastizales en Oaxaca, México. Mastozoología Neotropical , 20(2): 255-267.), who record a range of Fmax and Fmin between 64.02-32.78, in this regard Rydell et al., (2002Rydell, J.; Arita, H.; Santos M. & Granados, J. 2002. Acoustic identification of insectivorous bats (order Chiroptera) of Yucatan, Mexico. Journal of Zoology, 257: 27-36. http://doi.org/10.1017/S0952836902000626
http://doi.org/10.1017/S0952836902000626...
) mentions that most of the energy is between 36 ± 41 kHz. The average of Fmax and Fmin that we report for E. fuscus was 45.51-30.53 kHz, similar to that reported by León-Tapia & Hortelano-Moncada (2016León-Tapia, M.A. & Hortelano-Moncada, Y. 2016. Richness of insectivorous bats in a chaparral area in the municipality of Tecate, Baja California, Mexico. Revista Mexicana de Biodiversidad , 87(3): 1055-1061. http://doi.org/10.1016/j.rmb.2016.07.005
http://doi.org/10.1016/j.rmb.2016.07.005...
) of 53.44-32.79 kHz in Mexico. The variations in the Fmax and Fmin can be attributed to the adaptation of the vocal repertoires, to the feeding sites in different habitats and prey, and the reproductive status of females (Gillam & McCracken, 2007Gillam, E.H. & McCracken, G.F. 2007. Variability in the echolocation of Tadarida brasiliensis: effects of geography and local acoustic environment. Animal Behaviour, 74(2): 277-286. http://doi.org/10.1016/j.anbehav.2006.12.006
http://doi.org/10.1016/j.anbehav.2006.12...
).

Conservation efforts

In the study area, the main threat to biodiversity and in particular to bat species is the loss of habitat (JICA, 2018JICA [Agencia de Cooperación Internacional del Japón]. 2018. Proyecto Corredor Biológico de La Unión, para el uso sostenible y conservación de la biodiversidad. DiBio-MiAmbiente/JICA. 318p. Available: Available: https://www.jica.go.jp/project/spanish/honduras/004/materials/c8h0vm0000bk9y9y-att/materials_10.pdf . Access: 05/02/2021.
https://www.jica.go.jp/project/spanish/h...
). The population increase in the municipality of Yuscarán from 2013 to 2018 was from 14,144 to 15,572 inhabitants (INE, 2013INE [Instituto Nacional de Estadística]. 2013. XVII Censo de Poblacion y VI de Vivienda 2013. Tomo 91, Municipio de Yuscarán 07-01. Available: Available: https://www.ine.gob.hn/V3/imag-doc/2018/05/Tomo-91-Municipio-de-Yuscar%C3%A1n-07-01.pdf . Access: 01/03/2021.
https://www.ine.gob.hn/V3/imag-doc/2018/...
), and this causes enormous pressure on diversity, through the development of livestock activities and the advancement of traditional agriculture and technified (Mejía-Ordoñez, 2013Mejía-Ordoñez, T.M. 2013. Composición florística en fragmentos de bosque en los municipios de Yuscarán, Oropoli y Güinope, Departamento de El Paraíso, Honduras, C.A. Revista de Ciencias Espaciales, 6: 7-22. http://doi.org/10.5377/ce.v6i1.2553
http://doi.org/10.5377/ce.v6i1.2553...
; JICA, 2018JICA [Agencia de Cooperación Internacional del Japón]. 2018. Proyecto Corredor Biológico de La Unión, para el uso sostenible y conservación de la biodiversidad. DiBio-MiAmbiente/JICA. 318p. Available: Available: https://www.jica.go.jp/project/spanish/honduras/004/materials/c8h0vm0000bk9y9y-att/materials_10.pdf . Access: 05/02/2021.
https://www.jica.go.jp/project/spanish/h...
). The YBR is part of the Union Biological Corridor (UBC), where the forest cover has decreased, and the agricultural area increased (JICA, 2018JICA [Agencia de Cooperación Internacional del Japón]. 2018. Proyecto Corredor Biológico de La Unión, para el uso sostenible y conservación de la biodiversidad. DiBio-MiAmbiente/JICA. 318p. Available: Available: https://www.jica.go.jp/project/spanish/honduras/004/materials/c8h0vm0000bk9y9y-att/materials_10.pdf . Access: 05/02/2021.
https://www.jica.go.jp/project/spanish/h...
), further worsening the situation the high rates of erosion due to the absence of protection practices and soil improvement (AFOCO, 2001AFOCO [Proyecto de apoyo a la forestaría comunitaria] 2001. Plan de manejo de la Reserva Biológica de Yuscarán 2000-2004. Honduras, Yuscarán. 65p.; Martinez-Garcia, 2002Martinez-Garcia, R.A. 2002. Análisis multitemporal de la cobertura vegetal de la Reserva Biológica de Yuscarán, El Paraiso, Honduras. Honduras, Zamorano. 42p. Available: Available: https://bdigital.zamorano.edu/handle/11036/1585 . Access: 05/03/2021.
https://bdigital.zamorano.edu/handle/110...
). The dense pine forest area decreased 7,850.6 ha (11.2% of the UBC area) and the scrub area 7,139.6 ha (10.2% of the UBC area) during the last 25 years, while the agricultural area increased 11,347.9 ha (16.2%) from 1987 to 2011 (JICA, 2018JICA [Agencia de Cooperación Internacional del Japón]. 2018. Proyecto Corredor Biológico de La Unión, para el uso sostenible y conservación de la biodiversidad. DiBio-MiAmbiente/JICA. 318p. Available: Available: https://www.jica.go.jp/project/spanish/honduras/004/materials/c8h0vm0000bk9y9y-att/materials_10.pdf . Access: 05/02/2021.
https://www.jica.go.jp/project/spanish/h...
) and the pine forest was affected by the pine bark beetle (Mejía et al., 2019Mejía, D.; Elvir F.; Portillo, H. & Flores, M. 2019. AICOM A-H-006 Corredor Biológico La Unión. PCMH/RELCOM. 9p. Available: Available: https://www.relcomlatinoamerica.net/%C2%BFqu%C3%A9-hacemos/conservacion/aicoms-sicoms/aicoms-sicoms-buscador/ad/aicoms,1/la-union,89.html . Access: 05/03/2021.
https://www.relcomlatinoamerica.net/%C2%...
).

In this fragmented landscape framework, the diversity of bats recorded here plays an important role, since they must be considered as part of the solution to connect patches of vegetation. Phyllostomid bats, especially the frugivorous and nectarivorous species, are fundamental in these ecosystems for the dispersal of seeds and pollination of plants both in disturbed and conserved areas (Stevens & Willig, 2000Stevens, R.D. & Willig, M.R. 2000. Density compensation in New World bat communities. Oikos, 89(2): 367-377. http://doi.org/10.1034/j.1600-0706.2000.890218.x
http://doi.org/10.1034/j.1600-0706.2000....
; García-Luis et al., 2019García-Luis, M.; Briones-Salas, M. & Lavariega, M.C. 2019. Bat species richness in the region of the Central Valleys of Oaxaca, Mexico. Arxius de Miscellania Zoologica, 17: 1-11. http://doi.org/10.32800/amz.2019.17.0001
http://doi.org/10.32800/amz.2019.17.0001...
). Insectivorous bats are using Yuscarán as a feeding site since we record hunting events determined from feeding trains (Griffin et al., 1960Griffin, D.R.; Webster, F.A. & Michael, C.R. 1960. The echolocation of flying insects by bats. Animal Behaviour , 8: 141-154. http://doi.org/10.1016/0003-3472(60)90022-1
http://doi.org/10.1016/0003-3472(60)9002...
) have been recorded, indicating the possible capture of prey (Bogdanowicz et al., 1999Bogdanowicz, W.; Fenton M.B. & Daleszczyk, K. 1999. The relationships between echolocation calls, morphology and diet in insectivorous bats. Journal of Zoology, 247(3): 381-393. http://doi.org/10.1111/j.1469-7998.1999.tb01001.x
http://doi.org/10.1111/j.1469-7998.1999....
). Especially the presence of the species of the genus Myotis and Eptesicus since their diet may include insects that are considered pests (Tuttle & Moreno, 2005Tuttle, M.D. & Moreno, A. 2005. Los murciélagos cavernícolas del norte de México. Su importancia y problemas de conservación. Austin, Bat Conservation International. Available: Available: http://centro.paot.org.mx/documentos/varios/murcielagos.pdf . Access: 08/04/2021.
http://centro.paot.org.mx/documentos/var...
). Therefore, the conservation of forest remnants is of utmost importance to sustain the pest control ecosystem service that bats are providing to crops in the area (Boyle et al., 2011Boyle, J.G.; Cryan, P.M.; McCracken, G.F. & Kunz, T.H. 2011. Economic importance of bats in agriculture. Science, 332: 41-42. http://doi.org/10.1126/science.1201366
http://doi.org/10.1126/science.1201366...
). For this region, some conservation efforts have already been established, as it is recognized as an AICOMS, however, to develop more effective conservation, the unified effort of local, regional and national organizations is necessary. Being necessary to strengthen the institutional framework (both public and private), which is explicitly associated with environmental issues, (universities, companies, NGOs, etc.) and develop an educational communication strategy linked to environmental education.

Undoubtedly, it is necessary to carry out more studies in the YBR and surroundings to know the possible fluctuations of the bat populations, implementing monitoring in the medium and long term, in addition in this sampling design did not include several months of the year and therefore, effort sampling may be insufficient to detect some species and in some calls analysed the samples are not representative to see the full range of vocalization of insectivorous bats. In Honduras, new studies should employ include methods for the upper stratum, using a combination of acoustic methods and mist nets (Gómez-Corea et al., 2020Gómez-Corea, W.; Mejía-Quintanilla, D.; Hernández, J.; Vallejo-Ham, A.E.; Flores, R. & Figueroa-Grande, A. 2020. Diclidurus albus Wied-Neuwied, 1819 (Mammalia, Chiroptera): geographic distribution in Honduras, with new records inferred from acoustic evidence and morphology. Caribbean Journal of Science, 50(2): 265-274. http://doi.org/10.18475/cjos.v50i2.a10
http://doi.org/10.18475/cjos.v50i2.a10...
), focusing on standardized acoustic monitoring that provides information to create an acoustic reference library. The range of variation inherent in the vocal repertoire of each species should be established, given the relevance of geographic variation and intraspecific and interspecific variations. This will allow the knowledge of the vocal signatures of the species which will be a useful tool to carry out fast and accurate inventories, establishing patterns of activity, habitat use and other aspects of the behavioural ecology of bat communities (Kalko, 1995Kalko, E.K.V. 1995. Echolocation signal design, foraging habitats and guild structure in six Neotropical sheath-tailed bats (Emballonuridae). Symposia of the Zoological Society of London, 67: 259-273.).

ACKNOWLEDGMENTS

We thank the following people and institutions for the support they gave us: Yuscarán Foundation; Japan International Cooperation Agency (JICA) within the framework of the Union Biological Corridor Project; UNAH Vertebrate Laboratory; MDI; Eduin Castellanos; Rafael Centeno; Ana Banegas; Lowin Caballero; Romero Mazariegos; Mariela Rodríguez; Dominic Boquín and Jocelyn Castro, who collaborated in the field surveys. To Martín R. Alvarez, Gustavo Pavón from the Unidad Municipal Ambiental (UMA), from the municipality of Yuscarán and anonymous reviewers for helpful comments and suggestions on the manuscript. To the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) for the fellowship.

REFERENCES

  • Adams, A.M.; Jantzen, M.K.; Hamilton, R.M. & Fenton, M.B. 2012. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods in Ecology and Evolution, 3(6): 992-998. http://doi.org/10.1111/j.2041-210X.2012.00244.x
    » http://doi.org/10.1111/j.2041-210X.2012.00244.x
  • AFOCO [Proyecto de apoyo a la forestaría comunitaria] 2001. Plan de manejo de la Reserva Biológica de Yuscarán 2000-2004 Honduras, Yuscarán. 65p.
  • Aguirre, L.F. 2002. Structure of a neotropical savanna bat community. Journal of Mammalian, 83(3): 775-784. http://doi.org/10.1644/1545-1542(2002)083%3c0775:SOANSB%3e2.0.CO;2
    » http://doi.org/10.1644/1545-1542(2002)083%3c0775:SOANSB%3e2.0.CO;2
  • Arias-Aguilar, A.; Hintze, F.; Aguiar, L.M.; Rufray, R.; Bernard, E. & Ramos P.M.J. 2018. Who’s calling? Acoustic identification of Brazilian bats. Mammal Research, 63(3): 231-253. http://doi.org/10.1007/s13364-018-0367-z
    » http://doi.org/10.1007/s13364-018-0367-z
  • Arita, H.T. & Fenton M.B. 1997. Flight and echolocation in the ecology and evolution of bats. Trends in Ecology & Evolution, 12: 53-58. http://doi.org/10.1016/S0169-5347(96)10058-6
    » http://doi.org/10.1016/S0169-5347(96)10058-6
  • Azam, C.; Kerbiriou, C.; Vernet, A.; Julien, J.F.; Bas, Y.; Plichard, L.; Maratrat, J. & Le Viol, I. 2015. Is part-night lighting an effective measure to limit the impacts of artificial lighting on bats? Global Change Biology, 21(12): 4333-4341. http://doi.org/10.1111/gcb.13036
    » http://doi.org/10.1111/gcb.13036
  • Barataud, M.; Giosa, S.; Leblanc, F.; Rufray, V.; Disca, T.; Tillon, L.; Delaval, M.; Haquart, A. & Dewynter, M. 2013. Identification et écologie acoustiquedes chiroptères de Guyane Française. Le Rhinolophe, 19: 103-145.
  • Bogdanowicz, W.; Fenton M.B. & Daleszczyk, K. 1999. The relationships between echolocation calls, morphology and diet in insectivorous bats. Journal of Zoology, 247(3): 381-393. http://doi.org/10.1111/j.1469-7998.1999.tb01001.x
    » http://doi.org/10.1111/j.1469-7998.1999.tb01001.x
  • Botto-Nuñez, G.; Gonzales, M.E. & Rodales, A.L. 2019. Conservación de los murciélagos (Mammalia: Chiroptera) de Uruguay: Estado actual y perspectivas. Mastozoología Neotropical, 26: 49-64. http://doi.org/10.31687/saremMN.19.26.1.0.05
    » http://doi.org/10.31687/saremMN.19.26.1.0.05
  • Boyle, J.G.; Cryan, P.M.; McCracken, G.F. & Kunz, T.H. 2011. Economic importance of bats in agriculture. Science, 332: 41-42. http://doi.org/10.1126/science.1201366
    » http://doi.org/10.1126/science.1201366
  • Briones-Salas, M.; Peralta-Pérez, M. & García-Luis, M. 2013. Acoustic characterization of new species of bats for the State of Oaxaca Mexico. Therya, 4: 15-32. http://doi.org/10.12933/therya-13-106
    » http://doi.org/10.12933/therya-13-106
  • Brunet-Rossini, A.K. & Wilkinson, G.S. 2009. Methods for age estimation and the study of senescence in bats. In: Kunz, T.H. & Parsons, S. (Eds.). Ecological and behavioral methods for the study of bats Baltimore, Johns Hopkins University Press. p. 315-325.
  • Calahorra-Oliart, A.; Ospina-Garcés, S.M. & León-Paniagua, L. 2021. Cryptic species in Glossophaga soricina (Chiroptera: Phyllostomidae): do morphological data support molecular evidence? Journal of Mammalogy, 102: 54-68. http://doi.org/10.1093/jmammal/gyaa116
    » http://doi.org/10.1093/jmammal/gyaa116
  • Chao, A. & Lee, S.M. 1992. Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87(417): 210-217. http://doi.org/10.2307/2290471
    » http://doi.org/10.2307/2290471
  • Colwell, R.K. 2013. EstimateS, Version 9.1: statistical estimation of species richness and shared species from samples (Software and User’s Guide). Freeware for Windows and Mac OS. Available: Available: http://viceroy.eeb.uconn.edu/EstimateS/EstimateSPages/EstSUsersGuide/EstimateSUsersGuide.htm Access: 20/04/2021.
    » http://viceroy.eeb.uconn.edu/EstimateS/EstimateSPages/EstSUsersGuide/EstimateSUsersGuide.htm
  • Colwell, R.K. & Coddington, J.A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society B: Biological Sciences, 345(1311): 101-118. http://doi.org/10.1098/rstb.1994.0091
    » http://doi.org/10.1098/rstb.1994.0091
  • Estrada, A. & Coates-Estrada, R. 2001. Species composition and reproductive phenology of bats in a tropical landscape at Los Tuxtlas, Mexico. Journal of Tropical Ecology, 17(5): 627-646. http://doi.org/10.1017/S026646740100147X
    » http://doi.org/10.1017/S026646740100147X
  • Faure, P.A. & Barclay, R.M.R. 1994. Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis Journal of Comparative Physiology A, 174(5): 651-660. http://doi.org/10.1007/BF00217386
    » http://doi.org/10.1007/BF00217386
  • Fenton, M.B. & Simmons, N.B. 2014. Bats: a world of science and mystery Chicago, University of Chicago Press,. pp. 305.
  • García-Luis, M. & Briones-Salas, M. 2017. Composición y actividad de la comunidad de murciélagos artropodívoros en parques eólicos del trópico mexicano. Revista Mexicana de Biodiversidad, 88(4): 888-898. http://doi.org/10.1016/j.rmb.2017.10.018
    » http://doi.org/10.1016/j.rmb.2017.10.018
  • García-Luis, M.; Briones-Salas, M. & Lavariega, M.C. 2019. Bat species richness in the region of the Central Valleys of Oaxaca, Mexico. Arxius de Miscellania Zoologica, 17: 1-11. http://doi.org/10.32800/amz.2019.17.0001
    » http://doi.org/10.32800/amz.2019.17.0001
  • Gillam, E.H. & McCracken, G.F. 2007. Variability in the echolocation of Tadarida brasiliensis: effects of geography and local acoustic environment. Animal Behaviour, 74(2): 277-286. http://doi.org/10.1016/j.anbehav.2006.12.006
    » http://doi.org/10.1016/j.anbehav.2006.12.006
  • Gómez-Corea, W.; Hernández, J.; Antúnez-Fonseca, C.; Mejía-Quintanilla, D. & Vega, H. 2021. Leucism and updated geographic distribution of Molossus nigricans Miller, 1902, (Chiroptera: Molossidae) In Honduras. Mammalia, 85: 64-70. http://doi.org/10.1515/mammalia-2019-0153
    » http://doi.org/10.1515/mammalia-2019-0153
  • Gómez-Corea, W.; Mejía-Quintanilla, D.; Hernández, J.; Vallejo-Ham, A.E.; Flores, R. & Figueroa-Grande, A. 2020. Diclidurus albus Wied-Neuwied, 1819 (Mammalia, Chiroptera): geographic distribution in Honduras, with new records inferred from acoustic evidence and morphology. Caribbean Journal of Science, 50(2): 265-274. http://doi.org/10.18475/cjos.v50i2.a10
    » http://doi.org/10.18475/cjos.v50i2.a10
  • Griffin, D.R.; Webster, F.A. & Michael, C.R. 1960. The echolocation of flying insects by bats. Animal Behaviour , 8: 141-154. http://doi.org/10.1016/0003-3472(60)90022-1
    » http://doi.org/10.1016/0003-3472(60)90022-1
  • Hoofer, S.R.; Solari, S.; Larsen, P.A.; Bradley, R.D. & Baker, R.J. 2008. Phylogenetics of the fruit-eating bats (Phyllostomidae: Artibeina) inferred from mitochondrial DNA sequences. Occasional Papers Museum Texas Tech University, 277: 1-15. http://doi.org/10.5962/bhl.title.156929
    » http://doi.org/10.5962/bhl.title.156929
  • Hortal, J.; Borges, P.A.V. & Gaspar, C. 2006. Evaluating the performance of species richness estimators: sensitivity to sample grainsize. Journal of Animal Ecology, 75(1): 274-287. http://doi.org/10.1111/j.1365-2656.2006.01048.x
    » http://doi.org/10.1111/j.1365-2656.2006.01048.x
  • Ibáñez, C.; Guillén, A.; Juste, J. & Pérez-Jordá, J.L. 1999. Echolocation calls of Pteronotus davyi (Chiroptera: Mormoopidae) form Panamá. Journal of Mammalogy , 80: 924-928. http://doi.org/10.2307/1383261
    » http://doi.org/10.2307/1383261
  • INE [Instituto Nacional de Estadística]. 2013. XVII Censo de Poblacion y VI de Vivienda 2013 Tomo 91, Municipio de Yuscarán 07-01. Available: Available: https://www.ine.gob.hn/V3/imag-doc/2018/05/Tomo-91-Municipio-de-Yuscar%C3%A1n-07-01.pdf Access: 01/03/2021.
    » https://www.ine.gob.hn/V3/imag-doc/2018/05/Tomo-91-Municipio-de-Yuscar%C3%A1n-07-01.pdf
  • International Union for Conservation of Nature and Natural Resources (IUCN). 2021. Version 2021-1. The IUCN Red List of Threatened Species Available: Available: https://www.iucnredlist.org Access: 15/03/2021.
    » https://www.iucnredlist.org
  • Jiang, T.; Metzner, W.; You, Y.; Liu, S.: Lu G.; Li, S.; Wang, L. & Feng, J. 2010. Variation in the resting frequency of Rhinolophus pusillus in Mainland China: effect of climate and implications for conservation. The Journal of the Acoustical Society of America, 128(4): 2204-2211. http://doi.org/10.1121/1.3478855
    » http://doi.org/10.1121/1.3478855
  • JICA [Agencia de Cooperación Internacional del Japón]. 2018. Proyecto Corredor Biológico de La Unión, para el uso sostenible y conservación de la biodiversidad DiBio-MiAmbiente/JICA. 318p. Available: Available: https://www.jica.go.jp/project/spanish/honduras/004/materials/c8h0vm0000bk9y9y-att/materials_10.pdf Access: 05/02/2021.
    » https://www.jica.go.jp/project/spanish/honduras/004/materials/c8h0vm0000bk9y9y-att/materials_10.pdf
  • Jung, K. & Kalko, E.K.V. 2011. Adaptability and vulnerability of high flying Neotropical aerial insectivorous bats to urbanization. Diversity and Distribution, 17(2): 262-274. http://doi.org/10.1111/j.1472-4642.2010.00738.x
    » http://doi.org/10.1111/j.1472-4642.2010.00738.x
  • Jung, K.; Kalko, E.K.V. & von Helversen, O. 2007. Echolocation calls in Central American emballonurid bats: Signal design and call frequency alternation. Journal of Zoology, 272(2): 125-137. http://doi.org/10.1111/j.1469-7998.2006.00250.x
    » http://doi.org/10.1111/j.1469-7998.2006.00250.x
  • Jung, K.; Molinari, J. & Kalko, E.K.V. 2014. Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (Molossidae). PLOS ONE, 9: e85279. http://doi.org/10.1371/journal.pone.0085279
    » http://doi.org/10.1371/journal.pone.0085279
  • Kalko, E.K.V. 1995. Echolocation signal design, foraging habitats and guild structure in six Neotropical sheath-tailed bats (Emballonuridae). Symposia of the Zoological Society of London, 67: 259-273.
  • Kalko, E.K.V.; Handley, C.O. & Handley, D. 1996. Organization, diversity, and long term dynamics of a Neotropical bat community . In: Cody, M. & Smallwood, J. (Eds.). Long term studies in vertebrate communities Academic Press. p. 503-553.
  • Kraker-Castañeda, C.; Santos-Moreno, A. & García-García, J.L. 2013. Riqueza de especies y actividad relativa de murciélagos insectívoros aéreos en una selva tropical y pastizales en Oaxaca, México. Mastozoología Neotropical , 20(2): 255-267.
  • Kunz, T.H.; Hodgkison, R. & Weise, C. 2009. Methods of capturing and handling bats. In: Kunz, T.H. & Parsons, S. (Eds.). Ecological and behavioral methods for the study of bats 2.ed. Baltimore, Johns Hopkins University Press . p. 3-35.
  • Kunz, T.H.; Torrez, E.B.; Bauer, D.; Lavoba, T. & Fleming, T.H. 2011. Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223: 1-38. http://doi.org/10.1111/j.1749-6632.2011.06004.x
    » http://doi.org/10.1111/j.1749-6632.2011.06004.x
  • León-Tapia, M.A. & Hortelano-Moncada, Y. 2016. Richness of insectivorous bats in a chaparral area in the municipality of Tecate, Baja California, Mexico. Revista Mexicana de Biodiversidad , 87(3): 1055-1061. http://doi.org/10.1016/j.rmb.2016.07.005
    » http://doi.org/10.1016/j.rmb.2016.07.005
  • Loureiro, L.O.; Engstrom, M.; Lim, B.; López-González, C. & Juste, J. 2019. Not all Molossus are created equal: genetic variation in the mastiff bat reveals diversity masked by conservative morphology. Acta Chiropterologica, 21: 51-64. http://doi.org/10.3161/15081109ACC2019.21.1.004
    » http://doi.org/10.3161/15081109ACC2019.21.1.004
  • Loureiro, L.O.; Engstrom, M.D. & Lim, B.K. 2020. Single nucleotide polymorphisms (SNPs) provide unprecedented resolution of species boundaries, phylogenetic relationships, and genetic diversity in the mastiff bats (Molossus). Molecular Phylogenetics and Evolution, 143: 106690. http://doi.org/10.1016/j.ympev.2019.106690
    » http://doi.org/10.1016/j.ympev.2019.106690
  • MacsWiney, M.C.; Clarke, F.M. & Racey, P.A. 2008. What you see is not what you get: the role of ultrasonic de tectors in increasing inventory completeness in Neotropical bat assemblages. Journal of Applied Ecology, 45: 1364-1371. http://doi.org/10.1111/j.1365-2664.2008.01531.x
    » http://doi.org/10.1111/j.1365-2664.2008.01531.x
  • Marques, J.T.; Ramos Pereira, M. & Palmeirim, J. 2015. Patterns in the use of rainforest vertical space by Neotropical aerial insectivorous bats: all the action is up in the canopy. Ecography, 38: 001-011. http://doi.org/10.1111/ecog.01453
    » http://doi.org/10.1111/ecog.01453
  • Martinez-Garcia, R.A. 2002. Análisis multitemporal de la cobertura vegetal de la Reserva Biológica de Yuscarán, El Paraiso, Honduras Honduras, Zamorano. 42p. Available: Available: https://bdigital.zamorano.edu/handle/11036/1585 Access: 05/03/2021.
    » https://bdigital.zamorano.edu/handle/11036/1585
  • Medellín, R.A. & Geona, O. 1999. Seed dispersal by bats and birds in forest and disturbed habitats of Chiapas, Mexico. Biotropica, 31(3): 478-485. http://doi.org/10.1111/j.1744-7429.1999.tb00390.x
    » http://doi.org/10.1111/j.1744-7429.1999.tb00390.x
  • Medellín, R.A.; Arita, H. & Sánchez, O. 2008. Identificación de los murciélagos de México. Clave de campo Segunda Edición. Instituto de Ecología. Universidad Nacional Autónoma de México. 80p.
  • Medina-Fitoria, A. 2014. Murciélagos de Nicaragua, guía de campo Managua, Nicaragua. MARENA/PCMN. 280p.
  • Mejía, D.; Elvir F.; Portillo, H. & Flores, M. 2019. AICOM A-H-006 Corredor Biológico La Unión PCMH/RELCOM. 9p. Available: Available: https://www.relcomlatinoamerica.net/%C2%BFqu%C3%A9-hacemos/conservacion/aicoms-sicoms/aicoms-sicoms-buscador/ad/aicoms,1/la-union,89.html Access: 05/03/2021.
    » https://www.relcomlatinoamerica.net/%C2%BFqu%C3%A9-hacemos/conservacion/aicoms-sicoms/aicoms-sicoms-buscador/ad/aicoms,1/la-union,89.html
  • Mejía-Ordoñez, T.M. 2013. Composición florística en fragmentos de bosque en los municipios de Yuscarán, Oropoli y Güinope, Departamento de El Paraíso, Honduras, C.A. Revista de Ciencias Espaciales, 6: 7-22. http://doi.org/10.5377/ce.v6i1.2553
    » http://doi.org/10.5377/ce.v6i1.2553
  • Mickleburgh, S.P.; Hutson, A.M. & Racey, P.A. 2002. A review of the global conservation status of bats. Oryx, 36: 18-34. http://doi.org/10.1017/S0030605302000054
    » http://doi.org/10.1017/S0030605302000054
  • Miller, B.M. 2003. Community ecology of the non-phyllostomid bats of Northwestern Belize, with a landscape level assessment of the bats of Belize (Doctoral Thesis). University of Kent Dureell Institute of Conservation and Ecology, UK.
  • Millon, L.; Julien, J.F.; Julliard, R. & Kerbiriou, C. 2015. Bat activity in intensively farmed landscapes with wind turbines and offset measures. Ecological Engineering, 75: 250-257. http://doi.org/10.1016/j.ecoleng.2014.11.050
    » http://doi.org/10.1016/j.ecoleng.2014.11.050
  • Mora, J.M.; López, L.I. & Espinal, M.R. 2021. Clave de campo para la identificación de los murciélagos de Honduras. Notas sobre Mamíferos Sudamericanos, 3: e21.6.1.
  • Moreno, C.E. & Halffter, G. 2000. Assessing the completeness of bat biodiversity inventory using species accumulation curves. Journal of Applied Ecology , 37(1): 149-158. http://doi.org/10.1046/j.1365-2664.2000.00483
    » http://doi.org/10.1046/j.1365-2664.2000.00483
  • Neuweiler, G. 2000. Echolocation. In: Neuweiler, G. (Ed.). The Biology of bats Oxford, Oxford University Press. p. 140-260.
  • O’Farrell, M.J. & Miller, B.W. 1997. A new examination of echolocation calls of some Neotropical bats (Emballonuridae and Mormoopidae). Journal of Mammalogy , 78(3): 954-963. http://doi.org/10.2307/1382955
    » http://doi.org/10.2307/1382955
  • O’Farrell, M.J. & Miller, B.W. 1999. Use of vocal signatures for the inventory of free-flying neotropical bats. Biotropica, 31(3): 507-516. http://doi.org/10.1111/j.1744-7429.1999.tb00394.x
    » http://doi.org/10.1111/j.1744-7429.1999.tb00394.x
  • Orozco-Lugo, L.; Guillén-Servent, A.; Valenzuela-Galván, D. & Arita, H.T. 2013. Descripción de los pulsos de ecolocalización de once especies de murciélagos insectívoros aéreos de una selva baja caducifolia en Morelos, México. Therya, 4(1): 33-46. http://doi.org/10.12933/therya-13-103
    » http://doi.org/10.12933/therya-13-103
  • Parsons, S. & Szewczak, J. 2009. Detecting, recording and analysing the vocalizations of bats. In: Kunz, T.H. & Parsons, S. (Eds.). Ecological and behavioural methods for the study of bats Baltimore, Johns Hopkins University Press .p. 91-111
  • Pavan, A.C. & Marroig, G. 2016. Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Molecular Phylogenetics and Evolution , 103: 184-198. http://doi.org/10.1016/j.ympev.2016.07.011
    » http://doi.org/10.1016/j.ympev.2016.07.011
  • Racey, P.A. 2009. Reproductive assessment of bats. In: Kunz, T.H. & Parsons, S. (Eds.). Ecological and behavioral methods for the study of bats 2. ed. Maryland, The Johns Hopkins University Press. p. 249-264.
  • Reid, F.A. 2009. A field guide to the mammals of Central America and Southeast Mexico 2.ed. Oxford University Press.
  • RELCOM [Red Latinoamericana de Conservación de los Murciélagos]. 2010. Estrategia para la conservación de los murciélagos de Latinoamérica y el Caribe Available: Available: http://www.relcomlatinoamerica.net/images/PDFs/Estrategia.pdf (19 October 2016). Access: 05/03/2021.
    » http://www.relcomlatinoamerica.net/images/PDFs/Estrategia.pdf
  • Rydell, J.; Arita, H.; Santos M. & Granados, J. 2002. Acoustic identification of insectivorous bats (order Chiroptera) of Yucatan, Mexico. Journal of Zoology, 257: 27-36. http://doi.org/10.1017/S0952836902000626
    » http://doi.org/10.1017/S0952836902000626
  • Saldaña-Vázquez, R.A. & Munguía-Rosas, M.A. 2013. Lunar phobia in bats and its ecological correlates: A meta-analysis. Mammalian Biology, 78(3): 216-219. http://doi.org/10.1016/j.mambio.2012.08.004
    » http://doi.org/10.1016/j.mambio.2012.08.004
  • Schnitzler, H.U. & Kalko, E.K.V. 2001. Echolocation by insect-eating bats: we define four distinct functional groups of bats and find differences in signal structure that correlate with the typical echolocation tasks faced by each group. BioScience, 51(7): 557-569. http://doi.org/10.1641/0006-3568(2001)051%5b0557:EBIEB%5d2.0.CO;2
    » http://doi.org/10.1641/0006-3568(2001)051%5b0557:EBIEB%5d2.0.CO;2
  • Schnitzler, H.U.; Moss, C.F. & Denzinger, A. 2003. From spatial orientation to food acquisition in echolocating bats. Trends Ecology & Evolution, 18(8): 386-394. http://doi.org/10.1016/S0169-5347(03)00185-X
    » http://doi.org/10.1016/S0169-5347(03)00185-X
  • Siemers, B.M. & Schnitzler, H.U. 2004. Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429(6992): 657-661. http://doi.org/10.1038/nature02547
    » http://doi.org/10.1038/nature02547
  • Siemers, B.M.; Kalko, E.K.V. & Schnitzler, H.U. 2001. Echolocation behavior and signal plasticity in the Neotropical bat Myotis nigricans (Schinz, 1821) (Vespertiionidae): a convergent case with European species of Pipistrellus? Behavioral Ecology Sociobiology, 50(4): 317-328. http://doi.org/10.1007/s002650100379
    » http://doi.org/10.1007/s002650100379
  • Sikes, R.S. & the Animal Care and Use Committee of the American Society of Mammalogists. 2016. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy , 97(3): 663-688. http://doi.org/10.1093/jmammal/gyw078
    » http://doi.org/10.1093/jmammal/gyw078
  • Simmons, J.A. & O’Farrell, M.J. 1977. Echolocation by the long-eared bat, Plecotus phyllotis Journal of Comparative Physiology, 122(2): 201-214. http://doi.org/10.1007/BF00611890
    » http://doi.org/10.1007/BF00611890
  • Simmons, N.B. 2005. Order Chiroptera. In: Wilson, D.E. & Reeder, D.M. (Eds.). Mammal species of the World: a taxonomic and geographic reference Baltimore, Johns Hop kins University Press. p. 1207.
  • Simmons, N.B. & Cirranello A.L. 2020. Bat Species of the World: A taxonomic and geographic database Available: Available: https://batnames.org Access: 08/03/2021.
    » https://batnames.org
  • Simmons, N.B. & Voss, R.S. 1998. The mammals of Paracou, French Guiana: a Neotropical lowland rainforest fauna. Part 1. Bats. Bulletin of the American Museum of Natural History, 237: 1-219.
  • Sodhi, N.S.; Koh, L.P.; Prawiradilaga, D.M.; Tinulele, I.; Putra, D.D. & Tan, T.H.T. 2005. Land use and conservation value for forest birds in central Sulawesi. Biological Conservation, 122(4): 547-558.
  • Solari, S.C.; Sotero, C.G. & Backer, R.J. 2019. Advances in systematics of bats: towards a consensus on species delimitation and classifications through integrative taxonomy. Journal of Mammalogy , 100(3): 838-851. http://doi.org/10.1093/jmammal/gyy168
    » http://doi.org/10.1093/jmammal/gyy168
  • Stevens, R.D. & Willig, M.R. 2000. Density compensation in New World bat communities. Oikos, 89(2): 367-377. http://doi.org/10.1034/j.1600-0706.2000.890218.x
    » http://doi.org/10.1034/j.1600-0706.2000.890218.x
  • Straube, F.C. & Bianconi, G.V. 2002. Sobre a grandeza e a unidade utilizada para estimar esforço de captura com utilização de redes de neblina. Chiroptera Neotropical, 8: 150-152.
  • Timm, R.M.; Laval, R.K. & Rodrigues, B. 1999. Clave de campo para los Murciélagos de Costa Rica. Brenesia, 52: 1-32.
  • Turcios-Casco, M.A.; Avila-Palma, H.D.; LaVal, R.K.; Steven, R.D.; Ordoñez-Trejo, E.J.; Soler-Orellana, J.A. & Ordoñez-Mazier, D.I. 2020. A systematic revision of the bats (Chiroptera) of Honduras: an updated checklist with corroboration of historical specimens and new records. Zoosystematics and Evolution, 96(2): 411-429. http://doi.org/10.3897/zse.96.51059
    » http://doi.org/10.3897/zse.96.51059
  • Tuttle, M.D. & Moreno, A. 2005. Los murciélagos cavernícolas del norte de México. Su importancia y problemas de conservación Austin, Bat Conservation International. Available: Available: http://centro.paot.org.mx/documentos/varios/murcielagos.pdf Access: 08/04/2021.
    » http://centro.paot.org.mx/documentos/varios/murcielagos.pdf
  • Velazco, P.M. & Patterson, B.D. 2013. Diversification of the yellow-shouldered bats genus Sturnira (Phyllostomidae), in the new world tropics. Molecular Phylogenetics and Evolution , 68(3): 683-698. http://doi.org/10.1016/j.ympev.2013.04.016
    » http://doi.org/10.1016/j.ympev.2013.04.016
  • Walther, B.A. & Moore, J.L. 2005. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28(6): 815-829. http://doi.org/10.1111/j.2005.0906-7590.04112.x
    » http://doi.org/10.1111/j.2005.0906-7590.04112.x
  • Williams-Guillén, K. & Perfecto, I. 2011. Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry Systems. PLOS ONE , 6: 1-10. http://doi.org/10.1371/journal.pone.0016502
    » http://doi.org/10.1371/journal.pone.0016502
  • Wilson, D.E. & Mittermeier, R.A. 2019. Handbook of the mammals of the world Barcelona, Lynx Ediciones.

Edited by

Edited by: Luís Fábio Silveira

Publication Dates

  • Publication in this collection
    04 Oct 2021
  • Date of issue
    2021

History

  • Received
    18 May 2021
  • Accepted
    01 Aug 2021
Museu de Zoologia da Universidade de São Paulo Av. Nazaré, 481, Ipiranga, 04263-000 São Paulo SP Brasil, Tel.: (55 11) 2065-8133 - São Paulo - SP - Brazil
E-mail: einicker@usp.br