Acessibilidade / Reportar erro

Effects of waterhyacynth management on water quality under mesocosmic conditions

Besides their great importance in the aquatic environment dynamics, with the formation of dense colonization, the macrophytes cause several damages to the ecological equilibrium and multiple use of water. Under these conditions, control measures are required aiming to reduce the size of macrophyte populations. Among the most important aquatic weeds, the waterhyacinth (Eichhornia crassipes) is considered a major problem, its control being necessary in several sites in the world. The herbicide diquat has been used for waterhyacinth control due to its low cost, high efficacy, quickness of action and environmental safety. Aiming to evaluate the effects of waterhyacinth control and of diquat use on some water characteristics, an experiment was carried out under mesocosmic conditions, analyzing the following experimental situations: CPCH - mesocosm colonized by waterhyacinth controlled by diquat spraying at 7.0 L ha-1 of Reward®; CPCG - mesocosm colonized by waterhyacinth destroyed by freezing; CPSH - mesocosm colonized by waterhyacinth, without control; SPCH - mesocosm without aquatic weeds and diquat spray on the water surface, and SPSH - mesocosm without aquatic weeds. Water temperature was higher in the mesocosms without waterhyacinth colonization due to the radiation penetration in the water column. The dissolved oxygen concentrations were lower in the mesocosms colonized by waterhyacinth and were reduced just after the weed control, due to the elevation of biological oxygen demand (BOD) during plant decomposition. The water pH was higher in the mesocosms without waterhyacinth colonization. The values of total dissolved solids (STD) and electric conductivity were higher in the mesocosm with waterhyacinth, regardless of weed control. Comparison of the mesocosm without macrophytes, with and without diquat application, showed that the values of the characteristics evaluated were similar, leading to the conclusion that the changes observed were due to plant decomposition.

Eichhornia crassipes; diquat; chemical control; environmental impact


Sociedade Brasileira da Ciência das Plantas Daninhas Departamento de Fitotecnia - DFT, Universidade Federal de Viçosa - UFV, 36570-000 - Viçosa-MG - Brasil, Tel./Fax::(+55 31) 3899-2611 - Viçosa - MG - Brazil
E-mail: rpdaninha@gmail.com