Acessibilidade / Reportar erro

Synthesis, characterization and thermokinetic analysis of the novel sugar based styrene co-polymer

Abstract

A new α-chloralose (1,2-O-(R)-trichloroethylidene-α-D-glucofuranose)-based copolymer of styrene (PSVTEG) (2) was synthesized from vinyl (hydroxyl) furan monomer (1) and styrene by a conventional free radical polymerization reaction. The thermal decomposition kinetics of polymer were investigated by means of thermogravimetric analysis in dynamic nitrogen atmosphere at different heating rates. The apparent activation energy for the main stage thermal decomposition of the copolymer PSVTEG (2) was calculated using the Flynn-Wall-Ozawa and found to be 159.0±3 kj/mol. In addition, the activation energy value was calculated according to Coats-Redfern method and found to be compatible with the obtained result. The thermogram of the glycopolymer (PSVTEG) (2) has two decomposition stages and the calculated activation energy indicated that the main degradation stage is a nonspontaneous process (integral form 1/(1−α)2 for F3).

Keywords:
glycopolymers; carbohydrate based vinyl copolymer; α-chloralose; thermal analysis; decomposition kinetic

1. Introduction

Glycopolymer is synthetic polymer with pendant carbohydrates[11 Pearson, S., Chen, G., & Stenzel, M. H. (2011) Synthesis of Glycopolymers. In R. Narain (Ed.), Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles, and hydrogels (pp. 1-118). Hoboken: John Wiley & Sons, Inc.]. Carbohydrates are important natural sources of building blocks for the synthesis of biodegradable polymers. They are also easily accessible and some are even coming from agricultural wastes[22 Louwrier, A. (1998). Industrial products: the return to carbohydrate - Based industries. Biotechnology and Applied Biochemistry, 27(1), 1-8. http://dx.doi.org/10.1111/j.1470-8744.1998.tb01368.x.
http://dx.doi.org/10.1111/j.1470-8744.19...
]. Furthermore, they are found in different kinds of chemical structures with great stereochemical diversity and constituted as renewable sources as being more sustainable than fossil fuels[33 Singh, R., Bhattacharya, B., Rhee, H. W., & Singh, P. K. (2015). Solid gellan gum polymer electrolyte for energy application. International Journal of Hydrogen Energy, 40(30), 9365-9372. http://dx.doi.org/10.1016/j.ijhydene.2015.05.084.
http://dx.doi.org/10.1016/j.ijhydene.201...
,44 Methven, J. M. (1991). Polymeric materials from renewable resources. Rapra Review Reports, 4(1), 1-134. http://dx.doi.org/10.1080/15583720701834133.
http://dx.doi.org/10.1080/15583720701834...
]. Recently, the basic raw materials used for polymers have expanded by sugars including glucose, galactose, fructose and sucrose. Therefore, carbohydrates are excellent substitutes for products of fossil origin for industrial developments[55 Borges, M.R., Dos Sandos, J.A., Vieira, M., & Balaban R. (2009). Polymerization of a water soluble glucose vinyl ester monomer with tensoactive properties synthesized by enzymatic catalyst. Materials Science and Engineering C, 29(2), 519-523. http://dx.doi.org/10.1016/j.msec.2008.09.013.
http://dx.doi.org/10.1016/j.msec.2008.09...
]. Chemically containing sugar moieties onto synthetic polymers are induvidual methods for the functionalization of synthetic polymers. With these use of these methods, the polymer is not only functionalized, but also other desirable properties such as biodegradability, biocompatibility and biorenewability can be achieved[66 Varma, A.J., Kennedy, J.F., & Galgali, P. (2004) Synthetic polymers functionalized by carbohydrates: A review. Carbohydrate Polymers, 56(4), 429-445. http://dx.doi.org/10.1016/j.carbpol.2004.03.007.
http://dx.doi.org/10.1016/j.carbpol.2004...
]. Thus, these could be avaiable alternatives for developing environmental friendly products. Synthetic carbohydrate polymers were investigated as biodegradable, biocompatible, biorenewable materials as water absorbents, chromatographic supports, drug delivery systems and medical devices[77 Bertini, V., Pocci, M., Alfei, S., Idini, B., & Lucchesini, F. (2007). Synthesis of crosslinked nanostructured saccharidic vinyl copolymers and their functionalization. Tetrahedron, 63(47), 11672-11680. http://dx.doi.org/10.1016/j.tet.2007.08.106.
http://dx.doi.org/10.1016/j.tet.2007.08....
,88 Sanchez-Chaves, M., Ruiz, C., Cerrada, M. L., & Fernandez-Garcia, M. (2008). Novel glycopolymers containing aminosaccharide pendant groups by chemical modification of ethylene-vinyl alcohol copolymers. Polymer, 49(12), 2801-2807. http://dx.doi.org/10.1016/j.polymer.2008.04.047.
http://dx.doi.org/10.1016/j.polymer.2008...
], in dental medicine, bioimplants, contect lenses, tissue engineering and electrochemical applications[99 Li, S., Jasim, A., Zhao, W., Fu, L., Ullah, M. W., Shi, Z., & Yang, G. (2018). Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Materials & Manufacturing, 1, 41-49. http://dx.doi.org/10.30919/esmm5f120.
http://dx.doi.org/10.30919/esmm5f120...

10 Du, W., Wang, X., Zhan, J., Sun, X., Kang, L., Jiang, F., Zhang, X., Shao, Q., Dong, M., Liu, H., Murugadoss, V., & Guo, Z. (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochimica Acta, 296, 907-915. http://dx.doi.org/10.1016/j.electacta.2018.11.074.
http://dx.doi.org/10.1016/j.electacta.20...

11 Wang, W., Hao, X., Chen, S., Yang, Z., Wang, C., Yan, R., Zhang, X., Liuc, H., Shaod, Q., & Guo, Z. (2018) pH-responsive Capsaicin@chitosan nanocapsules for antibiofouling in marine applications. Polymer, 158, 223-230. http://dx.doi.org/10.1016/j.polymer.2018.10.067.
http://dx.doi.org/10.1016/j.polymer.2018...
-1212 Kashfipour, M. A., Mehra, N., Dent, R. S., & Zhu, J. (2020). Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids. Engineered Science, 8, 11-18. http://dx.doi.org/10.30919/es8d508.
http://dx.doi.org/10.30919/es8d508...
]. Moreover, polymers with pendant carbohydrate moieties have been useful in clinical diagnostic trials and targeted gene therapies. The use of these polymers are essential in surgery, prosthetic systems and pharmacology[66 Varma, A.J., Kennedy, J.F., & Galgali, P. (2004) Synthetic polymers functionalized by carbohydrates: A review. Carbohydrate Polymers, 56(4), 429-445. http://dx.doi.org/10.1016/j.carbpol.2004.03.007.
http://dx.doi.org/10.1016/j.carbpol.2004...
,1313 Lichtenthaler, F. W., & Peters, S. C. R. (2004). Carbohydrates as green raw materials for the chemical industry. Chimie, 7(2), 65-90. http://dx.doi.org/10.1016/j.crci.2004.02.002.
http://dx.doi.org/10.1016/j.crci.2004.02...

14 Sampath, C. A., & Edward, T. (2007). Glycosylated polyacrylate nanoparticles by emulsion polymerization. Carbohydrate Polymers, 70(1), 32-37. http://dx.doi.org/10.1016/j.carbpol.2007.02.027. PMid:18677404.
http://dx.doi.org/10.1016/j.carbpol.2007...

15 Stanek, L. G., Heilmann, S. M., & Gleason, W. B. (2006). Preparation and copolymerization of a novel carbohydrate containing monomer. Carbohydrate Polymers, 65(4), 552-556. http://dx.doi.org/10.1016/j.carbpol.2006.01.021.
http://dx.doi.org/10.1016/j.carbpol.2006...
-1616 Vert, M. (2007). Polymeric biomaterials: Strategies of the past vs. strategies of the future. Progress in Polymer Science, 32(8-9), 755-761. http://dx.doi.org/10.1016/j.progpolymsci.2007.05.006.
http://dx.doi.org/10.1016/j.progpolymsci...
]. In addition, using sugar functionalized petrochemical polymers of polystyrene for use as biodegradable polymers is a newly discovered application of a sugar linked synthetic polymer[1717 Varma, A. J., Kennedy, J. F., & Galgali, P. (2004). Synthetic polymers functionalized by carbohydrates. Carbohydrate Polymers, 56(4), 429-445. http://dx.doi.org/10.1016/j.carbpol.2004.03.007.
http://dx.doi.org/10.1016/j.carbpol.2004...
,1818 Ma, Z., & Zhu, X. X. (2019). Copolymers containing carbohydrates and other biomolecules: Design, synthesis and applications. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 7(9), 1361-1378. http://dx.doi.org/10.1039/C8TB03162B. PMid:32255007.
http://dx.doi.org/10.1039/C8TB03162B...
].

During the last three decades, the synthesis of glycopolymers became popular with an effort towards biomimics and most of the attempts were based on the polymerization of monomers containing carbohydrate moieties[1515 Stanek, L. G., Heilmann, S. M., & Gleason, W. B. (2006). Preparation and copolymerization of a novel carbohydrate containing monomer. Carbohydrate Polymers, 65(4), 552-556. http://dx.doi.org/10.1016/j.carbpol.2006.01.021.
http://dx.doi.org/10.1016/j.carbpol.2006...

16 Vert, M. (2007). Polymeric biomaterials: Strategies of the past vs. strategies of the future. Progress in Polymer Science, 32(8-9), 755-761. http://dx.doi.org/10.1016/j.progpolymsci.2007.05.006.
http://dx.doi.org/10.1016/j.progpolymsci...

17 Varma, A. J., Kennedy, J. F., & Galgali, P. (2004). Synthetic polymers functionalized by carbohydrates. Carbohydrate Polymers, 56(4), 429-445. http://dx.doi.org/10.1016/j.carbpol.2004.03.007.
http://dx.doi.org/10.1016/j.carbpol.2004...

18 Ma, Z., & Zhu, X. X. (2019). Copolymers containing carbohydrates and other biomolecules: Design, synthesis and applications. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 7(9), 1361-1378. http://dx.doi.org/10.1039/C8TB03162B. PMid:32255007.
http://dx.doi.org/10.1039/C8TB03162B...

19 Roy, R., Tropper, F. D., & Romanowska, A. (1992). New strategy in glycopolymer syntheses. Preparation of antigenic water-soluble poly(acrylamideco-p-acrylamido-phenyl beta lactoside). Bioconjugate Chemistry, 3(3), 256-261. http://dx.doi.org/10.1021/bc00015a009. PMid:1520730.
http://dx.doi.org/10.1021/bc00015a009...

20 Okada, M. (1992). Molecular design and syntheses of glycopolymers. Progress in Polymer Science, 26(1), 67-104. http://dx.doi.org/10.1016/S0079-6700(00)00038-1.
http://dx.doi.org/10.1016/S0079-6700(00)...

21 Haddleton, D. M., Edmonds, R., Heming, A. M., Kelly, E. J., & Kukulj, D. (1999). Atom transfer polymerisation with glucose and cholesterol derived initiators. New Journal of Chemistry, 23(5), 477-479. http://dx.doi.org/10.1039/a901929d.
http://dx.doi.org/10.1039/a901929d...

22 Ohno, K., Tsujii, Y., & Fukuda, T. (1998). Synthesis of a well-defined glycopolymer by atom transfer radical polymerization. Journal of Polymer Science. Part A, Polymer Chemistry, 36(14), 2473-2481. http://dx.doi.org/10.1002/(SICI)1099-0518(199810)36:14<2473::AID-POLA5>3.0.CO;2-U.
http://dx.doi.org/10.1002/(SICI)1099-051...

23 Ting, S. R. S., Granville, A. M., Quémener, D., Davis, T. P., Stenzel, M. H., & Barner-Kowollik, C. (2007). RAFT Chemistry and Huisgen 1,3-dipolar cycloaddition:a route to block copolymers of vinyl acetate and 6-O-methacryloylmannose. Australian Journal of Chemistry, 60(6), 405-409. http://dx.doi.org/10.1071/CH07089.
http://dx.doi.org/10.1071/CH07089...

24 Ladmiral, V., Melia, E., & Haddleton, D. M. (2004). Synthetic glycopolymers: An overview. European Polymer Journal, 40(3), 431-449. http://dx.doi.org/10.1016/j.eurpolymj.2003.10.019.
http://dx.doi.org/10.1016/j.eurpolymj.20...
-2525 Roy, R. (1996). Blue-prints, synthesis and applications of glycopolymers. Trends in Glycoscience and Glycotechnology, 8(40), 79-99. http://dx.doi.org/10.4052/tigg.8.79.
http://dx.doi.org/10.4052/tigg.8.79...
]. These glycomonomers (sugar carrying monomers) were reported to be polymerized by controlled/living radical polymerisation, radical, anionic, cationic ring-opening polymerization, ring-opening metathesis polymerization and post-functionalization techniques[1919 Roy, R., Tropper, F. D., & Romanowska, A. (1992). New strategy in glycopolymer syntheses. Preparation of antigenic water-soluble poly(acrylamideco-p-acrylamido-phenyl beta lactoside). Bioconjugate Chemistry, 3(3), 256-261. http://dx.doi.org/10.1021/bc00015a009. PMid:1520730.
http://dx.doi.org/10.1021/bc00015a009...
,2424 Ladmiral, V., Melia, E., & Haddleton, D. M. (2004). Synthetic glycopolymers: An overview. European Polymer Journal, 40(3), 431-449. http://dx.doi.org/10.1016/j.eurpolymj.2003.10.019.
http://dx.doi.org/10.1016/j.eurpolymj.20...
,2525 Roy, R. (1996). Blue-prints, synthesis and applications of glycopolymers. Trends in Glycoscience and Glycotechnology, 8(40), 79-99. http://dx.doi.org/10.4052/tigg.8.79.
http://dx.doi.org/10.4052/tigg.8.79...
]. Until the last decade, there had been limited attempts to react a functional polymeric backbone with a carbohydrate to obtain a glycopolymer. A significant reason for this was the difficulty of introducing sufficiently reactive pendant groups onto the polymer backbone to react with carbohydrates. With respect to a sustainable chemistry, unsaturated sugar monomers are useful building blocks for copolymers with special properties like biocompatibility, biodegradability, hydrophilicity/hydrophobicity balance and skin compatibility. These properties are of major importance in many fields such as pharmaceuticals, drugs and cosmetics. Up to now; several saccharide monomers have been investigated in free radical polymerization with a wide range of commercially available co-monomers. Vinylsaccharides give rise to polymers bearing sugar appendages in the side chains[2626 Deppe, O., Glümer, A., Yu, S., & Buchholz, K. (2004). Synthesis and co-polymerization of an unsaturated 1,5-anhydro-D-fructose derivative. Carbohydrate Research, 339(12), 2077-2082. http://dx.doi.org/10.1016/j.carres.2004.06.007. PMid:15280052.
http://dx.doi.org/10.1016/j.carres.2004....
]. For example, sugar-containing vinyl monomers were synthesized from isopropylidene[2727 Ştefan, L. N., Pana, A. M., Pascariu, M. C., Şişu, E., Bandur, G., & Rusnac, L. M. (2011). Synthesis and characterization of a new methacrylic glycomonomer. Turkish Journal of Chemistry, 35, 757-767. http://dx.doi.org/10.3906/kim-1103-63.
http://dx.doi.org/10.3906/kim-1103-63...
], chloralosed[2828 Fatma, Ç. T. (2015). Syntheses and characterization of new 3-O-Allyl ether chloralose derivatives. Asian Journal of Chemistry, 27(1), 353-356. http://dx.doi.org/10.14233/ajchem.2015.17975.
http://dx.doi.org/10.14233/ajchem.2015.1...
] and other protected sugars[66 Varma, A.J., Kennedy, J.F., & Galgali, P. (2004) Synthetic polymers functionalized by carbohydrates: A review. Carbohydrate Polymers, 56(4), 429-445. http://dx.doi.org/10.1016/j.carbpol.2004.03.007.
http://dx.doi.org/10.1016/j.carbpol.2004...
,2929 Wulff, G., Schmid, J., & Venhoff, T. (1996). The synthesis of polymerizable vinyl sugars. Macromolecular Chemistry and Physics, 197(1), 259-274. http://dx.doi.org/10.1002/macp.1996.021970120.
http://dx.doi.org/10.1002/macp.1996.0219...
]. Additionally, poly(vinyl saccharide)s attracted much attention since vinyl sugars can easily be copolymerized with various comonomers. Thus,the resulting copolymers have a chemically stable C-C backbone and hydrophilic side chains. Klein and coworkers have studied the synthesis and solubility of poly(vinyl saccharide)[3030 Klein, J., Herzog, D., & Hajibegli, A. (1985). Poly vinylsaccharides. Synthesis and characterization of polyvinylsaccarides of the urea type. Macromolecular Rapid Communications, 10(12), 629-636. http://dx.doi.org/10.1002/marc.1989.030101203.
http://dx.doi.org/10.1002/marc.1989.0301...
,3131 Klein, J., & Blumenberg, K. (1986). Poly(vinyl saccharide)s, 3†. Synthesis and cationic polymerization of 6‐O‐vinyl‐1,2:3,4‐di‐O‐isopropylidene‐D‐galactopyranose. Macromolecular Rapid Communications, 6(10), 621-625. http://dx.doi.org/10.1002/marc.1986.030071001.
http://dx.doi.org/10.1002/marc.1986.0300...
]. Nakamae et. al have copolymerized 2-(glycosyloxy)ethyl methacrylate with methyl methacrylate or styrene and investigated the surface properties of cast films[3232 Nakamae, K., Miyata, T., Ootsuki, N., Okumura, M., & Kinomura, K. (1994). Surface characterizations of copolymer films with pendant monosaccharides. Macromolecular Chemistry and Physics, 195(6), 1953-1963. http://dx.doi.org/10.1002/macp.1994.021950606.
http://dx.doi.org/10.1002/macp.1994.0219...
,3333 Nakamae, K., Miyata, T., Ootsuki, N., Okumura, M., & Kinomura, K. (1994). Surface studies on copolymers having pendant monosaccharides. Macromolecular Chemistry and Physics, 195(7), 2663-2675. http://dx.doi.org/10.1002/macp.1994.021950733.
http://dx.doi.org/10.1002/macp.1994.0219...
]. Wulff and coworkers have investigated the synthesis of C-glycosyl compounds containing polymerizable double bonds without protecting groups. They have used poly(vinyl saccharide)s with N,N-dimethylbarbituric acid as linkers between sugar and styrene[3434 Wulff, G., & Clarkson, G. (1994). On the synthesis of C-glycosyl compounds containing double bonds without the use of protecting groups. Carbohydrate Research, 257(1), 81-95. http://dx.doi.org/10.1016/0008-6215(94)84109-8.
http://dx.doi.org/10.1016/0008-6215(94)8...
,3535 Wulff, G., & Clarkson, G. (1994). New type of polyvinylsaccharides with N,N-dimethyl barbituric acid as a linker between sugar and styrene residue. Macromolecular Chemistry and Physics, 195(7), 2603-2610. http://dx.doi.org/10.1002/macp.1994.021950728.
http://dx.doi.org/10.1002/macp.1994.0219...
]. Other types of vinyl sugar monomers and polymers have been reviewed elsewhere[3636 Wulff, G., Schmid, J., & Venhoff, T. (1996). The synthesis of polymerizable vinyl sugars. Macromolecular Chemistry and Physics, 197(1), 259-274. http://dx.doi.org/10.1002/macp.1996.021970120.
http://dx.doi.org/10.1002/macp.1996.0219...
,3737 Wulff, G., Schmid, J., & Venhoff, T. (1996). The preparation of new types of polymerizable vinyl sugars with CC bonds between sugar and double bond. Macromolecular Chemistry and Physics, 197(4), 1285-1299. http://dx.doi.org/10.1002/macp.1996.021970409.
http://dx.doi.org/10.1002/macp.1996.0219...
]. Since poly(vinyl sugar)s constitute polymers of a new structural type, they may have high potentials in modifying the surface of conventional polymer materials and improve the antistatic property, dyeability, adhesion, printability, and biocompatibility of bulk polymers[3838 Wulff, G., Zhu, L., & Schmidt, H. (1997). Investigations on surface-modified bulk polymers. 1.Copolymers of styrene with a styrene moiety containing a sugar monomer. Macromolecules, 30(16), 4533-4539. http://dx.doi.org/10.1021/ma961890z.
http://dx.doi.org/10.1021/ma961890z...
].

Monosaccharides mostly react in their furanose forms with chloral to give trichloroethylidene acetals. Chloraloses (β-chloralose or α-chloralose) have been prepared by the simple reaction of chloral and glucose[3939 Heffter, A. (1889). Ueber die Einwirkung von Chloral auf Glucose. Berichte der Deutschen Chemischen Gesellschaft, 22(1), 1050-1051. http://dx.doi.org/10.1002/cber.188902201230.
http://dx.doi.org/10.1002/cber.188902201...
]. 1,2-O-(R)-trichloroethylidene-D-glucofuranose is a commercially available compound, also known as α-chloralose, which is used as an anesthetic for animals[4040 Hanriot, M., & Richet, C. (1983). D’une substance dérivée du chloral ou chloralose, et de ses effets physiologiques et thérapeutiques. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 116, 63-65.,4141 Hanriot, M. (1909). D'une substance dérivée du chloral ou chloralose, et de ses effets physiologiques et thérapeutiques. Annales de Chimie et de Physique, 18, 466-502.]. Unlike most acetals, 1,2-O-trichloroethylidene acetals are very stable as protecting groups under acidic conditions due to the inductive effect of the trichloromethyl group. In addition, this protecting group is stable under mildly basic conditions. However, they are converted to the more reactive ketene acetals in the presence of strong bases such as potassium tert-butoxide. The only reported method for the removal of this protecting group is a Raney Nickel procedure[4242 Forsen, S., Lindberg, B., Silvander, B. G., Nilsson, B., Selin, K., & Westerdahl, A. (1965). Trichloroethylidene derivatives of D-glucose. Acta Chemica Scandinavica, 19, 359-369. http://dx.doi.org/10.3891/acta.chem.scand.19-0359.
http://dx.doi.org/10.3891/acta.chem.scan...
]. Additionally, trichloroethylidene acetals are suitable protecting groups for the synthesis of some biologically important compounds such as amines[4343 Yenil, N., Ay, E., Ay, K., Oskay, M., & Maddaluno, J. (2010). Synthesis and antimicrobialactivities of two novel amino sugars derived from chloraloses. Carbohydrate Research, 345(11), 1617-1621. http://dx.doi.org/10.1016/j.carres.2010.03.043. PMid:20488435.
http://dx.doi.org/10.1016/j.carres.2010....
], orthoesters[4444 Salman, Y. G., Makinabakan, O., & Yuceer, L. (1994). Tricyclic orthoester formation from trichloroethylidene acetals of sugars via ketene acetals. Tetrahedron Letters, 35(49), 9233-9236. http://dx.doi.org/10.1016/0040-4039(94)88475-7.
http://dx.doi.org/10.1016/0040-4039(94)8...
], spiroendoperoxides[4545 Cetin, F., Yenil, N., & Yuceer, L. (2004). Stable spiro-endoperoxides by sunlight-mediated photooxygenation of 1,2-O-alkylidene-5(E)-eno-5,6,8-trideoxy-α-d-xylo-oct-1,4-furano-7-uloses. Carbohydrate Research, 340(17), 2583-2589. http://dx.doi.org/10.1016/j.carres.2005.09.006. PMid:16182263.
http://dx.doi.org/10.1016/j.carres.2005....
], spirodifuranoseç[4646 Telli, F. C., & Yuceer, L. (2012). Synthesis of new spirodifuranose derivatives by reduction of stable spiro-endoperoxides. Journal of Carbohydrate Chemistry, 31(9), 721-731. http://dx.doi.org/10.1080/07328303.2012.739229.
http://dx.doi.org/10.1080/07328303.2012....
], oxetanes[4747 Telli, F. C., Ay, K., Murat, G., Kok, G., & Salman, Y. (2013). Acid promoted intramolecular formation of 3,5-anhydro-1,4-furano-7-ulose derivatives via the Wittig-cyclization procedure and their antimicrobial properties. Medicinal Chemistry Research, 22(5), 2253-2259. http://dx.doi.org/10.1007/s00044-012-0218-4.
http://dx.doi.org/10.1007/s00044-012-021...
], NHC ligands[4848 Denizaltı, S., Telli, F. C., Yıldıran, S., Salman, A. Y., & Çetinkaya, B. (2016). The newly synthesized furanoside-based NHC ligands for the arylation of aldehydes. Turkish Journal of Chemistry, 40, 689-697. http://dx.doi.org/10.3906/kim-1603-95.
http://dx.doi.org/10.3906/kim-1603-95...
], Schiff base[4949 Alkan, S., Telli, F. C., Salman, Y., & Astley, S. T. (2015). Synthesis of novel schiff base ligands from Gluco- and Galactochloraloses for the Cu(II) catalysed asymmetric henry reaction. Carbohydrate Research, 407, 97-103. http://dx.doi.org/10.1016/j.carres.2015.01.023. PMid:25742867.
http://dx.doi.org/10.1016/j.carres.2015....
], glyconanoconjugates[5050 Telli, F. C., Demir, B., Barlas, F. B., Guler, E., Timur, S., & Salman, Y. (2016). Novel Glyconanoconjugates: Synthesis. Characterization and Bioapplications RCS Advances., 6, 105806-105813. http://dx.doi.org/10.1039/C6RA21976D.
http://dx.doi.org/10.1039/C6RA21976D...
], etc.

In this work, new vinyl (hydroxyl) furan monomer (1) of α-chloralose has been synthesized (Scheme 1) and characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis and optical rotation. In addition, it is used for the preparation of copolymer styrene (2) (Scheme 2). The thermal degradation kinetics of the copolymer was studied to compare its thermal properties. The apparent activation energies for thermal degradation of the copolymer were obtained by using Flynn-Wall-Ozawa and Coats-Redfern methods. Accordingly, in the further studies, the new carbohydrate-based copolymer of styrene will be a good candidate to prepare the metacomposites with negative electromagnetic parameters by a biomass conversion method[5151 Xie, P., Li, Y., Hou, Q., Sui, K., Liu, C., Fu, X., Zhang, J., Murugadoss, V., Fan, J., Wang, Y., Fan, R., & Guo, Z. (2020). Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. Journal of Materials Chemistry C, 8, 3029-3039. http://dx.doi.org/10.1039/c9tc06378a.
http://dx.doi.org/10.1039/c9tc06378a...

52 Sun, K., Dong, J., Wang, Z., Wang, Z., Fan, G., Hou,Q., An, L., Dong, M., Fan, R., & Guo, Z. (2019). Tunable Negative Permittivity in Flexible Graphene/PDMS Metacomposites. Journal of Physical Chemistry C, 123, 23635-23642. http://dx.doi.org/10.1021/acs.jpcc.9b06753.
http://dx.doi.org/10.1021/acs.jpcc.9b067...
-5353 Sun, K., Wang, L., Wang, Z., Wu, X., Fan, G., Wang, Z., Cheng, C., Fan, R., Dong, M., & Guo, Z. (2019). Flexible silver nanowire/carbon fiber felt metacomposites with weakly negative permittivity behavior. Physical Chemistry Chemical Physics, 22(9), 5114-5122. http://dx.doi.org/10.1039/C9CP06196G. PMid:32073008.
http://dx.doi.org/10.1039/C9CP06196G...
].

Scheme 1
Synthesis of new vinyl (hydroxyl) furan monomer (1) from α-chloralose.
Scheme 2
Synthesis of the new copolymer styrene (2) from vinyl (hydroxyl) furan monomer (1).

1.1 Kinetic Analysis[5454 Lee, S., Jin, B.S., & Lee, J.W. (2006) Thermal degradation kinetics of antimicrobial agent, Poly(hexamethylene guanidine) phosphate. Macromolecular Research, 14, 491-498.

55 Wang, D., Das, A., Leuteritz, A., Boldt, R., Häußler, L., Wagenknecht, U., & Heinrich, G. (2011). Thermal degradation behaviors of a novel nanocomposite based on polypropylene and Co-Al layered double hydroxide. Polymer Degradation & Stability, 96(3), 285-290. http://dx.doi.org/10.1016/j.polymdegradstab.2010.03.003.
http://dx.doi.org/10.1016/j.polymdegrads...
-5656 Wang, H., Yang, J., Long, S., Wang, X., Yang, Z., & Li, G. (2004). The thermal degradation of poly(phenylene sulfide sulfone). Polymer Degradation & Stability, 83(2), 229-235. http://dx.doi.org/10.1016/S0141-3910(03)00266-0.
http://dx.doi.org/10.1016/S0141-3910(03)...
]

Thermogravimetric analysis can be used for the determination of the degradation kinetics of many polymers. In general, the thermal degradation reaction of a solid polymer is shown as:

A s o l i d B s o l i d + C g a s

where A is the starting material, Bsolid and Cgas are the solid residue and the gas product, respectively. The following typical kinetic equation is generally expressed by the thermal degradation kinetics of the polymers.

r = d α / d t = k . T × f α (1)

where T is the absolute temperature (K); r is the conversion per f(α) unit time (t) is the conversion function which represents the reaction model. The degree of conversion (α) is calculated by Equation 2 where mo, mt and mf are the weights of sample before degradation, after complete degradation and at time t, respectively.

α = m o m t / m o m f (2)

The Arrhenius equation is the reaction constant which can be expressed by calculating k

k T = A o e ( E / R T ) (3)

where A is called pre-exponential factor, R is the gas constant and E is the activation energy

By combining Equation 1 and Equation 3 the following equation is obtained

d α / d t = A o e ( E / R T ) x f α (4)

According to the kinetic theory for the non-isothermal decomposition reactions, the fractional conversion α is expressed as a function of temperature which depends on the time of heating. Therefore, the heating rate (β) can be described as:

β = d T / d t (5)

that Equation 6 is modified as follows:

d α / d T = ( 1 / β ) A o e ( E / R T ) x f α (6)

Equation 5 and Equation 6 are the basis for the many equations derived to evaluate thermal analysis data.

1.1.1. Coats-Redfern Method[5757 Coats, A. W., & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68-69. http://dx.doi.org/10.1038/201068a0.
http://dx.doi.org/10.1038/201068a0...
]

This method is based on the following equation

l n ( g ( α ) / T 2 ) = l n ( A R / E β ( 1 2 R T / E ) ) ( E / R T ) (7)

as E is calculated from the slope –E/R of the plot ln (g(α)/T2) versus 1000/T which is a straight line. The most commonly used reaction models can be estimated for the solid-state processes by calculating the possible thermal degradation mechanism. The activation energy calculated by using this method was found to be as 159.2±3 kj/mol.

1.1.2. Flynn-Wall-Ozawa (FWO) Method[5858 Flynn, J. H., & Wall, L. A. (1966). A quick direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science. Part B, Polymer Physics, 4(5), 323-328. http://dx.doi.org/10.1002/pol.1966.110040504.
http://dx.doi.org/10.1002/pol.1966.11004...
,5959 Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886. http://dx.doi.org/10.1246/bcsj.38.1881.
http://dx.doi.org/10.1246/bcsj.38.1881...
]

In this method, there is no need of any knowledge for the reaction mechanism for the calculation of the activation energy. The activation energy (E) and pre-exponential factor (A) are not dependent on the fraction of degradation while they depend on temperature. This method uses Equation 8.

l o g g α = l o g ( A E / R ) l o g β + l o g p ( E / R T ) (8)

Equation 9 is obtained by means of the Doyle approximation.

l o g β = l o g ( A E / R ) l o g g α 2.315 0.4567 ( E / R T ) (9)

Thus, from the slope -E/R of the linear plot of log β versus 1000/T, E is readily obtained. The activation energies calculated by using this method was found to be 159.0±3 kj/mol.

2. Experimental

2.1 Materials

1,2-O-(R)-trichloroethylidene-α-D-glucofuranose (α- chloralose) (stated purity ≥ 98%), triphenylphosphine (TPP) (stated purity ≥ 99%), imidazole (stated purity, 99%), iodine (I2) (stated purity 99%), toluene (stated purity 99%),sodium thiosulphate (Na2S2O3) toluene (stated purity 99%), diethyl ether (stated purity ≥ 99%), ethyl acetate (EtOAc) (stated purity 99%), n-hexane (stated purity 99%), sodium hydrogen carbonate (NaHCO3) (stated purity 98%), Na2SO4 (stated purity 98%), styrene, ABIN, toluene were purchased from Merck A.G and Sigma-Aldrich. The materials and chemicals were used without any further purification.

2.2 Instrumentation

All 1H NMR and 13C NMR spectra were recorded using a Varian AS 400+ Mercury FT NMR spectrometer at ambient temperature. FTIR spectra were recorded on a Perkin Elmer 100 FTIR spectrometer. The test wavenumber range of FTIR spectra were 400-4000 cm-1. Optical rotations were determined using a Rudolph Research Analytical Autopol I automatic polarimeter with a wavelength of 589 nm. The concentration ‘c’ has units of g/100 mL. Elemental analyses were performed on a Perkin-Elmer PE 2400 elemental analyzer. TLC and column chromatography were performed on precoated aluminum plates (Merck 5554) and silica gel G-60 (Merck 7734), respectively.

The TG (Thermogravimetric Analysis) curves were recorded using a Perkin Elmer, Diamond TG/DTA. The samples were heated under a N2 atmosphere over a temperature range of 30 to 600 °C with a heating rate of 10 °C min-1. The weight loss (TG curve) and its first derivative according to the temperature (DTG curve) were recorded simultaneously.

Molecular weights were determined by a gel permeation chromatography (GPC), viscotek GPC(UK)-max an instrument Autosampler system, consisting of a pump, three visco GEL GPC columns (G2000HHR, G3000HHR and G4000HHR) a viscotek UVdetector and a viscotek differential refractive index (RI) detector with a THF flow rate of 1.0 mL/min at 30 °C were employed.

2.3 Synthesis of the 5,6-dideoxy-1,2-O-(R)-trichloroethylidene-α-D-xylo-hekso-5-enofuranose (1)

A solution of α- chloralose (3.1 g, 10 mmol), triphenylphosphine (TPP) (10.8 g, 40 mmol) and imidazole (3.1 g, 10 mmol) in dry toluene (100 mL) was stirred and warmed to 50 °C. Iodine (10.2 g, 40 mmol) was added to above reaction mixture in small lots during 30 min with the temperature of the reactants being maintained aproximetly 60 °C. The reaction mixture was heated to reflux for 4 h, cooled room temperature and solvent removed on a rotary evaporator to produce a dark brown syrupy. The purification of the residue is well documented in the literature[6060 Mereyala, H. B., Goud, P. M., Gadikota, R. R., & Reddy, K. R. (2000). Transformation of terminal diols of cyclic and acyclic saccharides to epoxides and alkenes by reaction with triphenylphosphine, imidazole and iodine. Journal of Carbohydrate Chemistry, 19(9), 1211-1222. http://dx.doi.org/10.1080/07328300008544145.
http://dx.doi.org/10.1080/07328300008544...
]. After this process, the white crystal of the title product was synthesized %86 yield (2.4 g). m.p. 102-103 oC, [α]23D -14.3 (c 0.7, MeOH). 1H NMR (DMSO, 400 MHz): δ 6.05 (d, 1H, J1,2=4.0 Hz, H-1), 5.85 (m, 1H, H-5), 5.41 (s, 1H, HCCl3), 5.34 (dd, 1H, J6a,6b=0.8, J5,6a=16.8 Hz, H-6a), 5.23 (dd, J6a,6b=0.8, J5,6b=14.8 Hz, H-6b), 4.79 (dd, 1H, J4,5 =2.8 Hz, J3,4=3.2 Hz, H-4), 4.51 (d, 1H, J1,2=4.0 Hz, H-2), 4.07 (t, 1H, J3,4=3.2 Hz, H-3), 2.50 (br s, 1H, OH). 13C NMR: 133.3 (C-5), 119.2 (C-6), 106.2, 105.7 (HC-CCl3, C-1), 97.6 (HC-CCl3), 87.8, 83.7, 75.2(C-2, C-3, C-4).

Anal. Calc. for C8H9Cl3O4: C, 34.88; H, 3.29. Found: C, 34.55; H, 3.34.

2.4 Synthesis of the new glyco-polymer (PSVTEG) (2) from vinyl (hydroxyl) furan monomer (1)

The new copolymer (PSVTEG) (2) from vinyl (hydroxyl) furan monomer (1) (2.4 g, 8,7 mmol) and styrene (1 mL, 8,7 mmol) (1:1 mol monomer rate) were obtained through a conventional free radical polymerization using 2,2-azobisisobutyronitrile (AIBN) (2%, based on the total weight of the monomer) as initiator in 10 mL of toluene at 70 °C in an all glass Schlenk flask under inert atmosphere. After 24 hours, copolymer 2 was obtained with approximetly 90% conversion. The resulting polymer was precipitated in methanol and dried under vacuum at 40 °C for overnight. The polymer was then characterized using FTIR and NMR spectroscopy. The synthetic route is presented in Scheme 2. The apparent activation energies for the main degradation stage of the copolymer were calculated from the TG data by using Flynn-Wall-Ozawa (FWO) and Coats-Redfern methods. The activation energies calculated by these methods were found to be 159.0±3 kj/mol and 159.2±3 kj/mol, respectively. 1H NMR (DMSO, 400 MHz): δ 7.05-6.55 (d, 5H, aromatic H), 6.05 (d, 1H, J1,2=4.0 Hz, H-1), 5.40 (s, 1H, HCCl3), 4.78 (dd, 1H, H-4), 4.52 (d, 1H, H-2), 4.10 (t, 1H, H-3), 2.62 (m, 1H, CH-), 2.50 (br s, 1H, OH), 1.62-1.25 (m, 5H, CH2-, CH-). 13C NMR: 142.0-128.2 (aromatic carbons), 106.2, 105.7 (HC-CCl3, C-1), 97.6 (HC-CCl3), 87.8, 83.7, 75.2(C-2, C-3, C-4), 40.4-21.6 (alifatic carbons).

3. Results and Discussion

3.1 Characterization Studies

3.1.1 The FTIR spectra of the monomer 1 and copolymer PSVTEG (2)

The FTIR spectra of compound 1 and copolymer PSVTEG (2) are shown in Figure 1. The peak assignments in the FTIR spectrum of compound 1 are as follows: C-H in CH3 and C-H in CH2 at 2925 cm-1; vinyl C=CH2 at 1505 cm-1; C-O-C peak in the sugar ring at 1162 cm-1; C-Cl peaks of trichloroethylidine protective group at 854 and 823 cm-1. Finally, the absorption band at 3294 cm-1 corresponds to the presence of the C-3 OH group.

Figure 1
The FTIR spectra of new vinyl (hydroxyl) furan monomer (1) and the copolymer PSVTEG (2).

The FTIR spectrum of copolymer 2 (Figure 1) is as follows: C-H in CH3 and C-H in CH2 at 2800-3000 cm-1; C=C double bond peaks in the benzene ring at 1493 and 1452 cm-1; C-O-C peak in the sugar ring at 1107 cm-1; C-Cl peaks of trichloroethylidine protective group at 832 and 812 cm-1. Finally, the absorption band at 3440 cm-1 corresponds to the presence of the C-3 OH group. Instead of the vinyl C=CH2 at 1505 cm-1peak observed in the FTIR spectrum of new vinyl (hydroxyl) furan monomer (1), the mono substitute benzene ring peak at 698 cm-1 was observed in the FTIR spectrum of the copolymer PSVTEG (2).

3.1.2 The 1H and 13C NMR spectra of the monomer 1 and copolymer PSVTEG (2)

In the 1H-NMR spectrum of the monomer 1 the anomeric H-1 proton usually appears at a low field and is a very characteristic and distinct signal. Two doublets are observed in this 1H-NMR spectrum. One is the H-1 doublet at δ 6.05 and another is the H-2 doublet at δ 4.51. The coupling constant between H-1 and H-2 is 4.0 Hz which is typical for an α-D-furanose derivative. Due to the twisted conformation of the furanose rings, the dihedral angle between the H-2 and H-3 protons are usually 90°. Hence, in the 1H NMR spectrum of compound 1, the coupling constant between H-2 and H-3 is 0 Hz. The H-5 protons give a complex multiplet at δ 5.85. One of the H-6 signals obtained is H-6a which is resolved into add at δ 4.34 with one of the coupling constant between H-6a and H-5 of 16.8 Hz. The another of the coupling constant between H-6a and H-6b of is 0.8 Hz and H-6b signal is observed at δ 5.23 with one of the coupling constant between H-5 and H-6b of 14.8 H. The H-4 signals are resolved giving a triplet signal at δ 4.79 with a coupling constant between H-4 and H-5 of 3.2 The H-3 signals are resolved giving a triplet signal at δ 4.07 with a coupling constant between H-3 and H-4 of 3.2 Hz. The hydroxyl proton is resolved giving a br singlet at δ 2.50. Finally, the trichloroethylidene acetal proton (HCCl3) gives a signal at δ 5.41. Also, the13C NMR peak performance of the monomer 1 was described and similarly, the expected indications were observed. In the 13C NMR spectrum of monomer 1, the peaks at 133.3 and 119.2 ppm (C-5 and C-6) assigned thevinyl carbon. In addition, trichloroethylidene acetal carbon (HC-CCl3) was observed at 106.2 ppm. 13C NMR peak of the sugar moiety for the monomer 1 was observed as predicted from C-1 at 105.7 ppm.

In the 1H NMR spectrum of the copolymer PSVTEG (2), disappearance of characteristic vinyl peaks for the the monomer is observed. And also, the acetal proton, the trichloroethylidene acetal proton (HCCl3) and other sugar protons give a signal at δ 6.05, 5.40, 4.78-4.10, respectively. Besides, the appearance of the aromatic proton peaks for the styrene are observed as multiplet at δ 7.05 and 6.55 in the 1H NMR spectrum of the copolymer PSVTEG (2).

In the case of the polymer, it is observed that alkyl group carbon peaks of the copolymer PSVTEG (2) appeared in the range from 40.4 to 21.6 ppm in the 13C NMR spectrum. Therefore, vinyl carbons of glycopolymer shifted to a higher field as a result of increased electron intensity. 13C NMR peaks of the sugar moiety of the copolymer 2 are observed from C-1 to C-4, as predicted. Furhermore, the appearance of the aromatic carbon peaks for the styrene appeared in the range from 142.0 to128.2 ppm in 13C NMR spectrum of the glycopolymer 2.

3.2 Thermogravimetric analysis of the copolymer PSVTEG (2)

Thermal properties of glycopolymer (PSVTEG) (2) were investigated by TG and DTG under argon atmosphere over a temperature range 30 to 600 °C with a heating rate of 10oC/min. The thermogram of the glycopolymer (PSVTEG) (2) shows two decomposition stages (Figure 2). The thermal decomposition in the first stage is in a weight loss of nearly 10%. The main degrading process involving random scission starts around 350 °C.

Figure 2
DTG curves of glycopolymer PSVTEG (2).

According to the literature data, using the TG/DTG-DTA-FTIR analysis, the following releasing gases after pyrolysis could be seen u.a: H2O, C=O, CH4, C2H2, and C2H4O2[6161 Pigłowska, M., Kurc, B., Rymaniak, L., Lijewski, P., & Fu’c, P. (2020). Kinetics and thermodynamics of thermal degradation of different starches and estimation the OH group and H2O Content on the Surface byTG/DTG-DTA. Polymers, 12(2), 357-361. http://dx.doi.org/10.3390/polym12020357. PMid:32041286.
http://dx.doi.org/10.3390/polym12020357...
]. The degradation reactions began at the temperature of circa 200 °C, when the thermal condensation between hydroxyl groups of copolymer chains started the formation of ether fragments, and the release of water molecules was obtained. When dehydratation was located in the neighborhood of itself, hydroxyl groups in the glycosidic ring cause the formation of the C=C bond or degradation of the glycosidic ring. All of aldehyde groups were formed at the same time as terminal groups, while the monosaccharide ring was damaged. The main degradation reactions began at the temperature of circa 350 °C, aromatic rings such as substituted benzene and furan structures with groups such as –CH2– or –CH2–O–CH2– as main binders between the aromatic rings could be seen[6262 Yildirim, Y., Dogan, B. S., Muglali, S., Saltan, F., Ozkan, M., & Akat, H. (2012). Synthesis, characterization, and thermal degradation kinetic of Polystyrene-g-Polycaprolactone. Journal of Applied Polymer Science, 126(4), 1236-1246. http://dx.doi.org/10.1002/app.36888.
http://dx.doi.org/10.1002/app.36888...
].

3.3 Thermal degradation kinetics of the copolymer (PSVTEG) (2)

The glycopolymer (PSVTEG) (2) was heated thermogravimetrically under various heating rates such as 5, 10, 15, and 20 °C/min in a temperature range of 30 to 600 oC to determine their thermal degradation mechanisms and the activation energies. The TG curves obtained for the copolymer is shown in Figure 3 and 4, respectively. The individual degradation behavior of the glycopolymer (PSVTEG) (2) was analogous at all heating rates as seen from these figures. The apparent activation energies and thermal degradation models for the copolymer was estimated by FWO and Coats-Redfern.

Figure 3
TG curves of glycopolymer PSVTEG (2).
Figure 4
FWO plots for the thermal decomposition of glycopolymer PSVTEG (2) at varying conversion in N2.

The thermal degradation mechanism of the copolymer (PSVTEG) (2) for the main degradation stage is confirmed by comparing the mean activation energy value (EFWO) with those calculated by the Coats-Redfern method for different models. The activation energies and correlations obtained from Coats-Redfern method at different heating rates are represented in Table 1. The E calculated from the F3 model is nearly the same with EFWO for PSVTEG (2) and found as 159.0±3 kJ/mol leading to a conclusion that the most probable mechanism for the thermal degradation of PSVTEG (2) is the third-order. Therefore, the calculated activation energy indicates that the main degradation stage is a nonspontaneous process (integral form 1/(1−α)2 for F3). In literature, the activation energry value of polystrene homopolymer and vinyl sugar- carrying copolymer viz., poly(galactomethacrylate-co-styrene) (P(gm-co-st)) were stated as circa 50±5 kJ/mol and 185±28 kJ/mol, respectively[6363 Funt, J. M., & Maghill, J. H. (1974). Thermal decomposition of polystyrene: Eflect of molecular weight. Journal of Polymer Science. Polymer Physics Edition, 12(1), 217-220. http://dx.doi.org/10.1002/pol.1974.180120118.
http://dx.doi.org/10.1002/pol.1974.18012...
,6464 Saltan, F., & Akat, H. (2013). Synthesis and thermal degradation kinetics of D-(+)- GALACTOSE CONTAINING POLYMERS. Polímeros: Ciência e Tecnologia, 23(6), 697-704. http://dx.doi.org/10.4322/polimeros.2014.012.
http://dx.doi.org/10.4322/polimeros.2014...
]. In addition, Pană et al. have indicated the avarage activation energy value of a glycopolymer derived from a D-mannose oligomer with maleic backbone and 2-hydroxypropyl acrylate inside as 105.98 kJ/mol by using Flynn–Wall–Ozawa method[6565 Pană, A. M., Ordodi, V., Rusu, G., Gherman, V., Bandur, G., Rusnac, L. M., & Dumitrel, G. A. (2020). Biodegradation pattern of glycopolymer based on D-Mannose oligomer and Hydroxypropyl Acrylate. Polymers, 12(3), 704-717. http://dx.doi.org/10.3390/polym12030704. PMid:32235772.
http://dx.doi.org/10.3390/polym12030704...
]. When these values in the literature was compared with the activation energy value of the copolymer PSVTEG (2), it was concluded that the copolymer was a sugar-based styrene copolymer.

Table 1
Algebraic expressions of f(α) and g(α) for the reaction models considered in the present work.

3.4 Molecular weight study of the copolymer (PSVTEG) (2)

The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (PDI) for glyco-polymer (PSVTEG) (2) was analysed by GPC. The number average molecular weight (Mn), mass average molecular weight (Mw) and polydispersity index (PDI) of glyco-polymer (PSVTEG) (2) were found to be 14000 g/mol, 18900 g/mol and 1.35, respectively.

4. Conclusions

A new carbohydrate-based the copolymer of styrene (2) from vinyl (hydroxyl) furan monomer (1) were synthesized by a conventional free radical polymerization reaction using AIBN as an initiator in toluene. The thermal degradation of the copolymer of styrene (2) from vinyl (hydroxyl) furan monomer (1) under nitrogen atmosphere is a one-stage reaction. The thermal degradation kinetics of the compounds was evaluated using the Flynn-Wall-Ozawa (FWO) and Coats-Redfern methods. The activation energies calculated by these methods were found to be 159.0±3 kj/mol and 159.2±3 kj/mol, respectively. Consequently, the calculated activation energy shows that the main degradation stage is a nonspontaneous process (integral form 1/(1−α)2 for F3).

5. Acknowledgements

I would like to Ege University for financial support of this work (2017 FEN 077).

  • How to cite: Telli, F. C. (2020). Synthesis, characterization and thermokinetic analysis of the novel sugar based styrene co-polymer. Polímeros: Ciência e Tecnologia, 30(2), e2020019. https://doi.org/10.1590/0104-1428.02620

6. References

  • 1
    Pearson, S., Chen, G., & Stenzel, M. H. (2011) Synthesis of Glycopolymers. In R. Narain (Ed.), Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles, and hydrogels (pp. 1-118). Hoboken: John Wiley & Sons, Inc.
  • 2
    Louwrier, A. (1998). Industrial products: the return to carbohydrate - Based industries. Biotechnology and Applied Biochemistry, 27(1), 1-8. http://dx.doi.org/10.1111/j.1470-8744.1998.tb01368.x
    » http://dx.doi.org/10.1111/j.1470-8744.1998.tb01368.x
  • 3
    Singh, R., Bhattacharya, B., Rhee, H. W., & Singh, P. K. (2015). Solid gellan gum polymer electrolyte for energy application. International Journal of Hydrogen Energy, 40(30), 9365-9372. http://dx.doi.org/10.1016/j.ijhydene.2015.05.084
    » http://dx.doi.org/10.1016/j.ijhydene.2015.05.084
  • 4
    Methven, J. M. (1991). Polymeric materials from renewable resources. Rapra Review Reports, 4(1), 1-134. http://dx.doi.org/10.1080/15583720701834133
    » http://dx.doi.org/10.1080/15583720701834133
  • 5
    Borges, M.R., Dos Sandos, J.A., Vieira, M., & Balaban R. (2009). Polymerization of a water soluble glucose vinyl ester monomer with tensoactive properties synthesized by enzymatic catalyst. Materials Science and Engineering C, 29(2), 519-523. http://dx.doi.org/10.1016/j.msec.2008.09.013
    » http://dx.doi.org/10.1016/j.msec.2008.09.013
  • 6
    Varma, A.J., Kennedy, J.F., & Galgali, P. (2004) Synthetic polymers functionalized by carbohydrates: A review. Carbohydrate Polymers, 56(4), 429-445. http://dx.doi.org/10.1016/j.carbpol.2004.03.007
    » http://dx.doi.org/10.1016/j.carbpol.2004.03.007
  • 7
    Bertini, V., Pocci, M., Alfei, S., Idini, B., & Lucchesini, F. (2007). Synthesis of crosslinked nanostructured saccharidic vinyl copolymers and their functionalization. Tetrahedron, 63(47), 11672-11680. http://dx.doi.org/10.1016/j.tet.2007.08.106
    » http://dx.doi.org/10.1016/j.tet.2007.08.106
  • 8
    Sanchez-Chaves, M., Ruiz, C., Cerrada, M. L., & Fernandez-Garcia, M. (2008). Novel glycopolymers containing aminosaccharide pendant groups by chemical modification of ethylene-vinyl alcohol copolymers. Polymer, 49(12), 2801-2807. http://dx.doi.org/10.1016/j.polymer.2008.04.047
    » http://dx.doi.org/10.1016/j.polymer.2008.04.047
  • 9
    Li, S., Jasim, A., Zhao, W., Fu, L., Ullah, M. W., Shi, Z., & Yang, G. (2018). Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Materials & Manufacturing, 1, 41-49. http://dx.doi.org/10.30919/esmm5f120
    » http://dx.doi.org/10.30919/esmm5f120
  • 10
    Du, W., Wang, X., Zhan, J., Sun, X., Kang, L., Jiang, F., Zhang, X., Shao, Q., Dong, M., Liu, H., Murugadoss, V., & Guo, Z. (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochimica Acta, 296, 907-915. http://dx.doi.org/10.1016/j.electacta.2018.11.074
    » http://dx.doi.org/10.1016/j.electacta.2018.11.074
  • 11
    Wang, W., Hao, X., Chen, S., Yang, Z., Wang, C., Yan, R., Zhang, X., Liuc, H., Shaod, Q., & Guo, Z. (2018) pH-responsive Capsaicin@chitosan nanocapsules for antibiofouling in marine applications. Polymer, 158, 223-230. http://dx.doi.org/10.1016/j.polymer.2018.10.067
    » http://dx.doi.org/10.1016/j.polymer.2018.10.067
  • 12
    Kashfipour, M. A., Mehra, N., Dent, R. S., & Zhu, J. (2020). Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids. Engineered Science, 8, 11-18. http://dx.doi.org/10.30919/es8d508
    » http://dx.doi.org/10.30919/es8d508
  • 13
    Lichtenthaler, F. W., & Peters, S. C. R. (2004). Carbohydrates as green raw materials for the chemical industry. Chimie, 7(2), 65-90. http://dx.doi.org/10.1016/j.crci.2004.02.002
    » http://dx.doi.org/10.1016/j.crci.2004.02.002
  • 14
    Sampath, C. A., & Edward, T. (2007). Glycosylated polyacrylate nanoparticles by emulsion polymerization. Carbohydrate Polymers, 70(1), 32-37. http://dx.doi.org/10.1016/j.carbpol.2007.02.027 PMid:18677404.
    » http://dx.doi.org/10.1016/j.carbpol.2007.02.027
  • 15
    Stanek, L. G., Heilmann, S. M., & Gleason, W. B. (2006). Preparation and copolymerization of a novel carbohydrate containing monomer. Carbohydrate Polymers, 65(4), 552-556. http://dx.doi.org/10.1016/j.carbpol.2006.01.021
    » http://dx.doi.org/10.1016/j.carbpol.2006.01.021
  • 16
    Vert, M. (2007). Polymeric biomaterials: Strategies of the past vs. strategies of the future. Progress in Polymer Science, 32(8-9), 755-761. http://dx.doi.org/10.1016/j.progpolymsci.2007.05.006
    » http://dx.doi.org/10.1016/j.progpolymsci.2007.05.006
  • 17
    Varma, A. J., Kennedy, J. F., & Galgali, P. (2004). Synthetic polymers functionalized by carbohydrates. Carbohydrate Polymers, 56(4), 429-445. http://dx.doi.org/10.1016/j.carbpol.2004.03.007
    » http://dx.doi.org/10.1016/j.carbpol.2004.03.007
  • 18
    Ma, Z., & Zhu, X. X. (2019). Copolymers containing carbohydrates and other biomolecules: Design, synthesis and applications. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 7(9), 1361-1378. http://dx.doi.org/10.1039/C8TB03162B PMid:32255007.
    » http://dx.doi.org/10.1039/C8TB03162B
  • 19
    Roy, R., Tropper, F. D., & Romanowska, A. (1992). New strategy in glycopolymer syntheses. Preparation of antigenic water-soluble poly(acrylamideco-p-acrylamido-phenyl beta lactoside). Bioconjugate Chemistry, 3(3), 256-261. http://dx.doi.org/10.1021/bc00015a009 PMid:1520730.
    » http://dx.doi.org/10.1021/bc00015a009
  • 20
    Okada, M. (1992). Molecular design and syntheses of glycopolymers. Progress in Polymer Science, 26(1), 67-104. http://dx.doi.org/10.1016/S0079-6700(00)00038-1
    » http://dx.doi.org/10.1016/S0079-6700(00)00038-1
  • 21
    Haddleton, D. M., Edmonds, R., Heming, A. M., Kelly, E. J., & Kukulj, D. (1999). Atom transfer polymerisation with glucose and cholesterol derived initiators. New Journal of Chemistry, 23(5), 477-479. http://dx.doi.org/10.1039/a901929d
    » http://dx.doi.org/10.1039/a901929d
  • 22
    Ohno, K., Tsujii, Y., & Fukuda, T. (1998). Synthesis of a well-defined glycopolymer by atom transfer radical polymerization. Journal of Polymer Science. Part A, Polymer Chemistry, 36(14), 2473-2481. http://dx.doi.org/10.1002/(SICI)1099-0518(199810)36:14<2473::AID-POLA5>3.0.CO;2-U
    » http://dx.doi.org/10.1002/(SICI)1099-0518(199810)36:14<2473::AID-POLA5>3.0.CO;2-U
  • 23
    Ting, S. R. S., Granville, A. M., Quémener, D., Davis, T. P., Stenzel, M. H., & Barner-Kowollik, C. (2007). RAFT Chemistry and Huisgen 1,3-dipolar cycloaddition:a route to block copolymers of vinyl acetate and 6-O-methacryloylmannose. Australian Journal of Chemistry, 60(6), 405-409. http://dx.doi.org/10.1071/CH07089
    » http://dx.doi.org/10.1071/CH07089
  • 24
    Ladmiral, V., Melia, E., & Haddleton, D. M. (2004). Synthetic glycopolymers: An overview. European Polymer Journal, 40(3), 431-449. http://dx.doi.org/10.1016/j.eurpolymj.2003.10.019
    » http://dx.doi.org/10.1016/j.eurpolymj.2003.10.019
  • 25
    Roy, R. (1996). Blue-prints, synthesis and applications of glycopolymers. Trends in Glycoscience and Glycotechnology, 8(40), 79-99. http://dx.doi.org/10.4052/tigg.8.79
    » http://dx.doi.org/10.4052/tigg.8.79
  • 26
    Deppe, O., Glümer, A., Yu, S., & Buchholz, K. (2004). Synthesis and co-polymerization of an unsaturated 1,5-anhydro-D-fructose derivative. Carbohydrate Research, 339(12), 2077-2082. http://dx.doi.org/10.1016/j.carres.2004.06.007 PMid:15280052.
    » http://dx.doi.org/10.1016/j.carres.2004.06.007
  • 27
    Ştefan, L. N., Pana, A. M., Pascariu, M. C., Şişu, E., Bandur, G., & Rusnac, L. M. (2011). Synthesis and characterization of a new methacrylic glycomonomer. Turkish Journal of Chemistry, 35, 757-767. http://dx.doi.org/10.3906/kim-1103-63
    » http://dx.doi.org/10.3906/kim-1103-63
  • 28
    Fatma, Ç. T. (2015). Syntheses and characterization of new 3-O-Allyl ether chloralose derivatives. Asian Journal of Chemistry, 27(1), 353-356. http://dx.doi.org/10.14233/ajchem.2015.17975
    » http://dx.doi.org/10.14233/ajchem.2015.17975
  • 29
    Wulff, G., Schmid, J., & Venhoff, T. (1996). The synthesis of polymerizable vinyl sugars. Macromolecular Chemistry and Physics, 197(1), 259-274. http://dx.doi.org/10.1002/macp.1996.021970120
    » http://dx.doi.org/10.1002/macp.1996.021970120
  • 30
    Klein, J., Herzog, D., & Hajibegli, A. (1985). Poly vinylsaccharides. Synthesis and characterization of polyvinylsaccarides of the urea type. Macromolecular Rapid Communications, 10(12), 629-636. http://dx.doi.org/10.1002/marc.1989.030101203
    » http://dx.doi.org/10.1002/marc.1989.030101203
  • 31
    Klein, J., & Blumenberg, K. (1986). Poly(vinyl saccharide)s, 3†. Synthesis and cationic polymerization of 6‐O‐vinyl‐1,2:3,4‐di‐O‐isopropylidene‐D‐galactopyranose. Macromolecular Rapid Communications, 6(10), 621-625. http://dx.doi.org/10.1002/marc.1986.030071001
    » http://dx.doi.org/10.1002/marc.1986.030071001
  • 32
    Nakamae, K., Miyata, T., Ootsuki, N., Okumura, M., & Kinomura, K. (1994). Surface characterizations of copolymer films with pendant monosaccharides. Macromolecular Chemistry and Physics, 195(6), 1953-1963. http://dx.doi.org/10.1002/macp.1994.021950606
    » http://dx.doi.org/10.1002/macp.1994.021950606
  • 33
    Nakamae, K., Miyata, T., Ootsuki, N., Okumura, M., & Kinomura, K. (1994). Surface studies on copolymers having pendant monosaccharides. Macromolecular Chemistry and Physics, 195(7), 2663-2675. http://dx.doi.org/10.1002/macp.1994.021950733
    » http://dx.doi.org/10.1002/macp.1994.021950733
  • 34
    Wulff, G., & Clarkson, G. (1994). On the synthesis of C-glycosyl compounds containing double bonds without the use of protecting groups. Carbohydrate Research, 257(1), 81-95. http://dx.doi.org/10.1016/0008-6215(94)84109-8
    » http://dx.doi.org/10.1016/0008-6215(94)84109-8
  • 35
    Wulff, G., & Clarkson, G. (1994). New type of polyvinylsaccharides with N,N-dimethyl barbituric acid as a linker between sugar and styrene residue. Macromolecular Chemistry and Physics, 195(7), 2603-2610. http://dx.doi.org/10.1002/macp.1994.021950728
    » http://dx.doi.org/10.1002/macp.1994.021950728
  • 36
    Wulff, G., Schmid, J., & Venhoff, T. (1996). The synthesis of polymerizable vinyl sugars. Macromolecular Chemistry and Physics, 197(1), 259-274. http://dx.doi.org/10.1002/macp.1996.021970120
    » http://dx.doi.org/10.1002/macp.1996.021970120
  • 37
    Wulff, G., Schmid, J., & Venhoff, T. (1996). The preparation of new types of polymerizable vinyl sugars with CC bonds between sugar and double bond. Macromolecular Chemistry and Physics, 197(4), 1285-1299. http://dx.doi.org/10.1002/macp.1996.021970409
    » http://dx.doi.org/10.1002/macp.1996.021970409
  • 38
    Wulff, G., Zhu, L., & Schmidt, H. (1997). Investigations on surface-modified bulk polymers. 1.Copolymers of styrene with a styrene moiety containing a sugar monomer. Macromolecules, 30(16), 4533-4539. http://dx.doi.org/10.1021/ma961890z
    » http://dx.doi.org/10.1021/ma961890z
  • 39
    Heffter, A. (1889). Ueber die Einwirkung von Chloral auf Glucose. Berichte der Deutschen Chemischen Gesellschaft, 22(1), 1050-1051. http://dx.doi.org/10.1002/cber.188902201230
    » http://dx.doi.org/10.1002/cber.188902201230
  • 40
    Hanriot, M., & Richet, C. (1983). D’une substance dérivée du chloral ou chloralose, et de ses effets physiologiques et thérapeutiques. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 116, 63-65.
  • 41
    Hanriot, M. (1909). D'une substance dérivée du chloral ou chloralose, et de ses effets physiologiques et thérapeutiques. Annales de Chimie et de Physique, 18, 466-502.
  • 42
    Forsen, S., Lindberg, B., Silvander, B. G., Nilsson, B., Selin, K., & Westerdahl, A. (1965). Trichloroethylidene derivatives of D-glucose. Acta Chemica Scandinavica, 19, 359-369. http://dx.doi.org/10.3891/acta.chem.scand.19-0359
    » http://dx.doi.org/10.3891/acta.chem.scand.19-0359
  • 43
    Yenil, N., Ay, E., Ay, K., Oskay, M., & Maddaluno, J. (2010). Synthesis and antimicrobialactivities of two novel amino sugars derived from chloraloses. Carbohydrate Research, 345(11), 1617-1621. http://dx.doi.org/10.1016/j.carres.2010.03.043 PMid:20488435.
    » http://dx.doi.org/10.1016/j.carres.2010.03.043
  • 44
    Salman, Y. G., Makinabakan, O., & Yuceer, L. (1994). Tricyclic orthoester formation from trichloroethylidene acetals of sugars via ketene acetals. Tetrahedron Letters, 35(49), 9233-9236. http://dx.doi.org/10.1016/0040-4039(94)88475-7
    » http://dx.doi.org/10.1016/0040-4039(94)88475-7
  • 45
    Cetin, F., Yenil, N., & Yuceer, L. (2004). Stable spiro-endoperoxides by sunlight-mediated photooxygenation of 1,2-O-alkylidene-5(E)-eno-5,6,8-trideoxy-α-d-xylo-oct-1,4-furano-7-uloses. Carbohydrate Research, 340(17), 2583-2589. http://dx.doi.org/10.1016/j.carres.2005.09.006 PMid:16182263.
    » http://dx.doi.org/10.1016/j.carres.2005.09.006
  • 46
    Telli, F. C., & Yuceer, L. (2012). Synthesis of new spirodifuranose derivatives by reduction of stable spiro-endoperoxides. Journal of Carbohydrate Chemistry, 31(9), 721-731. http://dx.doi.org/10.1080/07328303.2012.739229
    » http://dx.doi.org/10.1080/07328303.2012.739229
  • 47
    Telli, F. C., Ay, K., Murat, G., Kok, G., & Salman, Y. (2013). Acid promoted intramolecular formation of 3,5-anhydro-1,4-furano-7-ulose derivatives via the Wittig-cyclization procedure and their antimicrobial properties. Medicinal Chemistry Research, 22(5), 2253-2259. http://dx.doi.org/10.1007/s00044-012-0218-4
    » http://dx.doi.org/10.1007/s00044-012-0218-4
  • 48
    Denizaltı, S., Telli, F. C., Yıldıran, S., Salman, A. Y., & Çetinkaya, B. (2016). The newly synthesized furanoside-based NHC ligands for the arylation of aldehydes. Turkish Journal of Chemistry, 40, 689-697. http://dx.doi.org/10.3906/kim-1603-95
    » http://dx.doi.org/10.3906/kim-1603-95
  • 49
    Alkan, S., Telli, F. C., Salman, Y., & Astley, S. T. (2015). Synthesis of novel schiff base ligands from Gluco- and Galactochloraloses for the Cu(II) catalysed asymmetric henry reaction. Carbohydrate Research, 407, 97-103. http://dx.doi.org/10.1016/j.carres.2015.01.023 PMid:25742867.
    » http://dx.doi.org/10.1016/j.carres.2015.01.023
  • 50
    Telli, F. C., Demir, B., Barlas, F. B., Guler, E., Timur, S., & Salman, Y. (2016). Novel Glyconanoconjugates: Synthesis. Characterization and Bioapplications RCS Advances., 6, 105806-105813. http://dx.doi.org/10.1039/C6RA21976D
    » http://dx.doi.org/10.1039/C6RA21976D
  • 51
    Xie, P., Li, Y., Hou, Q., Sui, K., Liu, C., Fu, X., Zhang, J., Murugadoss, V., Fan, J., Wang, Y., Fan, R., & Guo, Z. (2020). Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. Journal of Materials Chemistry C, 8, 3029-3039. http://dx.doi.org/10.1039/c9tc06378a
    » http://dx.doi.org/10.1039/c9tc06378a
  • 52
    Sun, K., Dong, J., Wang, Z., Wang, Z., Fan, G., Hou,Q., An, L., Dong, M., Fan, R., & Guo, Z. (2019). Tunable Negative Permittivity in Flexible Graphene/PDMS Metacomposites. Journal of Physical Chemistry C, 123, 23635-23642. http://dx.doi.org/10.1021/acs.jpcc.9b06753
    » http://dx.doi.org/10.1021/acs.jpcc.9b06753
  • 53
    Sun, K., Wang, L., Wang, Z., Wu, X., Fan, G., Wang, Z., Cheng, C., Fan, R., Dong, M., & Guo, Z. (2019). Flexible silver nanowire/carbon fiber felt metacomposites with weakly negative permittivity behavior. Physical Chemistry Chemical Physics, 22(9), 5114-5122. http://dx.doi.org/10.1039/C9CP06196G PMid:32073008.
    » http://dx.doi.org/10.1039/C9CP06196G
  • 54
    Lee, S., Jin, B.S., & Lee, J.W. (2006) Thermal degradation kinetics of antimicrobial agent, Poly(hexamethylene guanidine) phosphate. Macromolecular Research, 14, 491-498.
  • 55
    Wang, D., Das, A., Leuteritz, A., Boldt, R., Häußler, L., Wagenknecht, U., & Heinrich, G. (2011). Thermal degradation behaviors of a novel nanocomposite based on polypropylene and Co-Al layered double hydroxide. Polymer Degradation & Stability, 96(3), 285-290. http://dx.doi.org/10.1016/j.polymdegradstab.2010.03.003
    » http://dx.doi.org/10.1016/j.polymdegradstab.2010.03.003
  • 56
    Wang, H., Yang, J., Long, S., Wang, X., Yang, Z., & Li, G. (2004). The thermal degradation of poly(phenylene sulfide sulfone). Polymer Degradation & Stability, 83(2), 229-235. http://dx.doi.org/10.1016/S0141-3910(03)00266-0
    » http://dx.doi.org/10.1016/S0141-3910(03)00266-0
  • 57
    Coats, A. W., & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68-69. http://dx.doi.org/10.1038/201068a0
    » http://dx.doi.org/10.1038/201068a0
  • 58
    Flynn, J. H., & Wall, L. A. (1966). A quick direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science. Part B, Polymer Physics, 4(5), 323-328. http://dx.doi.org/10.1002/pol.1966.110040504
    » http://dx.doi.org/10.1002/pol.1966.110040504
  • 59
    Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886. http://dx.doi.org/10.1246/bcsj.38.1881
    » http://dx.doi.org/10.1246/bcsj.38.1881
  • 60
    Mereyala, H. B., Goud, P. M., Gadikota, R. R., & Reddy, K. R. (2000). Transformation of terminal diols of cyclic and acyclic saccharides to epoxides and alkenes by reaction with triphenylphosphine, imidazole and iodine. Journal of Carbohydrate Chemistry, 19(9), 1211-1222. http://dx.doi.org/10.1080/07328300008544145
    » http://dx.doi.org/10.1080/07328300008544145
  • 61
    Pigłowska, M., Kurc, B., Rymaniak, L., Lijewski, P., & Fu’c, P. (2020). Kinetics and thermodynamics of thermal degradation of different starches and estimation the OH group and H2O Content on the Surface byTG/DTG-DTA. Polymers, 12(2), 357-361. http://dx.doi.org/10.3390/polym12020357 PMid:32041286.
    » http://dx.doi.org/10.3390/polym12020357
  • 62
    Yildirim, Y., Dogan, B. S., Muglali, S., Saltan, F., Ozkan, M., & Akat, H. (2012). Synthesis, characterization, and thermal degradation kinetic of Polystyrene-g-Polycaprolactone. Journal of Applied Polymer Science, 126(4), 1236-1246. http://dx.doi.org/10.1002/app.36888
    » http://dx.doi.org/10.1002/app.36888
  • 63
    Funt, J. M., & Maghill, J. H. (1974). Thermal decomposition of polystyrene: Eflect of molecular weight. Journal of Polymer Science. Polymer Physics Edition, 12(1), 217-220. http://dx.doi.org/10.1002/pol.1974.180120118
    » http://dx.doi.org/10.1002/pol.1974.180120118
  • 64
    Saltan, F., & Akat, H. (2013). Synthesis and thermal degradation kinetics of D-(+)- GALACTOSE CONTAINING POLYMERS. Polímeros: Ciência e Tecnologia, 23(6), 697-704. http://dx.doi.org/10.4322/polimeros.2014.012
    » http://dx.doi.org/10.4322/polimeros.2014.012
  • 65
    Pană, A. M., Ordodi, V., Rusu, G., Gherman, V., Bandur, G., Rusnac, L. M., & Dumitrel, G. A. (2020). Biodegradation pattern of glycopolymer based on D-Mannose oligomer and Hydroxypropyl Acrylate. Polymers, 12(3), 704-717. http://dx.doi.org/10.3390/polym12030704 PMid:32235772.
    » http://dx.doi.org/10.3390/polym12030704

Publication Dates

  • Publication in this collection
    04 Sept 2020
  • Date of issue
    2020

History

  • Received
    04 May 2020
  • Reviewed
    22 June 2020
  • Accepted
    26 June 2020
Associação Brasileira de Polímeros Rua São Paulo, 994, Caixa postal 490, São Carlos-SP, Tel./Fax: +55 16 3374-3949 - São Carlos - SP - Brazil
E-mail: revista@abpol.org.br