Acessibilidade / Reportar erro

Prediction of monomer reactivity in radical copolymerizations from transition state quantum chemical descriptors

In comparison with the Q-e scheme, the Revised Patterns Scheme: the U, V Version (the U-V scheme) has greatly improved both its accessibility and its accuracy in interpreting and predicting the reactivity of a monomer in free-radical copolymerizations. Quantitative structure-activity relationship (QSAR) models were developed to predict the reactivity parameters u and v of the U-V scheme, by applying genetic algorithm (GA) and support vector machine (SVM) techniques. Quantum chemical descriptors used for QSAR models were calculated from transition state species with structures C¹H3 - C²HR³• or •C¹H2 - C²H2R³ (formed from vinyl monomers C¹H²=C²HR³ + H•), using density functional theory (DFT), at the UB3LYP level of theory with 6-31G(d) basis set. The optimum support vector regression (SVR) model of the reactivity parameter u based on Gaussian radial basis function (RBF) kernel (C = 10, ε = 10- 5 and γ = 1.0) produced root-mean-square (rms) errors for the training, validation and prediction sets being 0.220, 0.326 and 0.345, respectively. The optimal SVR model for v with the RBF kernel (C = 20, ε = 10- 4 and γ = 1.2) produced rms errors for the training set of 0.123, the validation set of 0.206 and the prediction set of 0.238. The feasibility of applying the transition state quantum chemical descriptors to develop SVM models for reactivity parameters u and v in the U-V scheme has been demonstrated.

Genetic algorithm; quantum chemistry; radical copolymerizations; structure-activity relations; support vector machine; transition state


Associação Brasileira de Polímeros Rua São Paulo, 994, Caixa postal 490, São Carlos-SP, Tel./Fax: +55 16 3374-3949 - São Carlos - SP - Brazil
E-mail: revista@abpol.org.br