Acessibilidade / Reportar erro

Preparation and characterization of poly(3-hydroxybutyrate) porous structures

Three-dimensional polymeric scaffolds have been widely employed as support in tissue engineering to reconstruct damaged or lost tissue. In this study porous structures were obtained using P(3HB) solution with five concentrations of sieved sodium chloride 50, 60, 70, 80 and 90 wt %, with particles size in the range of 75 - 150, 53 - 75 and 38 - 53 µm. Thermal properties of the samples were investigated by differential scanning calorimetry and thermo gravimetric analysis, while the morphology was observed by scanning electron microscopy. Asymmetric porous structures were formed for salt concentrations of 50, 60 and in some cases 70wt%. Additionally, porosity increased as the salt weight fraction was increased and pore diameter increased as the salt particle size increased. X-Ray diffraction analysis showed that salt concentration and granulometry did not influence the crystalline characteristics of the porous matrices when compared with the dense polymer film obtained by casting of a solution without salt. The scaffolds promote the spontaneous deposition of a calcium phosphate layer, indicating bioactivity.

Poly(3-hydroxybutyrate); bioresorbable polymer; tissue engineer; scaffolds; "in vitro" tests


Associação Brasileira de Polímeros Rua São Paulo, 994, Caixa postal 490, São Carlos-SP, Tel./Fax: +55 16 3374-3949 - São Carlos - SP - Brazil
E-mail: revista@abpol.org.br