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ABSTRACT. This paper presents an approach to deal with horizontal cargo stability in container loading
problems. Cargo stability has been explored mainly with support factors that constrain the minimum area
of each box’s faces to be supported by other boxes. On the other hand, we propose an approach based
on the static equilibrium of rigid bodies to check the static stability of a given packing. The approach is
used as a cutting plane routine in a branch-and-cut framework to the single container loading problem. This
framework considers the resolution of an integer linear programming model to obtain feasible packings next
checked with the proposed approach to avoid unstable packings. The computational experiments consider
180 benchmark instances on which stable solutions of the proposed approach have better container fill rates
than the support factor approach. In terms of lateral support, the proposed approach provides the minimum
value inferior to 70% on average, which is satisfactorily smaller and less restrictive than the full support.
Results also indicate that more unstable solutions emerge from refined grids and fewer types of boxes
available.

Keywords: container loading problem, horizontal cargo stability, equilibrium of material bodies.

1 INTRODUCTION

This work is related to packing problems in which a set of items (e.g., boxes) must be packed in
one or more containers to optimize an objective function (e.g., the container fill rate). We study
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2 COMPARING A STATIC EQUILIBRIUM BASED METHOD WITH THE SUPPORT FACTOR

the Single Container Loading Problem (SCLP). A subset of three-dimensional rectangular boxes
is packed into a three-dimensional rectangular container to maximize the occupied container
volume. We assume boxes are packed with each of their faces parallel to the container faces
(orthogonal packing), and boxes cannot rotate (fixed orientation).

The literature has extensively addressed the SCLP. Exact methods were studied, for example, by
Hifi (2004), who proposed a graph-search approach; Junqueira et al. (2012b), who developed an
integer programming model solved with a branch-and-cut algorithm; and, Paquay et al. (2016),
who proposed a model that uses two reference positions to pack boxes. Silva et al. (2019) did a
comparative study of the models and exact algorithms proposed by Chen et al. (1995), Martello
et al. (2000), Fasano (2004), Hifi et al. (2010), Junqueira et al. (2012b), Tsai et al. (2015), and
Paquay et al. (2016). These algorithms solved all instances with few types of boxes (up to 7).
For instances with more types (up to 15), the model of Junqueira et al. (2012b) outperformed
the others. On the other hand, for instances with up to 250 types, the model of Junqueira et al.
(2012b) required much memory, while the model of Chen et al. (1995), followed by the algorithm
of Martello et al. (2000), performed better.

Recently, in Nascimento et al. (2021), a three-step exact algorithm was developed for the SCLP
in the presence of twelve practical constraints. The authors combined integer linear and con-
straint programming models iteratively, with cuts to break symmetric solutions. In the compu-
tational experiments, the approach was compared with the model of Junqueira et al. (2012b) on
instances proposed by the latter. The comparisons in the absence of practical constraints showed
the model of Junqueira et al. (2012b) is a better choice for the problem. In this way, Kurpel et al.
(2020) extended the model of Junqueira et al. (2012b) and developed new bounds to handle mul-
tiple container loading problems with practical constraints. The authors obtained new optimal or
improved solutions for some problem variants.

Concerning heuristic methods, we may cite those where boxes are packed in layers/blocks with
a filling method, as in Bortfeldt & Gehring (2001) and Sheng et al. (2017). Some authors have
combined metaheuristics with filling methods, as in Jamrus & Chien (2016), with the use of
genetic algorithm; Tao & Wang (2015), with the use of tabu search; and, Egeblad & Pisinger
(2009) with the use of simulated annealing. Recently, Silva et al. (2020) proposed a matheuristic
that combines a wall-building approach and two integer models to handle the SCLP with seven
practical constraints.

One of the best heuristics for the SCLP is the beam search of Araya & Riff (2014) that packs
blocks of boxes with higher utilization by using a tree search method. With this heuristic, the
authors could outperform all previous results on benchmark instances in terms of occupied vol-
ume and runtime. This beam search was improved by Araya et al. (2017) with a new evaluation
function for ranking and selecting blocks. The improved beam search results are significantly
better compared to the previous ones on all sets of instances.

We consider the SCLP with the additional constraint of static vertical and horizontal cargo sta-
bility related to the capability of boxes to resist inertia, given external forces acting on them (see,
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e.g., Queiroz et al. (2019)). The literature often considers a support factor to deal with this con-
straint, implying a minimum percentage area of each box’s faces to be supported by other boxes
or by the container. To guarantee stability, some authors used the full support, as Fanslau & Bort-
feldt (2010), Junqueira et al. (2012a), Araya et al. (2017), Silva et al. (2020), and Nascimento
et al. (2021).

Other authors instead have considered it as acceptable that only a percentage of the boxes’ faces
should be supported to meet cargo stability, as Christensen & Rousoe (2009) and Mack et al.
(2004). Some authors assumed a packing as vertically stable if adjacent boxes support the four
bottom vertices of each box (see, e.g., Egeblad et al. (2010)), or three of these vertices (see, e.g.,
Paquay et al. (2016)). On the other hand, more realistic approaches to handle cargo stability are
based on the static equilibrium of rigid bodies (Oliveira et al., 2021).

Few authors used the mechanical equilibrium principle to handle cargo stability in packing prob-
lems. In this case, boxes are satisfying the static equilibrium equations for material bodies (Hi-
bbeler, 2010). In this line, the literature has focused on vertical cargo stability for the SCLP,
assuming only the force that emerges from the gravitational field, with the contributions of Silva
et al. (2003), Ramos et al. (2016), and more recently Oliveira et al. (2021).

Concerning horizontal cargo stability with the mechanical equilibrium principle, the number of
contributions is indeed small. Bracht et al. (2016) used a physical simulation engine to heuristi-
cally check if the box’s center of gravity moves from its original position. The authors assumed
two situations in which the gravitational, centripetal, and frictional forces acted on the packing.
In the first situation, the container’s lateral faces were disregarded, while the lateral faces were
taken into consideration in the second one. Ramos et al. (2015) commented that the literature
has been considering two metrics. The first one is based on the average number of boxes sup-
porting other boxes, excluding those placed directly on the floor. The second metric is based on
the support of the boxes’ faces. They developed two new indicators for evaluating the horizontal
stability of a cargo. These indicators are the number of fallen boxes and the number of boxes
inside the damaged area of a damage curve limit.

Queiroz et al. (2019) extended the mechanical equilibrium-based method in Queiroz &
Miyazawa (2014) to horizontal stability, limited to two-dimensional packing problems. Recently,
Oliveira et al. (2021) proposed two similar approaches for vertical stability. The first is based on
the dynamic simulation of rigid bodies. The second is based on the equilibrium of buildings. The
authors used the model of Junqueira et al. (2012b) solved with a branch-and-cut algorithm, where
cutting planes to avoid unstable vertical packings were added on demand. The main difference
between our work and the previous ones relies on the proposal of a mechanical equilibrium-based
method for horizontal cargo stability in three-dimensional packing problems.

Differently from Silva et al. (2003), Queiroz & Miyazawa (2014), Ramos et al. (2016), and
Oliveira et al. (2021) who only handled vertical cargo stability, we consider lateral forces, as
centripetal and frictional ones, acting on the cargo. This is consistent with Queiroz et al. (2019),
but their method is limited to two-dimensional problems. Similarly to Oliveira et al. (2021), we
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extend the method of Baraff (1989), which relies on the dynamic simulation of rigid bodies and
investigates the impact of different grids of points in the presence of horizontal stability. It is
essential to mention that we first check static vertical stability with the method of Oliveira et al.
(2021) and next static horizontal stability for forces acting horizontally from left to right (along
the x-axis) and from front to back (along the y-axis).

Following the literature (Junqueira et al., 2012b; Ramos et al., 2016; Oliveira et al., 2021), one
way to evaluate the proposed method is to compare with the support factor in terms of occupied
volume. For that, we consider an existing solution method (i.e., the model of Junqueira et al.
(2012b) solved with a branch-and-cut algorithm) and instances thought in the presence of cargo
stability constraints. In the model of Junqueira et al. (2012b), boxes are packed over a grid, which
allows us to study the impact of the grid on the final solution.

This paper is organized as follows. In Section 2, we revisit the integer model of Junqueira et al.
(2012b) and the support factor constraints to model cargo stability. Our solution method for the
SCLP consists of solving this model with a branch-and-cut algorithm. For every feasible packing
found, we first check it for vertical stability and next for horizontal stability. If the packing is
unstable for vertical or horizontal stability, we add a valid inequality to avoid one of the boxes
of being packed in its current position. The proposed method for horizontal stability is discussed
in Section 3, taking advantage of the method for vertical stability. Section 4 follows the litera-
ture and presents computational experiments on 180 benchmark instances, where the proposed
method is compared with the support factor on three different grids. Finally, Section 5 has some
conclusions and suggestions for future works.

2 INTEGER FORMULATION

The SCLP considers a container with dimensions (L,W,H), where the length L, width W , and
height H, are related to the x-, y-, and z-axes, respectively. We refer to the bottom-frontal-left
vertex as the container’s origin point (0,0,0) in the Cartesian space. Each box of type k = 1, . . . ,n,
has dimensions (lk,wk,hk), volume vk, and a maximum number of copies bk. The dimensions of
containers and boxes are assumed to be integers, and boxes are packed orthogonally, with fixed
orientation (i.e., rotations are not allowed). In a feasible packing, boxes do not overlap each
other and must respect the container dimensions. The objective is to obtain a feasible packing
of maximum volume. The sets of available coordinates are Xc,Yc, and Zc, each one containing
natural numbers from 0 to the respective container dimension along the x-, y-, and z-axes. From
these sets, we define the feasible grid to pack a box of type k as Xck×Yck×Zck:

Xck = {0,1, . . . ,L− lk}, (1)

Yck = {0,1, . . . ,W −wk}, (2)

Zck = {0,1, . . . ,H−hk}. (3)
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Let binary variables xkpqr ∈ {0,1} represent the decision of packing a box of type k with its
bottom-frontal-left corner at the point (p,q,r) ∈ Xck ×Yck × Zck. The model (4)-(7) solves the
SCLP (Junqueira et al., 2012b):

max
n

∑
k=1

∑
p∈Xck

∑
q∈Yck

∑
r∈Zck

vk xkpqr (4)

s.t:
n

∑
k=1

∑
{p∈Xck|p′−lk+1≤p≤p′}

∑
{q∈Yck|q′−wk+1≤q≤q′}

∑
{r∈Zck|r′−hk+1≤r≤r′}

xkpqr ≤ 1,

∀p′ ∈ Xc, q′ ∈ Yc, r′ ∈ Zc,

(5)

∑
p∈Xck

∑
q∈Yck

∑
r∈Zck

xkpqr ≤ bk, k = 1, . . . ,n, (6)

xkpqr ∈ {0,1}, k = 1, . . . ,n, p ∈ Xck, q ∈ Yck, r ∈ Zck. (7)

The objective function (4) maximizes the container fill rate. Constraints (5) guarantee the non-
overlapping of boxes, while constraints (6) impose the limit on the number of boxes of each type
in the solution. Constraints (7) define the variables domain.

2.1 Cargo Stability with Support Factor

The linear constraints to model cargo stability with the support factor are given next (Junqueira
& Queiroz, 2022). Such constraints are added to the integer model (4)-(7), resulting in the JMY
approach. The support factor in vertical stability refers to the support of the bottom face of each
box. In horizontal stability, the boxes’ lateral faces are supported by the lateral faces of other
boxes.

For vertical stability, let α ∈ [0,1] indicate the percentage of support for the boxes’ bottom faces.
Constraints 8 model the support of the boxes’ bottom faces:

∑
Φ

∑
Ψ

∑
Ω

L̄k j W̄k j xkpq(r′−hk) ≥ α l j w j x jp′q′r′ ,

j = 1, . . . ,n, p′ ∈ Xc j, q′ ∈ Yc j, r′ ∈ Zc j\{0},
(8)

with Φ as {k = 1, . . . ,n|r′− hk ≥ 0}, Ψ as {p ∈ Xck|p′− lk + 1 ≤ p ≤ p′+ l j − 1}, Ω as {q ∈
Yck|q′−wk +1 ≤ q ≤ q′+w j−1}, L̄k j = min(p+ lk, p′+ l j)−max(p, p′), and W̄k j = min(q+
wk, q′+w j)−max(q,q′).

For horizontal stability, let β ∈ [0,1] and γ ∈ [0,1] represent, respectively, the percentage of
support of the left and frontal faces of each box. Constraints (9) and (10) model the horizontal
stability for, respectively, the x- and y-axes.

∑
ε

∑
κ

∑
ξ

W̄k j H̄k j xk(p′−lk)qr ≥ β w j h j x jp′q′r′ ,

j = 1, . . . ,n, ∀p′ ∈ Xc j\{0}, ∀q′ ∈ Yc j, ∀r′ ∈ Zc j,

(9)
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with ε = {k = 1, . . . ,n|p′ − lk ≥ 0}, κ = {q ∈ Yck|q′ −wk + 1 ≤ q ≤ q′ +w j − 1}, ξ = {r ∈
Zck|r′−hk +1 ≤ r ≤ r′+h j−1}, W̄k j = min(q+wk, q′+w j)−max(q,q′), and H̄k j = min(r+
hk, r′+h j)−max(r,r′).

∑
ρ

∑
ρ

∑
σ

L̄k j H̄k j xkp(q′−wk)r ≥ γ l j h j x jp′q′r′ ,

j = 1, . . . ,n, ∀p′ ∈ Xc j, ∀q′ ∈ Yc j\{0}, ∀r′ ∈ Zc j,

(10)

ρ = {k = 1, . . . ,n|q′−wk ≥ 0}, ρ = {p ∈ Xck|p′− lk + 1 ≤ p ≤ p′+ l j− 1}, σ = {r ∈ Zck|r′−
hk + 1 ≤ r ≤ r′+ h j− 1}, L̄k j = min(p+ lk, p′+ l j)−max(p, p′), and H̄k j = min(r + hk, r′+
h j)−max(r,r′).

2.2 Grids of Points

Herz (1972) proposed an exact approach to generate two-dimensional cutting patterns based
on a tree search. To limit the number of nodes explored, the author introduced the canonical
dissections (CD). Following the CD, the positions along the dimensions of the container, where
each box can have its bottom-frontal-left vertex, are given by the sets (11)-(13). These positions
are obtained from non-negative integer linear combinations of boxes dimensions. The sets Xc, Yc,
and Zc can be replaced by, respectively:

Xd = {p ∈ Xc|p =
n

∑
k=1

δklk, p≤ L,δk ≤ bk,δk ∈ Z+}, (11)

Yd = {q ∈ Yc|q =
n

∑
k=1

δkwk,q≤W,δk ≤ bk,δk ∈ Z+}, (12)

Zd = {r ∈ Zc|r =
n

∑
k=1

δkhk,r ≤ H,δk ≤ bk,δk ∈ Z+}. (13)

To obtain a smaller number of points, Scheithauer & Terno (1996) proposed the reduced raster
points (RRP), which are represented by sets (14)-(16):

Xr = {(L− p)x| p ∈ Xd}, (14)

Yr = {(W −q)y| q ∈ Yd}, (15)

Zr = {(H− r)z| r ∈ Zd}, (16)

with (L− p)x = max{s ∈ Xd | s ≤ L− p},(W − q)y = max{t ∈ Yd | t ≤W − q}, and (H− r)z =

max{u ∈ Zd | u≤ H− r}.

The CD and RRP can be used to reduce the number of variables of model (4)-(7). Both CD and
RRP grids preserve an optimal solution for orthogonal packing problems (Almeida Cunha et al.,
2020). However, when cargo stability is enforced, grids of points may lead to the loss of stable
packings.
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3 CARGO STABILITY WITH THE STATIC EQUILIBRIUM OF RIGID BODIES

Based on Newton’s laws of motion, we consider a set of equations that a rigid material body
must attend to stay in static equilibrium: the sum of all forces must be zero, and the sum of all
torques must be zero. Details about the equilibrium of material bodies can be found in Hibbeler
(2010). When these equations are satisfied for each box, the packing is assumed to be statically
stable (Queiroz et al., 2019). Our modeling assumes that each box is a rigid body, made of the
same material, and has homogeneous density.

Considering the packing is being transported by road and horizontally stable, we need to check
if it is stable. For that, we first check the packing for static vertical stability with the B approach
described in Oliveira et al. (2021). Next, we extend such an approach to check static horizontal
stability. In static stability, we model situations where the cargo, in particular, boxes, cannot
translate nor rotate due to the action of external (vertical and horizontal) forces; otherwise, the
packing is assumed as unstable (Queiroz et al., 2019).

We consider four different kinds of forces to act on a box, although it is straightforward to
assume the action of other forces. The four forces are: weight, due to the gravitational field (with
a vertically downward gravitational acceleration of g = 9.8 m/s2) permanently acting on boxes;
normal and friction, due to contact that boxes have each other; and centripetal, since the cargo is
following a curved path and then such force keeps the cargo on the path. Horizontal forces (e.g.,
centripetal) can make boxes slide or generate a moment that makes boxes tipping over (Hibbeler,
2010).

Forces are assumed to be acting on the center of gravity of the boxes unless stated otherwise. As
boxes are assumed homogeneous, the center of gravity coincides with the box’s geometric center.
It is essential to mention that the normal and friction forces are reaction forces of the weight and
centripetal ones, respectively.

Two adjacent boxes are touching themselves on infinite points, as shown in Figure 1. We assume
that only the vertices, from now named contact points, of the contact surface are considered. On
each contact point i acts a triad of forces ~fi = ( fi, f x

i , f y
i ), where fi is the value (i.e., magnitude)

of the normal force (on the direction of the z-axis), and f x
i and f y

i are the value of the friction
forces on the direction of the x- and y-axes, respectively.

The approach to obtain the equilibrium equations for packing problems uses Newton’s laws of
motion under the assumption that no box can interpenetrate each other (i.e., the forces must
guarantee that different boxes will never share/occupy the same physical space) nor move away
(Baraff, 1989). In general, our approach for cargo stability consists of initially calculating the
normal forces on each contact surface and verifying if they keep the initially adopted sign (i.e.,
check the static vertical stability). Next, we check if each box slides or tips over (i.e., check
the static horizontal stability). In the following, we briefly describe the B approach for vertical
stability (Oliveira et al., 2021) since it is required to deal with horizontal stability.
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Figure 1 – Triad of forces acting on a contact point.

3.1 Revisiting the B Approach

Each contact point i of a given contact surface c ∈ Ck (on the direction of the z-axis) of box k has
acceleration p̈i. This acceleration should be non-negative since boxes cannot accelerate so as to
interpenetrate each other (Baraff, 1989):

χ̈i = p̈in̂ =

(
~Fk

mk
+
~τk

Ik
×~ri

)
n̂, (17)

where n̂ = (0,0,1) represents the direction of the normal force, mk is the mass of box k, Ik is the
inertia tensor of box k, and~ri is the distance vector between the item’s center of gravity and point
i. It follows that the resultant force ~Fk and resultant torque~τk are, respectively,

~Fk = mk~g+ f1n̂+ f2n̂+ f3n̂+ f4n̂, (18)

~τk =~r1× f1n̂+~r2× f2n̂+~r3× f3n̂+~r4× f4n̂. (19)
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In general, a system with ε inequalities (i.e., ε contact points) can be written in the matrix form
(20):

A~f −~e =


a11 a12 · · · a1ε

a21 a22 · · · a2ε

...
...

...
...

aε1 aε2 · · · aεε




f1

f2
...
fε

−


g
g
...
g

=


χ̈1

χ̈2
...

χ̈ε

≥~0. (20)

Matrix A has order ε× ε . Vectors ~f and~e have order ε×1. Vector~e has, in each component, the
value of the gravitational acceleration and matrix A is composed of the coefficients of ~f extracted
from (17) for each contact point. Other details are given in Oliveira et al. (2021).

In summary, the B approach for vertical cargo stability works as follows. For each box k, obtain
the contact surfaces Ck of all boxes touching it. For each surface in Ck, there are four contact
points, then resulting in 4|Ck| normal forces acting on box k. Next, write 4|Ck| equilibrium equa-
tions, where there is one equation per contact point. Each equation contains all normal forces.
These steps are repeated for all boxes in the packing to obtain the resultant system of linear in-
equalities (20). Next, verify if there is a solution for the system satisfying ~f ≥ ~0. If no solution
satisfies such a condition, the packing is unstable. There is a normal force with a negative sign,
meaning that such a negative normal force is pulling up the box (i.e., causing interpenetration)
instead of pushing it down to guarantee the equilibrium.

It is important to mention that with up to two contact points between the bodies, the resultant
system is easily solved. However, when a body has three or more contact points, some inequal-
ities may be redundant, and the system may have more than one solution for the contact forces.
In the last case, one solution is necessary for the ε inequalities in which no value of normal force
is negative to guarantee the static equilibrium.

Even in a valid solution for the system of inequalities (i.e., that guarantees the static equilib-
rium), the (normal) forces may not represent the real values the boxes are receiving. Therefore,
the correct (i.e., the real) value of the forces in ~f is obtained from solving a quadratic program-
ming problem. This problem has a quadratic objective function and linear constraints, that is to
minimize ∑

ε
i=1 fiχ̈i = ~f T A~f −~f T~e, subject to A~f −~e≥~0 and ~f ≥~0. To be correct, besides satis-

fying the system of inequalities (20) (problem constraints), forces on the contact points must be
conservative (problem objective function), requiring fi or χ̈i to be null on each contact point i.
More details are given in Baraff (1989).

3.2 Horizontal Stability

After confirming the packing is vertically stable, we check if it is horizontally stable. The latter
is made under an inertial frame of reference (i.e., outside the cargo). We model a situation where
the vehicle performs a curved path (i.e., centripetal acceleration), and it exists friction between
boxes. The centripetal acceleration keeps the cargo moving on the curved path. It means the
packing (and vehicle) follows the road because of the centripetal force. If a non-inertial frame of
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10 COMPARING A STATIC EQUILIBRIUM BASED METHOD WITH THE SUPPORT FACTOR

reference (i.e., from the boxes or driver point of view) was considered, a centrifugal force would
arise (Hibbeler, 2010).

From the above assumptions, the packing is checked for static horizontal stability (Queiroz et al.,
2019), in which different types of forces may emerge besides those related to vertical stability.
As in the support factor, we assume that forces are handled from left to right, along the x-axis,
and from front to back, along the y-axis.

The first type of horizontal force is the centripetal one. The value (magnitude) of the centripetal
force f c

k acting on box k is, in which r is the radius of the curve and v is the velocity in which the
cargo (vehicle) is moving:

f c
k = mk

v2

r
. (21)

The second type of horizontal force is the lateral one acting on each contact point i of each lateral
contact surface of box k. Its value is given by f lx

i on the direction of the x-axis and f ly
i on the

direction of the y-axis. They are transmitted from the adjacent boxes touching box k along each
of these two directions. The container’s lateral faces are used when calculating the lateral forces.
It is similar to when the container’s bottom face is used in vertical stability. Note that lateral
contact surfaces appear due to the lateral faces of boxes touching each other.

We apply the B approach to obtain the lateral force acting on each contact point i for each
direction. The steps are the same described in the previous section about the B approach, except
for the resultant mass acting on boxes obtained with the formula for force. This formula considers
the resultant normal force, which considers the influence of the mass above and the gravitational
acceleration. Note that lateral forces consider the resultant mass on each box (instead of the
original box’s mass) because boxes may receive a parcel of masses above acting (directly and
indirectly) on it to guarantee the equilibrium. The value of the resultant horizontal force acting
on k is expressed by f hx

k = f c
k + f lx

k and f hy
k = f c

k + f ly
k , respectively, on the direction of the x-

and y-axes.

On each contact point i of the contact surface related to the boxes’ bottom and top faces (on
the direction of the z-axis) emerges two other forces. One force is perpendicular to the contact
surface, which is the normal force of value fi. The other forces are tangential to the surface,
which are the friction forces of values f x

i and f y
i as calculated in (22) on the direction of the

x-axis and (23) on the direction of the y-axis, respectively. Following Queiroz et al. (2019), the
friction force that emerges from the lateral contact surface between boxes is not considered.
The authors commented that these friction forces might allow solutions that did not comply with
loading/unloading operations. Besides that, a stable packing without these friction forces remains
stable in their presence.

f x
i = µ fi, (22)

f y
i = µ fi, (23)
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11

in which µ is the coefficient of static friction, and the normal and friction forces are illustrated in
Figure 1.

Figure 2 illustrates box k on a surface with a coefficient of static friction. For example, if a
resultant horizontal force of value f h

k is acting on the left lateral face of k, a resultant friction
force of value f x arises as a reaction. It follows that one of the following situations may happen:

• the horizontal force can exceed the friction force, so the box slides on the surface (sliding
situation); or,

• the horizontal force cannot slide the box because of the friction force. However, the
horizontal force has enough intensity to rotate the box at a contact point i (tip over
situation).

Figure 2 – Horizontal force acting on a box for the sliding situation on the direction of the x-axis.

The friction force depends on µ , which depends on the material of the contact surfaces. The
coefficient of static friction is generally greater than that of dynamic friction (Hibbeler, 2010). It
follows that box k will not slide on the direction of x-axis if µ fk ≥ f hx

k , that is f x
k ≥ f hx

k , where
fk and f x

k are the values of the resultant normal and friction forces acting on k, respectively.
Similarly, we define the condition for the slide situation on the direction of the y-axis. Note that
the lower is the friction coefficient, the easier it is for a box to slide.

When a box is about to slide, the normal force is redistributed to a rotation point to avoid the tip
over. The normal force avoids the rotation of boxes when torque is generated. Figure 3 shows
what happens when the resultant horizontal force cannot slide a box, but it is sufficient to generate
torque (i.e., the tip over situation). The resultant normal force is shifted to the bottom-right corner
of the contact surface to guarantee the equilibrium. The box k then tips over if f hx

k h > fkx holds,
where x and h are the distances between the box’s center of gravity and the box’s bottom and
right lateral faces, respectively. Similarly, we define the condition for the tip over situation on the
direction of the y-axis.
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Figure 3 – A horizontal force acting on a box for the tip over situation on the direction of the x-axis.

The steps for checking static vertical and horizontal stabilities are described in Algorithm 1. In
lines 1 to 5, we define the variables with each box’s mass, the set of contact surfaces, the set of
contact points of each contact surface, and the normal force of each contact point. Next, lines
6 to 9 are related to the vertical stability, following Section 3.1, to obtain the correct values of
the normal force of each contact point on the direction of the z-axis. Suppose the value of one
normal force fi is negative. In that case, the packing is not vertically stable because this force is
pulling up instead of pushing down, and the algorithm ends.

In the case the packing is vertically stable, the next lines (10 to 24) of Algorithm 1 are related
to horizontal stability. We first calculate the centripetal, lateral, and friction forces to check the
slide and tip over situations. In line 10, we obtain the value of the resultant centripetal force
f c
k acting on each box k. In lines 11 and 12 (resp., 13 and 14), we calculate the lateral force f lx

i
(resp., f ly

i ) that is transmitted at each lateral contact point i on the direction of the x-axis (resp., y-
axis). These lateral forces are obtained with the B approach by solving a quadratic programming
problem similarly to vertical stability. The main difference is that now the resultant mass of box k
is obtained from the formula for force fk = mk g because we consider the influence of the masses
above/on the top of (i.e., acting directly and indirectly) k. We assume this because each box’s
weight acts along the vertical direction (z-axis), perpendicular to the lateral/horizontal forces.
Still, we also need to know such action of the box along the horizontal direction (x- and y-
axes). Finally, in line 15, we calculate the resultant lateral forces acting on each box along each
horizontal direction.

With the centripetal and resultant lateral forces, in line 16 of Algorithm 1 we calculate the re-
sultant horizontal forces f hx

k and f hy
k acting on each box k along each horizontal direction. Lines

17 and 18 give the friction forces on the directions of the x- and y-axes. Then, we check the
slide situation in line 19 (as illustrated in Figure 2). On the other hand, for the tip over situation,
we need the resultant normal force fk acting on each box k (line 21) and the vector with the
distances between the box’s center of gravity and its back-right-bottom corner (as illustrated in
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Figure 3). Then, we check the tip over situation in line 23. Once the packing respects all vertical
and horizontal stability conditions, we assume it is statically stable.

Differently from the support factor constraints described in (8)-(10) that are directly considered
in the integer model (4)-(7) for the SCLP, Algorithm 1 is used as a cutting plane routine within a
branch-and-cut algorithm. The proposed algorithm is a callback routine called whenever an inte-
ger solution (packing P) is found. If P is not stable, inequality (24) is added as a lazy constraint
into the integer model for the SCLP to avoid one of the boxes in P of being packed in its current
position.

∑
(k,p,q,r)∈P

xkpqr ≤ |P|−1, (24)

where packing P contains the tuples (k, p,q,r) associated with the box k and its position (p,q,r)
inside the packing.

4 COMPUTATIONAL EXPERIMENTS

All algorithms were coded using the C++ programming language, and computational experi-
ments were run on a computer with an Intel Core i7−4790K at 4.0 GHz with 32 GB of RAM,
running under the Linux Ubuntu 14.04 LTS. In the experiments, we solve the integer model (4)-
(7) for the SCLP with the branch-and-cut framework available in the Gurobi Optimizer 6.5.1
with its default parameters. The COIN-OR IPOPT 3.12.6 is used to solve the quadratic program-
ming problems that appear in Algorithm 1. For the support factor (i.e., JMY approach), we solve
directly the integer model with constraints (8)-(10). On the other hand, the proposed algorithm
for horizontal cargo stability is used as a callback routine that returns lazy constraints (24) in
unstable packings.

Due to the static horizontal stability assumptions, an optimal solution is attending a scenario
where the vehicle moves on a curved path. We consider a curve of type “mountainous” from
Class II for which the vehicle is limited to 40 km/h. The curve radius is 30 m (Departamento
Nacional de Estradas de Rodagem, 1973). Boxes are made of cardboard, for which we use the
coefficient of static friction µ = 0.25. Preliminary experiments on other parameters have pointed
to the same conclusions given next.

The experiments are conducted on the benchmark instances from Junqueira et al. (2012b), which
have n = 5,10, and 20 types of boxes. Containers have dimensions L = W = H, generating
groups for dimensions equal to 10, 20 and 30. Each group has 10 different instances. Two groups
of instances are used: An considers the dimensions of the boxes ranging from 25% to 75% of
the container’s respective dimension; and Bn considers the dimensions ranging from 10% to
50% of the container’s respective dimension. Instances of the group An have predominantly large
boxes compared to Bn, implying instances of the latter more challenging to solve. The maximum
number of copies of each item k is randomly picked in the interval [1,b L

lk
c · bW

wk
c · b H

hk
c], for

k = 1,2, . . . ,n.
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Algorithm 1: Checking vertical and horizontal stabilities.
Input: A packing P with n boxes.
Output: P is (or not) statically stable.

1 Let mk be the mass of each box k ∈ P.
2 Let C x

k , C y
k , and C z

k be the sets of contact surfaces of each box k ∈ P on the direction of the x- (left and right), y-
(front and back), and z-axes (top and bottom), respectively.

3 Let Px
k,c, Py

k,c, and Pz
k,c be the sets of contact points of each contact surface in C x

k , C y
k , and C z

k , of each box

k ∈ P, on the direction of the x-, y-, and z-axes, respectively.

4 Px←∪k∈P

(
∪c∈C x

k
Px

k,c

)
; Pz←∪k∈P

(
∪c∈C z

k
Pz

k,c

)
; Py←∪k∈P

(
∪c∈C y

k
Py

k,c

)
.

5 Let fi be the value of the normal force (to determine) related to each contact point i ∈Pz, where
~f = [ f1, f2, . . . , fi, . . . , fεz ]T and εz = |Pz|.

/* checking vertical stability */

6 if the B approach to P is feasible then
7 ~f ← use the B approach and solve the quadratic programming problem: minimize ∑

εz

i=1 fi χ̈i, subject to
~̈χ ≥~0 and ~f ≥~0.

8 else
9 return (P is not vertically stable).

/* checking horizontal stability */

10 f c
k ← mk

v2

r , which is the value of the centripetal force acting on each box k ∈ P.
11 Let f lx

i be the lateral force (to determine), on the direction of the x-axis, related to each contact point i ∈Px,
where ~f lx = [ f lx

1 , f lx
2 , . . . , f lx

i , . . . , f lx
εx ]T and εx = |Px|.

12 ~f lx← considering the B approach, solve the quadratic programming problem: minimize ∑
εx

i=1 f lx
i χ̈ lx

i , subject to
~̈χ lx ≥~0 and ~f lx ≥~0. The resultant mass of box k ∈ P is mk ← fk

g .

13 Let f ly
i be the lateral force (to determine), on the direction of the y-axis, related to each contact point i ∈Py,

where ~f ly = [ f ly
1 , f ly

2 , . . . , f ly
i , . . . , f ly

εy ]T and εy = |Py|.
14 ~f ly← considering the B approach, solve the quadratic programming problem: minimize ∑

εy

i=1 f ly
i χ̈

ly
i , subject to

~̈χ ly ≥~0 and ~f ly ≥~0. The resultant mass of box k ∈ P is mk ← fk
g .

15 f lx
k ← ∑c∈C x

k
∑i∈Px

k,c
f lx
i and f ly

k ← ∑c∈C y
k

∑i∈Py
k,c

f ly
i , which are the values of the resultant lateral forces acting

on each box k ∈ P on the direction of the x- and y-axes, respectively.

16 f hx
k ← f c

k + f lx
k and f hy

k ← f c
k + f ly

k , which are the values of the resultant horizontal forces acting on each box
k ∈ P on the direction of the x- and y-axes, respectively.

17 f x
i ← µ fi and f y

j ← µ f j , which are the values of the friction forces on the direction of the x- and y-axes,

respectively, related to each contact point i ∈Px and j ∈Py.
18 f x

k ← ∑c∈C x
k

∑i∈Px
k,c

f x
i and f y

k ← ∑c∈C y
k

∑i∈Py
k,c

f y
i , which are the values of the resultant friction forces acting

on each box k ∈ P on the direction of the x- and y-axes, respectively.
/* slide situation */

19 if there is a box k ∈ P for which f hx
k > f x

k or f hy
k > f y

k hold then
20 return (P is not horizontally stable).

21 fk ← ∑c∈C z
k

∑i∈Pz
k,c

fi, which is the value of the resultant normal force acting on each box k ∈ P.

22 Let~rk = (rx
k ,r

y
k ,r

z
k) be the distance vector, for each box k ∈ P, between its center of gravity and its

back-right-bottom corner.
/* tip over situation */

23 if there is a box k ∈ P for which f hx
k rz

k > fkrz
k or f hy

k rz
k > fkry

k hold then
24 return (P is not horizontally stable).

25 return (P is stable).

Pesquisa Operacional, Vol. 41, 2021: e240379
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There is a total of 180 instances, divided into 18 classes of 10 instances each. The time limit
the branch-and-cut algorithm has to solve each instance is 3600 seconds. The following tables
present the minimum, average, and maximum of the gap (in %) calculated by Gurobi, the runtime
(in seconds), and the container fill rate (in %), for each group of 10 instances with the same
container dimensions. For the proposed approach, we also present the number of cuts (unstable
packings) generated. On the other hand, we do not show the total time is spent because this time
is limited by the number of cuts and is less than 0.01 per call. It is essential to mention that these
values are presented for instances with a feasible (optimal) solution. Columns with the entry “-”
mean the time limit was exceeded, with no feasible solution. The discussion and comparison
of results consider the average values if it is not stated otherwise. For results concerning only
vertical stability, we refer to Oliveira et al. (2021).

In general, the proposed approach for horizontal stability has presented stable solutions with
better container fill rates than the support factor (i.e., the JMY approach). This is demonstrated in
the results for instances with predominantly large boxes, An in Table 1, and instances with mostly
small boxes, Bn in Table 2. These results indicate how less restrictive the proposed approach is
since it does not impose particular support for boxes’ faces. We noticed the JMY approach had
problems handling instances with more types of boxes, presenting no feasible solution within the
imposed time limit. The number of cuts added with the proposed approach is larger for groups
with fewer types of boxes or the predominance of small boxes.

In Table 1, for group An, the JMY approach has better container fill rates only when the gap of the
proposed approach is worse (e.g., groups A5 and A10 with unitary discretization and containers
dimensions equal to 30). In all groups whose gap is equal for both approaches, the JMY does
not outperform the proposed approach, which in turn allows the container fill rates to increase
about 2 percentage points in groups like A5 with RRP and containers dimensions equal to 10.
With a more refined grid as the RRP, gaps are overall smaller, and better fill rates are achieved.
On the other hand, such a grid may decrease the container fill rates, as in the results of the JMY
approach for groups A5 and A10 with containers dimensions equal to 10 and 20. Refined grids
are also associated with a high number of cuts to avoid unstable packings since the number of
possibilities to pack boxes reduces, as in the results of the proposed approach for A5 with CD
and RRP and containers dimensions equal to 20 and 30.

The results of Table 1 indicates the proposed approach has the best container fill rates for groups:
A5, with CD or RRP and containers in size 10, and with unitary discretization and containers
in size 20; A10, with all grids and containers in size 10, and with CD and containers in size 30;
A20, with all grids and containers in size 10, and with CD and containers in sizes 20 and 30. In
the others, the JMY approach is superior, although it could not present any solution for group
A20 with unitary discretization. The JMY is superior in groups with fewer types of boxes and/or
smaller containers in terms of the gap. The number of cuts added with the proposed approach is
higher in groups with fewer types of boxes. On the other hand, the proposed approach obtains
stable solutions with better fill rates from groups having more boxes.

Pesquisa Operacional, Vol. 41, 2021: e240379
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Table 1 – Horizontal stability results for the groups A5, A10, and A20.

Unitary Discretization CD RRP

Type
JMY approach Proposed approach JMY approach Proposed approach JMY approach Proposed approach

Group Dim. gap Time Vol. #Cuts gap Time Vol. gap Time Vol. #Cuts gap Time Vol. gap Time Vol. #Cuts gap Time Vol.
(%) (s) (%) (%) (s) (%) (%) (s) (%) (%) (s) (%) (%) (s) (%) (%) (s) (%)

10
Min. 0.00 0.10 76.00 0.00 0.00 0.20 77.20 0.00 0.10 76.00 0.00 0.00 0.07 77.20 0.00 0.05 76.00 0.00 0.00 0.06 77.20
Avg. 0.00 6.15 88.75 50.30 1.11 391.22 90.04 0.00 2.74 88.75 58.90 0.00 15.14 90.74 0.00 2.35 88.75 58.90 0.00 17.99 90.74
Max. 0.00 28.84 100.00 402.00 10.10 3600.08 100.00 0.00 10.58 100.00 402.00 0.00 92.60 100.00 0.00 12.82 100.00 402.00 0.00 124.72 100.00

20
Min. 0.00 1.58 53.25 4.00 0.00 47.61 31.40 0.00 0.02 53.25 0.00 0.00 0.10 6.12 0.00 0.01 53.25 4.00 0.00 0.08 51.05

A5 Avg. 0.00 17.01 72.20 2125.40 14.30 2109.86 72.71 0.00 2.26 72.20 3130.80 20.60 2542.77 68.92 0.00 1.07 68.62 4641.40 12.97 2352.75 70.78
Max. 0.00 76.84 87.00 10008.00 68.60 3601.37 90.10 0.00 15.40 87.00 17477.00 93.87 3603.93 90.10 0.00 1.07 68.62 28028.00 43.90 3632.73 88.25

30
Min. 0.00 2.87 42.49 4.00 0.00 2568.87 9.48 0.00 0.00 42.49 4.00 0.00 0.13 29.67 0.00 0.00 42.49 4.00 0.00 0.09 34.20
Avg. 0.00 7.64 58.58 15.00 34.60 3288.20 56.51 0.00 0.03 58.58 1211.30 12.91 1483.04 52.99 0.00 0.02 55.51 5054.90 8.45 1715.88 54.04
Max. 0.00 16.12 76.18 28.00 90.50 3607.64 76.18 0.00 0.10 76.18 7769.00 41.90 3601.53 74.51 0.00 0.10 66.70 25885.00 35.00 3604.56 66.70

10
Min. 0.00 2.35 96.80 0.00 0.00 0.33 98.40 0.00 0.62 96.80 0.00 0.00 0.12 98.40 0.00 0.84 96.80 0.00 0.00 0.13 98.40
Avg. 0.00 214.63 99.22 3.40 0.00 27.52 99.53 0.00 225.53 99.21 2.20 0.00 29.56 99.53 0.00 221.73 99.20 2.20 0.00 31.21 99.53
Max. 0.00 1268.58 100.00 12.00 0.00 193.64 100.00 0.00 1232.70 100.00 4.00 0.00 235.2 100.00 0.00 1208.86 100.00 4.00 0.00 252.34 100.00

20
Min. 0.00 13.26 70.76 0.00 0.00 325.74 4.90 0.00 1.93 70.76 0.00 0.00 5.99 49.88 0.00 1.95 71.76 0.00 0.00 1.73 18.50

A10 Avg. 2.14 789.42 85.14 4.20 19.51 1966.89 77.19 0.00 190.96 85.26 4.10 3.60 1532.41 81.71 0.00 125.05 82.28 7.00 18.85 1723.18 75.96
Max. 15.50 3600.07 94.30 12.00 97.00 3601.22 94.29 0.00 1088.87 94.30 17.00 21.60 3603.41 94.30 0.00 582.21 94.30 26.00 81.50 3602.53 94.30

30
Min. 0.00 68.20 63.83 4.00 0.00 3409.98 5.40 0.00 0.45 63.83 4.00 0.00 0.33 58.32 0.00 1.08 61.89 4.00 0.00 0.03 45.47
Avg. 0.00 683.61 76.02 4.00 41.77 3658.79 57.54 0.00 53.13 76.02 4.00 3.27 1774.98 79.04 0.00 17.84 73.83 4.00 6.28 1291.41 77.50
Max. 0.00 3601.33 93.56 4.00 94.60 3954.21 93.56 0.00 382.04 93.56 4.00 17.50 3600.92 93.56 0.00 136.95 93.56 4.00 40.80 3601.68 93.56

10
Min. - 3600.00 - 0.00 0.00 1.84 99.60 0.00 16.86 98.40 0.00 0.00 1.70 99.60 0.00 16.97 98.40 0.00 0.00 1.70 99.60
Avg. - 3600.00 - 2.20 0.00 5.34 99.95 0.12 379.61 99.81 2.20 0.00 3.82 99.95 0.12 379.58 99.81 2.20 0.00 3.82 99.95
Max. - 3600.00 - 7.00 0.00 19.36 100.00 1.20 3601.01 100.00 7.00 0.00 11.30 100.00 1.20 3601.01 100.00 7.00 0.00 11.31 100.00

20
Min. - 3600.00 - 0.00 0.00 1588.51 19.25 0.00 37.24 100.00 0.00 0.00 11.33 90.64 0.00 183.03 81.93 0.00 0.00 79.78 90.64

A20 Avg. - 3600.00 - 3.60 19.97 3123.07 79.14 0.47 1172.69 91.76 3.20 0.00 792.16 95.02 0.46 1021.18 91.53 3.20 1.36 730.02 95.01
Max. - 3600.00 - 4.00 80.70 3602.28 97.30 4.70 3601.03 97.75 4.00 0.00 3601.04 97.75 4.60 3601.12 97.75 4.00 0.00 3600.04 97.75

30
Min. - 3600.00 - 4.00 0.00 3257.34 7.70 0.00 51.63 77.96 4.00 0.00 37.24 86.24 0.00 27.09 77.96 4.00 0.00 21.18 86.42
Avg. - 3600.00 - 4.00 23.09 3643.17 75.58 0.28 806.01 88.51 4.00 1.27 1107.72 91.59 0.00 489.50 87.15 4.00 0.23 2366.33 91.27
Max. - 3600.00 - 4.00 92.30 4215.76 97.21 2.80 3601.03 92.89 4.00 2.70 2500.44 97.21 0.00 2663.68 92.89 4.00 1.20 14194.00 97.21
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Table 2 – Horizontal stability results for the groups B5, B10, and B20.

Unitary Discretization CD RRP

Type
JMY approach Proposed approach JMY approach Proposed approach JMY approach Proposed approach

Group Dim. gap Time Vol. #Cuts gap Time Vol. gap Time Vol. #Cuts gap Time Vol. gap Time Vol. #Cuts gap Time Vol.
(%) (s) (%) (%) (s) (%) (%) (s) (%) (%) (s) (%) (%) (s) (%) (%) (s) (%)

10
Min. 0.00 4.69 95.20 0.00 0.00 0.55 95.20 0.00 1.35 95.20 0.00 0.00 0.63 95.20 0.00 1.36 95.20 0.00 0.00 0.38 95.20
Avg. 0.14 751.97 98.50 6653.10 0.00 468.01 98.59 0.14 853.12 98.51 804.90 0.00 447.45 98.59 0.14 754.74 98.51 833.20 0.00 435.36 98.59
Max. 0.80 3600.34 100.00 50063.00 0.00 3600.01 100.00 0.80 3600.06 100.00 7062.00 0.00 3601.67 100.00 0.80 3600.01 100.00 7062.00 0.00 3600.00 100.00

20
Min. 0.00 204.57 58.50 45.00 0.00 108.52 77.60 0.00 32.74 69.65 61.00 0.00 11.53 77.60 0.00 13.60 69.05 281.00 0.00 2.87 48.60

B5 Avg. 14.56 3260.49 83.36 13203.80 3.70 2553.87 95.03 11.36 3154.16 85.87 73058.20 0.67 2358.07 94.47 11.49 3081.18 85.23 72782.10 13.03 2301.38 90.53
Max. 32.70 3600.13 99.20 46127.00 2.20 3600.62 100.00 30.50 3600.12 99.20 162107.00 6.70 3609.72 100.00 30.90 3600.14 99.20 160379.00 92.00 3613.29 100.00

30
Min. 2.90 3600.18 24.69 115.00 2.00 1031.63 84.18 3.10 3600.01 24.69 59.00 0.00 1128.52 47.50 0.00 971.14 49.01 59.00 0.00 946.94 11.61
Avg. 18.51 3601.29 78.97 7026.20 10.40 3600.54 88.95 16.50 3601.32 79.36 64928.60 7.27 3182.20 92.72 18.63 3217.22 79.19 76743.40 26.22 3335.01 71.42
Max. 75.30 3603.98 95.64 55356.00 27.00 4215.76 97.21 75.30 3610.04 95.38 171815.00 15.81 3600.5 99.00 82.70 3606.36 95.64 168289.00 88.30 3601.62 99.00

10
Min. 0.00 10.53 9 9.90 0.00 0.00 1.23 100.00 0.00 10.52 100.00 0.00 0.00 1.22 100.00 0.00 10.47 99.90 0.00 0.00 1.22 100.00
Avg. 0.00 59.10 99.98 7.70 0.00 4.20 100.00 0.00 60.00 100.00 13.00 0.00 4.23 100.00 0.00 60.13 99.98 11.80 0.00 4.19 100.00
Max. 0.00 273.47 100.00 22.00 0.00 7.07 100.00 0.00 276.49 100.00 56.00 0.00 7.06 100.00 0.00 278.84 100.00 56.00 0.00 7.06 100.00

20
Min. 4.30 3600.12 60.00 42.00 0.00 3313.05 73.60 10.40 3600.13 60.00 32.00 0.00 1838.46 1.50 4.30 3600.92 60.00 45.00 0.00 2291.8 3.00

B10 Avg. 19.91 3602.11 81.73 12787.00 9.50 3571.42 90.07 24.48 3602.17 81.08 35940.30 18.28 3424.05 81.71 23.79 3603.25 81.01 33321.50 19.00 3469.40 81.95
Max. 40.00 3605.10 95.63 54188.00 26.00 3600.64 100.00 40.30 3605.75 95.63 148589.00 98.50 3601.08 100.00 23.79 3603.25 81.01 159543.00 97.00 3600.63 100.00

30
Min. 19.60 3660.61 68.47 13.00 9.30 3600.01 79.81 19.60 3622.96 68.47 46.00 9.30 3600.00 79.81 19.60 3606.69 68.47 7.00 9.00 3600.00 80.74
Avg. 23.95 3724.07 76.00 270.10 15.17 3603.43 84.83 23.95 3646.85 76.00 42284.60 15.14 3600.01 84.83 25.58 3632.47 74.37 27184.60 15.02 3600.00 84.92
Max. 31.50 3865.85 80.36 2295.00 20.19 3612.10 90.70 31.50 3671.19 80.36 136988.00 20.10 3600.03 90.70 31.50 3668.39 80.36 142789.00 19.20 3600.01 90.70

10
Min. 0.00 32.06 100.00 0.00 0.00 0.72 100.00 0.00 32.13 100.00 0.00 0.00 0.72 100.00 0.00 32.15 100.00 0.00 0.00 0.72 100.00
Avg. 0.00 87.24 100.00 3.50 0.00 4.79 100.00 0.00 87.18 100.00 4.60 0.00 4.79 100.00 0.00 87.35 100.00 4.60 0.00 4.81 100.00
Max. 0.00 156.05 100.00 9.00 0.00 8.07 100.00 0.00 156.26 100.00 16.00 0.00 8.06 100.00 0.00 157.20 100.00 16.00 0.00 8.08 100.00

20
Min. 0.50 3628.63 82.99 24.00 0.30 3600.01 92.03 0.50 3612.72 82.99 6.00 0.30 3600.00 92.03 0.50 3612.30 82.99 14.00 0.30 3600.00 92.03

B20 Avg. 6.89 3630.96 93.08 296.40 3.78 3600.13 96.18 6.89 3629.82 93.08 3986.70 3.78 3600.02 96.18 6.89 3631.28 93.08 4301.00 3.98 3600.22 96.18
Max. 17.00 3635.48 99.45 1825.00 7.90 3600.37 99.70 17.00 3672.34 99.45 21945.00 7.90 3600.44 99.70 17.00 3678.31 99.45 24174.00 7.90 3600.72 99.70

30
Min. - - - 5.00 11.60 3600.18 81.46 - 3600.00 - 7.00 11.60 3600.01 81.46 - 3600.00 - 6.00 11.60 3600.01 81.46
Avg. 20.71 1689.04 59.29 13.70 14.63 3608.24 85.31 - 3600.00 - 3751.10 14.72 3600.02 85.27 - 3600.00 - 14117.00 14.62 3600.02 85.32
Max. 33.50 5176.78 85.40 23.00 18.50 3667.17 88.32 - 3600.00 - 24952.00 18.53 3600.05 88.32 - 3600.00 - 83909.00 18.5 3600.06 88.32
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Table 2 has results of group Bn whose conclusions are similar to those of An. In general, stable
solutions tend to worsen, and more cuts are added in the presence of refined grids, although the
gaps are better with such grids. Besides that, container fill rates tend to increase in groups with
more types of boxes without worsening gaps in many cases. For B5, with unitary discretization
and containers in sizes 10, 20, and 30, the proposed approach provides stable solutions with the
best fill rates, with a difference of 0.10%, 12.28%, and 11.21% in comparison with the JMY,
respectively. With CD and RRP, the best fill rates are again obtained with the proposed approach,
except with RRP and containers in size 30 (but here, the proposed approach’s gap is worse).
Similar results are obtained from B10 and B20, where the proposed approach has the best fill rates
for all grids.

The results of groups An and Bn validate the ability of the proposed approach to allow stable
solutions with larger container fill rates. We notice that group Bn is harder to solve due to the
presence of small boxes, resulting in grids with more points. This is perceptible on the number
of cuts and gaps in Table 2, which are overall larger for An in Table 1. Concerning the number of
cuts, while the maximum is 28028 for group A5 with RRP, this value reaches 171815 for group
B5 with CD. On the other hand, the container fill rates are superior in Bn compared to An. We
notice that in Bn, the stable solutions with the proposed approach have overall larger container
fill rates for all grids and containers dimensions.

The proposed approach has the advantage of not imposing support, which in turn is hard to deter-
mine. Thinking on that, we present Table 3 with the support provided with the proposed approach
for horizontal stability, which may help decision-makers and practitioners in their decisions. We
show the minimum, average, and maximum support for boxes’ faces of each group and container
dimensions. This may be useful in practical situations when requiring solutions to be stable by
satisfying a given support factor. The support comes from three directions: z-axis (bottom faces);
x-axis (left faces); and, y-axis (frontal faces). The bottom faces resting on the floor, and the left
and frontal faces in direct contact with the container’s lateral faces are not considered.

In Table 3, the average support for groups An and Bn are, respectively: 91.81% and 93.38%, for
bottom faces; 90.69% and 91.15%, for left faces; and, 91.22% and 92.20%, for frontal faces.
When comparing the groups, the support is smaller for An. Note that this group has larger boxes
compared to Bn and has stable solutions with inferior container fill rates as shown in Tables 1 and
2. The difference is small in terms of average support compared to the JMY approach that uses
full support. However, it is quite large when considering the column with the minimum support
in each direction. For instance, the minimum values are below 40% in groups A20 and B10 with
containers in size 30, and still, the container fill rates are better compared to JMY.

5 CONCLUDING REMARKS

In this paper, we handle the SCLP with cargo stability. We solve an integer model for the con-
tainer loading problem while a routine generates cutting planes that prevent unstable packings.
This routine verifies cargo stability by using an approach based on the static equilibrium of rigid
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Table 3 – Average support of the solutions obtained with the proposed approach.

Horizontal Stability
Group Dim. On the direction of z-axis On the direction of x-axis On the direction of y-axis

Min Avg. Max. Min. Avg. Max. Min. Avg. Max.

A5

10 75.00 98.82 100.00 70.00 98.89 100.00 81.67 99.17 100.00
20 56.10 95.47 100.00 53.38 94.94 100.00 53.80 96.13 100.00
30 58.81 94.50 100.00 37.30 93.05 100.00 48.43 94.52 100.00

A10

10 69.50 91.78 100.00 65.79 90.70 100.00 66.83 90.61 100.00
20 59.76 78.30 93.98 41.78 70.28 90.36 38.69 67.05 91.82
30 51.58 76.70 96.06 68.38 79.63 83.38 67.15 86.56 100.00

A20

10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 54.28 97.53 100.00 54.41 97.17 100.00 69.84 97.40 100.00
30 36.78 93.14 100.00 21.01 91.58 100.00 25.83 89.50 100.00

B5

10 94.67 99.41 100.00 83.29 98.38 100.00 94.17 99.69 100.00
20 62.01 87.86 100.00 40.05 80.92 100.00 68.48 90.13 100.00
30 58.77 81.67 96.46 43.94 72.56 90.47 52.68 74.79 87.82

B10

10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
20 34.50 97.17 100.00 43.96 97.04 100.00 46.25 97.41 100.00
30 27.85 91.54 100.00 29.14 91.16 100.00 33.23 90.62 100.00

B20

10 96.67 99.74 100.00 98.89 99.91 100.00 96.67 99.78 100.00
20 64.98 91.81 100.00 63.38 89.56 97.78 69.53 91.72 100.00
30 74.56 91.22 98.67 65.01 90.86 100.00 62.93 85.62 98.97

bodies. The approach considers two situations in the presence of horizontal forces, sliding and
tipping over.

Even though the proposed approach demands the correct value of the normal forces, which re-
quires solving a quadratic programming model, it does not impose boxes on being side-by-side
and touching themselves as demanded by the support factor approach. When considering all
grids, the average results in terms of container fill rates for groups A5, A10, A20, B5, B10, and
B20, are 72.44%, 86.24%, 62.06%, 87.50%, 85.57%, and 70.95%, with the support factor, and
71.95%, 83.06%, 91.94%, 92.10%, 89.81%, and 92.62%, with the proposed approach, respec-
tively. Our approach allowed stable solutions with higher container fill rates, especially for groups
in which small boxes predominate.

With the proposed approach for horizontal stability, the obtained stable solutions have container
fill rates with the unitary discretization, CD, and RRP equal to 78.69%, 84.39%, and 83.87%, for
group An, and 93.22%, 92.64%, and 88.67%, for Bn, respectively. In general, the more restricted
grids allowed to find better solutions within a shorter computing time, but the results showed that
the more restricted grid (RRP) does not necessarily lead to better results than a less restricted
grid (CD). Besides that, instances with smaller and fewer types of boxes are susceptible to have
a high number of cuts to avoid unstable solutions. In terms of the support obtained from the
stable solutions with the proposed approach, the average value is superior to 90% in all three
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directions (x-, y-, and z-axes). On the other hand, the minimum support is inferior to 70% on
average, allowing more flexibility than full support.

Future research directions are to consider other forces that may occur during transportation, as
the influence of wind pressure, road curvature, and abrupt speed changes. The more we add
details in the approach, the more it represents the real cargo stability. Another direction is to
investigate the impact of other/multiple practical constraints cooperatively with cargo stability,
for example, load balancing, load-bearing, and multi-drop requirements, besides coupling them
in vehicle routing problems. In this way, the final cargo will comply with many aspects required
for efficient transportation. It is also of interest the proposal of formulations that may have parts
of the proposed approach as linear constraints similar to the support factor constraints.
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[22] KURPEL DV, SCARPIN CT, PÉCORA JE, SCHENEKEMBERG CM & COELHO LC. 2020.
The exact solutions of several types of container loading problems. European Journal of
Operational Research, 284(1): 87–107.

[23] MACK D, BORTFELDT A & GEHRING H. 2004. A parallel hybrid local search algorithm
for the container loading problem. International Transactions in Operational Research,
11(5): 511–533.

[24] MARTELLO S, PISINGER D & VIGO D. 2000. The three-dimensional bin packing
problem. Operations Research, 48(2): 256–267.

[25] NASCIMENTO OX, QUEIROZ TA & JUNQUEIRA L. 2021. Practical constraints in the
container loading problem: Comprehensive formulations and exact algorithm. Computers
& Operations Research, 128: 105186.

[26] OLIVEIRA LA, DE LIMA VL, QUEIROZ TA & MIYAZAWA FK. 2021. The con-
tainer loading problem with cargo stability: a study about support factor, mechanical
equilibrium, and grids. Engineering Optimization, 53: 1192–1211.

[27] PAQUAY C, SCHYNS M & LIMBOURG S. 2016. A mixed integer programming formula-
tion for the three-dimensional bin packing problem deriving from an air cargo application.
International Transactions in Operational Research, 23(1-2): 187–213.

[28] QUEIROZ TA, BRACHT EC, MIYAZAWA FK & BITTENCOURT ML. 2019. An exten-
sion of Queiroz and Miyazawa’s method for vertical stability in two-dimensional packing
problems to deal with horizontal stability. Engineering Optimization, 56(6): 1049–1070.

[29] QUEIROZ TA & MIYAZAWA FK. 2014. Order and static stability into the strip packing
problem. Annals of Operations Research, 223(1): 137–154.
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