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ABSTRACT. This paper proposes a method (denoted by WD-ANN) that combines the Artificial Neural

Networks (ANN) and the Wavelet Decomposition (WD) to generate short-term global horizontal solar ra-

diation forecasting, which is an essential information for evaluating the electrical power generated from

the conversion of solar energy into electrical energy. The WD-ANN method consists of two basic steps:

firstly, it is performed the decomposition of level p of the time series of interest, generating p + 1 wavelet

orthonormal components; secondly, the p + 1 wavelet orthonormal components (generated in the step 1)

are inserted simultaneously into an ANN in order to generate short-term forecasting. The results showed

that the proposed method (WD-ANN) improved substantially the performance over the (traditional) ANN

method.

Keywords: wavelet decomposition, artificial neural networks, forecasts.

1 INTRODUCTION

The conversion of solar energy into electrical energy is one of the most promising alternatives

to generate electricity from clean and renewable way. It can be done through large generating
plants connected to the transmission system or by small generation units for the isolated systems.
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74 ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION

The Sun provides the Earth’s atmosphere annually, approximately, 1.5 × 1018 kWh of energy,

but only a fraction of this energy reaches the Earth’s surface, due to the reflection and absorption
of sunlight by the atmosphere. One problem of renewable energy, for instance, wind and solar
energies is the fact that the production of these sources is dependent on meteorological factors.

In the case of solar energy particularly, the alternation of day and night, the seasons, the passage
of clouds and rainy periods cause great variability and discontinuities in the production of elec-
tricity. Also in this case, there is the necessity to have capable devices of storing energy during

the day in order to make it available during the night such as battery banks or salt tanks (Wittmann
et al., 2008). Thus, the safe economic integration of alternative sources in the operation of the
electric system depends on accurate predictions of energy production, so that operators can make

decisions about the maintenance and dispatch of generating units that feed the system.

Among the techniques employed in solar radiation forecasting, it can be highlighted the ARIMA
(Perdomo et al., 2010), the artificial neural networks (ANN) (Zervas et al., 2008; Yona & Senjyu,
2009; Deng et al., 2010; Yanling et al., 2012; Zhang & Behera, 2012), the neuro-fuzzy systems

(ANFIS), the Kalman Filter (Chaabene & Ammar, 2008) and the different ways of combining
orthonormal wavelet bases and ANN (Cao et al., 2009; Zhou et al., 2011).

Wavelets have been used in the time series literature combined with other types of predictive
models and resulting in significant gains in terms of modeling. In this context, the wavelet

theory consists in an auxiliary pre-processing procedure of the series in question, which can
be accomplished generally in two ways: by decomposition or by noise shrinkage of the time
series to be modeled. There are several studies that highlighted the gains from the combinations
of decomposition and/or wavelet shrinkage and neural networks, among which it is possible to

mention: Krishna et al. (2011), who applied the combination to model river flow; Liu et al.
(2010), Catalão et al. (2011) and Teixeira Junior et al. (2011), who modeled wind time series;
Teixeira Junior et al. (2012), who worked with series of solar radiation; and Minu et al. (2010),

who studied time series of number of terrorist attacks in the world.

In this article, it is proposed a method (denoted by WD-ANN) to generate short-term forecasts
of global horizontal solar radiation, which is an essential information for evaluating the electrical
power generated from the conversion of solar energy into electrical energy. In summary, the

forecasts of WD-ANN method are obtained from the combined use of an ANN and a wavelet
decomposition of p level. More specifically, it starts with the wavelet decomposition level p
(Faria et al., 2009; Teixeira Junior et al., 2011; Perdomo et al., 2010) of the time series of global

horizontal solar radiation, generating p+1 orthonormal wavelet components. Then these wavelet
components are used as the set of input patterns of an ANN, which is structured to generate
short-term forecasts of global horizontal solar radiation.

In the computational experiments, it was used the hourly time series of average global hori-

zontal solar radiation (W/m2) obtained from the Solarimetric stations of Sonda Project INPE/
CPTEC6 (Pereira et al., 2006), for 10 locations in Brazil: Brası́lia, Caicó, Campo Grande,

6These time series can be found in <http://sonda.ccst.inpe.br/infos/index.html>.
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Cuiabá, Florianópolis, Joinville, Natal, Palmas, Petrolina and São Martinho. Only for Cuiabá

the analysis is reported with minor details. All time series cover exactly a period of one year, but
a different year in each location.

The paper is organized into six sections. In Sections 2 and 3, there are introduced theoretical
aspects of Wavelet Theory and Neural Networks, respectively. The WD-ANN method is detailed

in Section 4. The computational experiments and its main results are presented in Section 5. In
Section 6, there are the conclusions of the research.

2 WAVELET THEORY

2.1 Hilbert Space, Orthonormal Basis and Fourier Series

According to Kubrusly (2001), a Hilbert space H is any linear space equipped with an inner

product and complete. The collection l2 of all infinite sequences of complex numbers quadrat-
ically summable (in other words, l2 := { f : Z → C : ∑

t∈Z | f (t)|2 < ∞}), provided with an
inner product <; > (that is, <; >: l2 → C), or, simply, the pair (l2, <; >), is a particular case of
Hilbert space (Kubrusly, 2001). According to Kubrusly & Levan (2002), a subspace {hn}n→Z of

a Hilbert space H is a orthonormal basis of H if, and only if, satisfies the axioms (i), (ii) and (iii).

(i) orthogonality: 〈h′
n , hm〉 = 0, whenever n′ �= m, where n′, m ∈ Z;

(ii) normality: ||h′
n|| = 1, where n′ ∈ Z;

(iii) completeness: 〈x, h′
n〉 = 0 if, and only if, x = 0.

According to Theorem of Fourier series (Kubrusly, 2001), if the subset {hn}n∈Z is an orthonor-

mal basis, then the identity in (1) is a single expansion x of H in terms of the orthonormal basis
{hn}n∈Z . The expansion in (1) is called a Fourier Series.

x =
∑
n∈Z

〈x, hn〉
||hn|| hn. (1)

2.2 Wavelet Function

Consider a Hilbert space (l2, <; >). One element ω(.) ∈ l2 – with an inner product <; >: l2 →
C – is called wavelet function if, and only if, the functions ωm,n(.) := 2m/2ω(2m(.) − n), where

n, m ∈ Z, form an orthonormal basis for the Hilbert space (l2, <; >). According to (Levan &
Kubrusly, 2003), any function f (.) in (l2, <; >) admits the Fourier series expansion in terms of
an orthonormal basis wavelet {ωm,n(.)}(m,n)∈Z×Z of l2, as in (2).

f (.) =
∑
m∈Z

∑
n→Z

〈 f (.), ωm,n(.)〉ωm,n (.) (2)

where m is called scaling parameter and n is called translation parameter (Ogden, 1997).

According to Levan & Kubrusly (2003), the projection of f (.) on ωm,n(.) can be interpreted
as a detail variation of f (.), on scaling m and translation n. According to Mallat (1998), the

Pesquisa Operacional, Vol. 35(1), 2015
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closed subspace (Kubrusly, 2001) Wm(ω) := (span{ωm,n(.)}n∈z)− of (l2, <; >) is called details

subspace (on scaling m). In turn, the projection of f (.) on (closed) subspace of details Wm(ω),
denoted by fWm (ω)(.), is defined by the partial sum showed in (3).

fWm (ω)(.) :=
∑
n∈Z

〈 f (.), ωm,n (.)〉ωm,n (.) (3)

According to Levan & Kubrusly (2003), the projection fWm (ω)(.) can be interpreted as a detail

component of f (.), on scaling m, on (Wm(ω), <; >). As a result, given the identity (1), it follows
that f (.) can be interpreted as a sum of all detail components fWm (ω)(.), at all entire scaling
m, on closed subspace

((∑
n∈z Wm(ω)

)−
, <; >

)
of (l2, <; >). Tautologically, it follows that(( ∑

n∈z Wm(ω)
)−

, <; >
) = (l2, <; >).

On the other hand, one element φ(.) ∈ l2 – with an inner product <; >: l2 ∈ C – is called
wavelet scaling function (or simply scaling function) if, and only if, the functions φm,n(.) :=
2m/2φ(2m(.) − n), where n, m ∈ Z, are such that 〈φm ′,n′ (.), φ j,k (.)〉 = 0, whenever m′ = j

and n′ �= k, and 〈φm ′,n′ (.), φ j,k (.)〉 �= 0 else. According to Mallat (1998), the closed sub-
space Vm(φ) := (

span{φm,n(.)}n∈Z
)− of (l2, <; >) is called approximation subspace (on scaling

m). The projection of f (.) on (closed) subspace of approximation Vm(φ) is defined by the sum

described in (4).
fVm (φ)(.) :=

∑
n∈Z

〈 f (.), φm,n(.)〉φm,n (.) (4)

According to Mallat (1998), fVm (φ)(.) can be interpreted as an approximation component of f (.),
on scaling m, on subspace (Vm(φ), <; >) de (l2, <; >).

2.3 Wavelet Transform

Wavelet transform on (l2, <; >), is the inner product <; >: l2 → C between a function f (.) ∈ l2

and a wavelet function ωm,n(.) ∈ Wm(ω) or a scaling function φm,n(.) ∈ Vm(φ), (m, n) ∈ Z×Z.
According to Mallat (1998), the wavelets transforms can be classified and grouped into two
distinct sets: detail coefficients, denoted by {dm,n}(m,n)∈Z×Z, and approximation coefficients,

denoted by {am,n}(m,n)∈Z×Z . For each ordered pair (m, n) ∈ Z × Z, it has that the wavelet
transforms dm,n and am,n are defined, respectively, by

dm,n := 〈 f (.), ωm,n (.)〉 =
∑
t∈Z

f (t)ωm,n(t) and

am,n := 〈 f (.), φm,n (.)〉 =
∑
t∈Z

f (t)φm,n(t).

2.4 Wavelet Expansion

According to Levan & Kubrusly (2003), a chain of approximation subspaces {Vm(φ)}m→Z

of (l2, <; >) is called wavelet multirresolution analysis (or, simply, wavelet MRA), with scaling
function φ(.) ∈ l2, if the following conditions are hold:

Pesquisa Operacional, Vol. 35(1), 2015
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(a) Vm(φ) ⊂ Vm+1(φ), ∀m ∈ Z;

(b) ∩m∈ZVm(φ) = {0};
(c)

( ∪m∈Z Vm(φ)
)− = H ;

(d) v ∈ Vm(φ) ⇔ Dv ∈ Vm+1(φ), m ∈ Z; and

(e)
{
2m/2φ(2m(.) − n)

}
n∈Z is an orthonormal basis of Vm(φ), m ∈ Z.

In Kubrusly & Levan (2002), it is shown that a l2 space can be orthogonally expanded such as
l2 = ( ∑

m∈z Wm(ω)
)−, and in Levan & Kubrusly (2003), it is shown, using the axioms of a

wavelet MRA {Vm(φ)}m∈z, that the identity Vm0(φ) = ( ∑m0−1
−∞ Wm(ω)

)−, for all m0 ∈ Z, is
true. Based on the identities l2 = (∑

m∈z Wm(ω)
)− and Vm0(φ) = (∑m0−1

−∞ Wm(ω)
)−, and on

Theorem of Orthogonal Structures (Kubrusly, 2001), it is shown in Kubrusly & Levan (2002)

that the l2 space can be orthogonally expanded as in (5).

l2 = Vm0(φ) +
( +∞∑

m=m0

Wm(ω)

)−
(5)

As a result, it follows that f (.) has (a single) orthogonal decomposition on the Hilbert space

(l2, <; >), as in (6).

f (.) = fVm0
(φ)(.) +

+∞∑
m=m0

fWm (ω)(.) (6)

Given the definitions of wavelet components fVm0 (φ)(.) and fWm (ω)(.) and the identities (1) and
(6), it follows that the Fourier series of function f (.), on the Hilbert space (l2, <; >), in terms of

the orthonormal basis wavelet {φm0,n(.)}n∈z ∪ {ωn,m (.)}(m,n)∈{m}+∞
m0 ×z, is given by:

f (.) =
∑
n∈z

am0,n φm0,n(.) +
+∞∑

m=m0

∑
n∈z

dm,n ωm,n(.) (7)

where: am,n := ∑
t∈Z f (t)φm,n(t), dm,n := ∑

t∈Z f (t)ωm,n(t), where m0 ≤ m < +∞
and m0 ∈ Z.

3 ARTIFICIAL NEURAL NETWORKS

According to Haykin (2001), Artificial Neural Networks (ANN) are distributed parallel systems

composed of simple processing units called artificial neurons. They are arranged in one or more
layers interconnected by a large number of connections (synapses), which are generally unidirec-
tional, and they have weights to balance the inputs received by each neuron. The most common

architecture of an ANN is the multilayer perceptron with three layers (input, hidden, and output),
as shown in Figure 1(a).

Analogously to the human brain’s processing (where synapses are reinforced or weakened) the
weights on connections between layers are adjusted during the process of learning of an ANN.

Pesquisa Operacional, Vol. 35(1), 2015
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The first layer of the ANN is the input layer, the only one who is exposed to input variables.

This layer transmits the values of the input variables to neurons of the hidden layer so that they
can extract the relevant features (or patterns) of the input signals and transmit the results to the
output layer. The definition of the number of neurons in each layer is performed empirically.

The ANN’s training consists of an iterative process to obtain the weights of connections between
processing units.

The main training algorithm is named backpropagation, whose weights’ fit occurs through an
optimization process of two phases: forward and backward, as shown in Figure 1(b). In the

forward phase, it is calculated a response provided by the network for a given input pattern.
In the backward phase, the deviation (error) between the desired response (target) and the re-
sponse provided by the ANN is used to adjust the weights of the connections.

saída

(a) ANN’s Architecture    (b) Phases of backpropagation algorithm

output
calculation 

input
pattern 

Backward Phase errorajusted
weights

Forward Phase input
layer

hidden
layer

output
layer

Figure 1 – Multilayer perceptron artificial neural network. (a) ANN’s Architecture; (b) Phases of back-
propagation algorithm.

During the neural network training, the various input patterns and their corresponding desired

outputs are presented to the ANN, such that the weights of synapses are corrected iteratively by
gradient descent algorithm in order to minimize the sum of squared errors (Haykin, 2001).

The time series forecasting through ANN starts by the assembly of the training patterns (in-
put/output pairs) that depends on the setting of the window size L of time (to the past values

of the series and to the explanatory variables) and the forecast horizon h. In an autoregressive
process (linear or nonlinear), for example, the input pattern is formed only by past values of the
series itself.

In turn, the pattern of desired output is the value of the observed time series forecasting horizon.

Pesquisa Operacional, Vol. 35(1), 2015
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In Figure 2, it is illustrated how is generally constructed the training set for the forecast based on

the past four values passed. Note that the training patterns’ construction of the network consists
of moving the input and output windows along the entire time series. Thereby, each pair of
windows (input/output) serves as a training pattern and must be presented repeatedly until the

learning algorithm converges.

time series 

time 

input network = 
n past values 
example: n=4  

input window 

desired output =
values to k steps ahead 

example: k=1  

output window 

Figure 2 – Setting of the training set.

4 COMBINATION OF ARTIFICIAL NEURAL NETWORKS
AND WAVELET DECOMPOSITION

The combination of an ANN and wavelet decomposition (WD) may be performed in many dif-
ferent ways. For instance, it can be applied the wavelet decomposition in the time series. Then,
each resultant series have to be modeled by the traditional ANN, and finally, it should add the

series’ forecasts in order to obtain the forecast of the original time series. Another option is to
use wavelet functions (normalized in the range [0, 1]) as activation functions of neurons of a
traditional ANN and to utilize the input of decomposed patterns through WD.

In this article, however, it was chosen a combining method (denoted by WD-ANN), in which

the wavelet components of the time series are the input patterns of a feedfoward MLP ANN
whose output provides a time series forecast (according to the diagram of Fig. 3). Basically, the
proposed approach can be divided into steps (1) [described in Section 4.1] and (2) [described in

Section 4.2]:

(1) To make the wavelet decomposition of level p (Reis & Silva, 2004; Lei & Ran, 2008;
Teixeira Junior et al., 2011) of a time series f (.); and

(2) To use the wavelet components of f (.) (derived from step 1) as inputs of an ANN in order
to perform the time series forecasts.

Pesquisa Operacional, Vol. 35(1), 2015
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Time series 
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Figure 3 – Combination of wavelet decomposition + ANN.

4.1 Wavelet decomposition of level p

Let f (.) be a time series of (l2, <; >), and {φm0,n(.)}n∈z ∪{ωn,m (.)}(m,n)∈{m}+∞
m0 ×z be a orthonor-

mal wavelet basis of Hilbert space (l2, <; >). According to identity (7), the wavelet decomposi-
tion of level p (Teixeira Junior et al., 2011) of f (.), where p is a natural number inside interval

1 ≤ p < ∞, is represented by the (approximated) Fourier series described in (8).

f (.) � ≈
f (.) =

nm0∑
n=1

am0,n φm0,n(.) +
nm∑

n=1

m0+(p1)∑
m=m0

dm,n ωm,n(.) (8)

The optimal values of the parameters m0, nm0 and {nm}m0+(p−1)
m=m0 are such that minimize the

Euclidean metric (Kubrusly, 2001) from the time series f (.) and your approximation
≈
f (.). The

wavelets components fVm0 (φ)(.) := ∑
n∈z am0,nφm0,n(.) and fWm (ω)(.) := ∑

n∈z dm,nωm,n(.)

are classified, respectively, as approximation component (at m0 scale) and detail component (at
m scale) of time series f (.) of (l2, <; >). Given the expansion (8), it follows that the time series
can be expanded orthogonally on (l2, <; >), as in (9).

f (.) � fVm0 (φ)(.) +
m0+(p−1)∑

m=m0

fWm (ω)(.) (9)

Pesquisa Operacional, Vol. 35(1), 2015
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where fVm0 (φ)(.) = {
fVm0 (φ)(t)

}
t∈Z, for a fixed integer m0, and fWm (ω)(.) = {

fWm (ω)(t)
}

t∈Z,

where m is an integer inside the interval m0 ≤ m ≤ m0 + (p − 1), being p the level of wavelet
decomposition.

4.2 Submission of the wavelet components to the ANN

Take a feedforward MLP ANN. The set of temporal signals
{{

fVm0 (φ)(t)
}T

t=1

} ∪ {{
fWm (ω)(t)

}T
t=1

}m0+(p−1)

m=m0

arising from p + 1 wavelet components of a time series { f (t)}T
t=1 [Section 4.1] are such that

constitute the set of input patterns to a feedforward MLP ANN to the training process.

Whereas a window size equal to L past values, the time series forecast (the output of ANN) for
each t ′ time (in training, validation and test samples) is obtained from the set of input patterns

described in (10).

{
fVm0 (φ)(t)

}t ′−1
t=t ′−L

⋃ {{
fVm(ω)

(t)
}t ′−′

t=t ′−L

}m0+p(p−1)

m=m0
(10)

5 COMPUTATIONAL EXPERIMENT

In the computational experiments, it was considered the hourly time series of global horizontal
solar radiation during the period from January to December. The representation of the daily

profiles of solar radiation at ten different locations for different years is showed in Figure 4.

The sample used in ANN’s training contain 7008 observations of solar radiation, while the fol-
lowing 876 observations belong to the validation and the last 876 to test samples. The train-
ing of ANN was performed in MATLAB software. In all simulations, the input patterns were

normalized by the premnmx transformation and the training algorithm used was Levenberg &
Marquardt.

It was chosen the ANN (feedforward MLP) with the best fit to the series of global horizontal solar
radiation. The yearly average and standard deviation of the ten series are presented in Table 1.

The standard deviation provides a measure of the yearly variability of the global horizontal solar
radiation.

In this paper, it is reported the detailed results from Cuiabá whose radiance time series in each

month is illustrated in Figure 5.

For the time series from Cuiabá, the best identified ANN [Section 5.1] presents the following
topological structure: input window size equal to 10; one hidden layer composed of 19 artificial
neurons with activation function hyperbolic tangent; and one neuron in the output layer with

linear activation function (Haykin, 2001).

Then, the Cuiabá’s series of global horizontal solar radiation has undergone a wavelet decom-
position of level two (i.e., three wavelet components). For this, it was considered the orthonor-
mal basis Daubechies wavelet with time equals 38 (or, simply, db38) (Daubechies, 1988). After

Pesquisa Operacional, Vol. 35(1), 2015
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Figure 4 – Daily profiles of solar radiation.
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Table 1 – Mean and standard deviation of the global horizontal solar radiation.

Meteorological station Mean W/m2 Standard Deviation W/m2

Brası́lia 2011 219,20 304,15

Caicó 2003 253,82 339,08

Campo Grande 2007 213,34 299,37

Cuiabá 2010 204,51 290,98

Florianópolis 2011 171,77 270,09

Joinville 2011 128,72 210,37

Natal 2011 241,13 334,09

Palmas 2010 220,46 304,90

Petrolina 2010 220,41 302,75

São Martinho 2010 196,04 296,06

Source: The authors.

pre-processing of this time series, the best ANN with input wavelet [Section 5.2] presents the
following topological structure: input window size equal to 10; one hidden layer composed of 12
artificial neurons with activation function hyperbolic tangent; and one neuron in the output layer
with linear activation function (Haykin, 2001).

5.1 Results of traditional ANN for Cuiabá’s time series

In Figure 6, there are the scatter plots between the time series of global horizontal solar radiation
and their forecasts, for validation and test samples, by using a traditional MLP network. It can be

noted that the higher the vicinity of the points with respect to the 45◦ inclination line, the greater
will be the correlation between the time series of solar radiation and its respective forecasts one
step ahead, for the validation and test samples, and consequently, the forecasts will be better.

5.2 Results of ANN with wavelet entrance for Cuiabá’s time series

In Figure 7 are presented the wavelet db38 components resulting from the wavelet decomposition
of level two for the time series of global horizontal solar radiation.

It is noteworthy that the wavelet decomposition of signals in the samples of training, validation
and testing were done individually. In Figure 8, it is showed the scatter plots of the observations

of global horizontal solar radiation and their forecasts by ANN (with input wavelet), for the
validation and test samples.

5.3 Modeling for the 10 time series

The results for the 10 time series modeled are showed in Table 2. It is possible to see the best
wavelet family chosen for each WD-ANN model, and the best window length and number of

Pesquisa Operacional, Vol. 35(1), 2015
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Figure 5 – (a) Global horizontal solar radiation at Cuiabá.

neurons in the hidden layer for each time series. For both models (ANN and WD-ANN), it was
calculated the Root Mean Square Deviation (RMSE) and the coefficient of determination R2 for

the training, validation and test periods. Almost all statistics for both periods show lower values
of RMSE and higher values of R2 for WD-ANN models when compared to the ANN models and
naı̈ve predictor.

6 CONCLUSIONS

In this paper, it was proposed a method (denoted by WD-ANN) that proposes an alternative
approach to combine a feedforward MLP ANN with wavelet decomposition to generate short-
term forecasts of global horizontal solar radiation.

Pesquisa Operacional, Vol. 35(1), 2015
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Figure 5 – (b) Global horizontal solar radiation at Cuiabá.

It could be seen that the forecasts derived from the WD-ANN method had a significantly higher
correlation with the time series observations of global horizontal solar radiation when compared

with the forecasts arising from the traditional ANN (i.e., without considering the wavelet signals
as input patterns). It also showed the lower values of RMSE for almost all periods of interest.

Finally, it should be noted that to achieve a proper and efficient modeling, it is important to con-
sider how a time series of interest is presented to the predictive method (for instance, an ANN). In

other words, the choice of predictor’s preprocessing of input data (e.g., wavelet decomposition)
is as important as the choice of the predictor. In this perspective, it has that the WD-ANN method
includes both aspects, making it more generic and sophisticated in any time series modeling.

Pesquisa Operacional, Vol. 35(1), 2015



�

�

“main” — 2015/4/29 — 21:55 — page 86 — #14
�

�

�

�

�

�

86 ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION

0 100 200 300 400 500 600 700 800 900

0

200

400

600

800

1000

Amostra de Validação

Previsões

O
bs

er
va

çõ
es

0 100 200 300 400 500 600 700 800 900

0

200

400

600

800

1000

Amostra de Teste

Previsões

O
bs

er
va

çõ
es

validation sample 

forecast
test sample

forecast

O
bs

er
va

tio
n 

O
bs

er
va

tio
n 

Figure 6 – Scatter plot between observed and forecasted values by ANN method.
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Figure 7 – Wavelet components of normalized time series of global horizontal solar radiation.
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Table 2 – Types of ANN, RMSE and R2 for each time series’ modeling.

Local
With Window

Neurons RMSE Wm−2 R2

wavelet? length
in the

Training Validation Test Training Validation Test
hide layer

Brası́lia

without 12 8 77,90 102,40 107,88 0,9352 0,8772 0,8707

db32 15 8 6,03 15,76 91,29 0,9996 0,9971 0,9074

Naive predictor 129,00 134,64 143,34 0,8302 0,7992 0,7848

Caicó

without 15 19 65,13 57,82 66,58 0,9616 0,9756 0,9648

db20 15 8 28,91 54,45 37,61 0,9924 0,9784 0,9888

Naive predictor 130,31 135,72 134,68 0,8523 0,8704 0,8611

Campo
without 15 10 70,59 90,36 120,07 0,9416 0,9225 0,865

Grande
db20 12 8 4,43 9,25 76,06 0,9998 0,9992 0,9458

Naive predictor 121,14 132,95 154,21 0,8354 0,8394 0,7898

Cuiabá

without 10 19 62.8789 88.1219 106.2804 0.951 0.9199 0.8908

db38 10 12 8.354 20.4286 26.1382 0.9991 0.9957 0.9934

Naive predictor 113,55 129,76 144,84 0,8465 0,8340 0,8076

Florianó-
without 10 10 73.4169 96.9041 109.7201 0.9134 0.9114 0.8958

polis
db40 8 15 4.8984 7.1704 50.12 0.9996 0.9995 0.9783

Naive predictor 107,10 130,99 143,29 0,8240 0,8447 0,8302

Joinville

without 11 5 64.2913 88.226 92.2426 0.892 0.8883 0.8625

db32 12 10 2.8592 6.4026 84.3426 0.9998 0.9994 0.885

Naive predictor 87,77 111,23 111,58 0,8087 0,8304 0,8089

Natal

without 15 5 76.9716 58.2249 57.3206 0.9434 0.9751 0.9759

db20 15 13 4.3326 5.2023 75.9577 0.9998 0.9998 0.9577

Naive predictor 129,73 133,72 133,36 0,8459 0,8728 0,8738

Palmas

without 15 10 71.2284 105.5357 101.7703 0.946 0.8849 0.8727

db40 10 13 5.5671 11.1399 60.3 0.9997 0.9987 0.9553

Naive predictor 126,70 149,35 138,54 0,8362 0,7829 0,7780

Petrolina

without 15 9 64.1714 69.3586 75.1056 0.9526 0.9605 0.9423

db15 9 20 3.6199 7.7754 82.5086 0.9998 0.9995 0.9303

Naive predictor 115,59 130,42 121,63 0,8520 0,8651 0,8543

São
without 15 20 56.2227 71.8829 98.875 0.9562 0.9601 0.9329

Martinho
db13 20 14 5.5941 10.4779 19.6784 0.9996 0.9992 0.9973

Naive predictor 100,11 126,80 140,37 0,8662 0,8798 0,8694

Source: Authors’ calculation from the model results.
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Figure 8 – Scatter plot between observed and forecasted values by WD-ANN method.
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