
“main” — 2012/12/4 — 15:02 — page 497 — #1

Pesquisa Operacional (2012) 32(3): 497-522
© 2012 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope

HEURISTICS FOR MINIMIZING THE MAXIMUM
WITHIN-CLUSTERS DISTANCE
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ABSTRACT. The clustering problem consists in finding patterns in a data set in order to divide it into

clusters with high within-cluster similarity. This paper presents the study of a problem, here called MMD

problem, which aims at finding a clustering with a predefined number of clusters that minimizes the largest

within-cluster distance (diameter) among all clusters. There are two main objectives in this paper: to pro-

pose heuristics for the MMD and to evaluate the suitability of the best proposed heuristic results according

to the real classification of some data sets. Regarding the first objective, the results obtained in the experi-

ments indicate a good performance of the best proposed heuristic that outperformed the Complete Linkage

algorithm (the most used method from the literature for this problem). Nevertheless, regarding the suitabil-

ity of the results according to the real classification of the data sets, the proposed heuristic achieved better

quality results than C-Means algorithm, but worse than Complete Linkage.

Keywords: clustering, heuristics, GRASP, minimization of the maximum diameter.

1 INTRODUCTION

The data clustering problem aims at identifying in a given data set similar characteristics among
its objects in order to divide them into clusters. An example of similarity is the proximity of
objects in the data set, that is, the objects within a specific group should be closer to each other
than to objects located in other clusters. Some data clustering applications are: data mining
(Boginski et al., 2006; Romanowski et al., 2006), multiple protein sequence alignment (Kawaji
et al., 2004; Krause et al., 2005), gene expression (Higham et al., 2007; Huttenhower et al.,
2007) and image segmentation (Wu & Leahy, 1993), among many others.
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Data clustering is not an easy task because, in addition to the different sizes of most data sets,
their clusters are often not clearly identifiable. Thus, several models to approach data clustering
problem have been proposed in literature (Hansen & Mladenovic, 2001; Hansen & Jumard, 1997;
Jain & Dubes, 1988; Rao, 1971). Each of these models has its bias, showing a better performance
for specific types of data sets depending on the similarity measure adopted.

Some mathematical models for the data clustering problem are presented in (Rao, 1971). Partic-
ularly, the author proposed a mathematical model whose objective is to find a partition for a given
number of clusters (defined a priori) that minimizes the maximum diameter (MMD) among all
the clusters. In this formulation, only the distances between pairs of objects are considered, not
necessarily their exact positions in the feature space. Rao (1971) also proposed a simple and
efficient optimal algorithm to solve this problem when only two clusters are considered in its
definition. Considering the combinatorial nature of the MMD problem, whose problem is to
decide whether or not its solution is NP-hard, this paper proposes four heuristic methods for
the clustering problem: two greedy heuristics (CH and GHLS) and two Greedy Randomized
Adaptive Search Procedures (Feo & Resende, 1995; Resende & Ribeiro, 2010) (GRASP-I and
GRASP-II).

For assessing the suitability of the solution methods proposed for the MMD problem, we use
some instances from the literature (Nascimento, 2010) in the computational tests. These in-
stances were produced for the analysis of the network community detection problem. The results
from applying the methods to these data sets were evaluated according to two criteria: 1) the
objective function value (the value of the largest diameter); and 2) the adequacy of the solution
found using an external evaluation criterion for data clustering, the Normalized Mutual Informa-
tion index, here referred to as NMI (Danon et al., 2005). For the first experiment, we evaluated
the solutions found by the proposed heuristics and compared with each other. In the second ex-
periment, we used the software CPLEX 12.2 (IBM ILOG, 2010) in order to look for the optimal
solutions of the data sets. In this experiment, we compared the solutions found by the best of
the four proposed heuristics, the upper bounds found by CPLEX and the results of a benchmark
heuristic for the MMD problem, the Complete Linkage (Hansen & Delattre, 1978). For the third
experiment, to assess the adequacy of the solutions according to NMI, the partitions found by
Complete Linkage, a well known algorithm in the literature, C-Means (Bezdek, 1981), the best
proposed heuristic in this paper, GRASP-II were compared with the real data classification.

The results showed that GRASP-II achieved better solutions than others proposed heuristics for
85% of the data sets. Moreover, this metaheuristic got an exact solution for all twelve data sets,
for which CPLEX provided exact solutions. However, the Complete Linkage was the heuristic
that showed the best performance according to the NMI, while GRASP-II obtained better quality
results than C-Means and CPLEX. Note that these conclusions are with regard to the application
and specific characterization of the evaluated graphs.

The remainder of the paper is organized as follows. Section 2 describes the mathematical model
proposed by Rao (1971) for the studied problem. For this paper to be self-explanatory, Section 3
presents the optimal method proposed by Rao (1971) for the 2-Clusters problem. The proposed
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heuristics are detailed in Section 4. An algorithm for the Complete Linkage method is provided
in Section 5. The computational results are reported in Section 6. To sum up, some concluding
remarks are addressed in Section 7.

2 MATHEMATICAL MODEL

Rao (1971) proposed a mathematical formulation for the cluster analysis whose objective is to
find a partition from a data set that minimizes the maximum within cluster distance. This problem
is also known as the minimization of the largest diameter among the clusters. The mathematical
formulation is described by (1)-(4) and the notations are given as follows:

Parameters

N – number of objects of the data set;
M – number of clusters of the final partition;
di j – distance between objects i and j ;

Variables

xik – binary variable that relates object i to cluster k(xik = 1, if object i is in cluster k;
0 otherwise);

Z – value of the largest diameter among the M clusters (continuum variable);

Min Z (1)

subject to di j xik + di j x jk − Z ≤ di j

i = 1, . . . , N − 1; j = i + 1, . . . , N ; k = 1, . . . , M; (2)

M∑

k=1

xik = 1 i = 1, . . . , N ; (3)

xik ∈ {0, 1}; Z ≥ 0 i = 1, . . . , N ; k = 1, . . . , M. (4)

The objective function (1) minimizes the value of Z that represents the maximum within clusters
distance. Constraints (2) ensure that the value of the largest cluster diameter is lesser than or
equal to the Z variable value. Constraints (3) impose that each object belongs to just one cluster.
Constraints (4) enforce the non-negativity of the variable Z and the binary nature of the other
variables.

Brusco & Stahl (2005) point out that this problem has the tendency to produce clusters with
just one object (isolated clusters). The authors proposed a specialized branch-and-bound (B&B)
method to solve the problem. However, we evaluated this algorithm and for data sets with hun-
dreds of objects the elapsed time to find the optimal solution was very high. We also considered
the B&B with a good initial solution in order to fasten its convergence. However, the results
remained poor. For example, for an instance with 336 objects and 8 groups, we could not ob-
tain the optimal solution after two days trying to solve the problem. For this reason, to com-
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pare the heuristic results with the optimal solution, here, we used the software CPLEX 12.2
(IBM ILOG, 2010).

In this paper, we use the usual definition of partition to represent a clustering. In this case, a
partition is the set of groups G1, G2, . . . , G M , where the elements of Gi are objects that belong
to a same cluster and if i 6= j , elements from Gi belong to a cluster different to the elements
from G j . Moreover, the union of all Gi ’s is the whole set of objects from the data set, and the
intersection of these sets is empty.

3 2-CLUSTERS ALGORITHM FOR MMD PROBLEM

Rao (1971) proposed a polynomial optimal algorithm to solve the MMD problem for instances
where the number of clusters in the final partition is equal to two. Here, this algorithm is called
2-Clusters algorithm. In this paper we propose four heuristics based on the 2-Clusters algorithm.
The 2-Clusters algorithm is based on a simple idea: at each step it tries to assign the two most
distant objects to different clusters.

In our description of the 2-Clusters algorithm, we maintain the same notation and nomenclature
used in Section 2. In addition, D is the matrix of the pairwise distances between objects, labels
A and B are used to define the two definitive clusters and R(i) is the function that defines the
label of object i . For example, if object i is labeled as A, then R(i) = A. In this case, object i
is definitely assigned to cluster A. It is also possible to assign object i temporarily to one cluster.
For this situation the author used a temporary label k, that is, R(i) = k, where k is an integer
number between −N and N . The 2-Clusters algorithm is described next.

In Figure 1, we show the step by step execution of the 2-Clusters algorithm using a hypothetical
data set. In each step, the arrow signs the two objects with the largest paired distance. Circles
with gray and black nucleus represent the definitive labels A and B, respectively. Temporary
labels (k) are represented by squares and triangles.

In the first step (Fig. 1a), all objects are unlabeled. In Figure 1b, the pair of objects with the largest
paired distance receives the definitive labels (black and gray). This distance is updated as zero
in the distance matrix. In Figure 1c, the new pair of objects with the largest distance is selected
and they are labeled to belong to different clusters. After that, the distance between this pair of
objects is updated as zero in the distance matrix. In this case, this pair of objects receives different
temporary labels, which are the black and the gray squares. This process is repeated in Figure
1d, now with triangle labels instead of squares. In Figure 1e, the largest distance corresponds to
the distance between an unlabeled object and an object labeled with a gray color. Consequently,
the unlabeled object receives the definitive label different from the gray one, that is, the black
label. The largest distance in Figure 1f is determined by an object with a black triangle label (see
Fig. 1d) and an object with the definitive black label. Therefore, the object with the temporary
label receives the definitive gray label and all other objects with black triangle labels also receive
the definitive label gray. In addition, all objects with gray triangle labels receive the final black
label. In Figure 1g, the objects that determine the largest distance already have final labels and
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Algorithm 2-Clusters

Step 1. Do it← 0 and R(i)← 0 for i = 1, 2, . . . , N .

Step 2. Find p and q where dpq (dpq > 0) is the largest element of D.

Step 2.1. If it = 0, then R(p)← A, R(q)← B and dpq ← 0. Go to Step 3.

Step 2.2. Otherwise, if R(p) = 0 and R(q) = 0, then R(p)← p and

R(q)←−p. Go to Step 3.

Step 2.3. Otherwise, if R(p) = A (or B) and R(q) = 0, then R(q)← B

(or A). Go to Step 3.

Step 2.4. Otherwise, if R(q) = A (or B) and R(p) = 0, then R(p)← B

(or A). Go to Step 3.

Step 2.5. Otherwise, if R(p) = k (or R(q) = k) and R(q) = 0 (or R(p) = 0),

then R(q)←−k (or R(p)←−k). Go to Step 3.

Step 2.6. Otherwise, if R(q) = A (or B) and R(p) = k, then all the objects

with label k are assigned to cluster B (or A) and all the objects with label −k

are assigned to cluster A (or B). Go to Step 3.

Step 2.7. Otherwise, if R(p) = A (or B) and R(q) = k, then all the objects

with label k are assigned to cluster B (or A) and all the objects with label −k

are assigned to cluster A (or B). Go to Step 3.

Step 2.8. Otherwise, if R(p) = k and R(q) = k′, with k 6= k′, then all the

objects with label k′ receive the label −k and all the objects with label −k′

receive the label k. Go to Step 3.

Step 2.9. Otherwise, if the objects p and q are with opposed labels, i.e.,

R(p) = A and R(q) = B (or R(p) = B and R(q) = A) or R(p) = k and

R(q) = −k (or R(p) = −k and R(q) = k), go to Step 3.

Step 2.10. Otherwise, if the objects p and q have same label (R(p) = R(q))

then go to Step 4.

Step 3. Do dpq ← 0 and i t ← i t + 1. Go back to Step 2.

Step 4. For k = 1, 2, . . . , N , assign all the objects with temporary label k to cluster A

and all objects with label −k to cluster B. If there is some unlabeled object so it can be

assigned to cluster A or B arbitrarily. Return the final partition.

Algorithm 1 – 2-Clusters algorithm (Rao, 1971).

we just assign distance zero between them to matrix D. The same process as Figure 1g, but with
different objects, occurs in Figure 1h. Thus, the object with the black squared label receives the
black definitive label and the object with the gray squared label receives the gray definitive label.
In the end, all the objects have definitive labels and the final partition with 2 clusters is illustrated
in Figure 1i.
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Figure 1 – 2-Clusters algorithm step-by-step.

According to Rao (1971), the optimality proof for 2-Clusters algorithm is obvious. Neverthe-
less, in this paper we present a formal proof of the optimality for this algorithm. For such,
consider first the definition of partition. A partition {G1, G2, . . . , G M } is defined as a set of M
non-empty clusters. In these clusters all two by two cluster intersections is empty and the union
of all clusters results in the data set.

Theorem: Let a data set be with n elements. Its partition π = {G1, G2} produced by the 2-
Clusters algorithm is optimum.

Proof: Let L = {d1, d2, . . . , dm} be the m elements from matrix D sorted in decreasing order.
Let π be a partition produced according to the 2-Clusters algorithm and Zπ be its largest diam-
eter. Suppose that there is a partition π ’ with the largest diameter equals to Zπ ′ and Zπ ′ < Zπ .
Thus, objects i and j that are responsible for the diameter of π ′, i.e., such that di j = Zπ ′ in
partition π ′, are assigned to different clusters. By construction, i and j were assigned to a same
cluster in π , suppose, without loss of generality, to cluster G1, by the following reason: there is
a dk from L such that dk = di j = dk′ , with k < k′ and dk = max{dir , d jr where r belongs to
G2}. If k ′ < k, by construction, i and j would be assigned to different clusters at iteration k ′.
Therefore, the value of Z from π ′ would be at least dk that is greater than Z from partition π ,
that is a contradiction. �
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Taking the complexity of the 2-Clusters algorithm into account, Step 2 is very important. In this
step, we look for the pair of objects with the largest distance in D. Because D is a symmetric
matrix, in the worst case, it is necessary to inspect half of the elements of D. As a consequence,
this procedure has complexity O(n2) where n is the order of D. A sequential search in D leads
to an O(n4) algorithm. A binary heap improves the running time to O(n2 log n), and an even
better theoretical amortized bound of O(n2) may be reached with a Fibonacci heap.

In the following section, we present the four heuristic methods proposed to solve the MMD
problem for finding partitions with more than two clusters.

4 PROPOSED METHODS

The heuristics proposed in this paper find a partition in a data set into M > 2 clusters to approx-
imately solve the MMD problem, whose mathematical formulation was presented in Section 2.
In this paper, four heuristics are proposed: a greedy constructive, which applies the 2-Cluster
algorithm several times in the largest diameter clusters until obtaining the solution with the de-
sired number of clusters; a greedy heuristic with local search, which starts with an infeasible
solution since the initial solution has a higher number of clusters than allowed, and at each iter-
ation, groups pairs of clusters performing a local search; and two GRASP heuristics, which are
based on the constructive heuristic and the greedy heuristic with local search, making the union
of clusters in a randomized greedy form. Next, the heuristics proposed are detailed.

4.1 Constructive Heuristic (CH)

The constructive greedy heuristic proposed in this paper uses the 2-Clusters algorithm recur-
sively. In the first step, the 2-Clusters algorithm is used to divide the data into two clusters.
Next, the algorithm is applied again to the largest sized group and so on, until the M clusters are
obtained.

4.2 Greedy Heuristic with Local Search (GHLS)

A local search heuristic means looking for a better solution in the neighborhood of a given so-
lution. Then, the solution is replaced by the neighboring solution and the process is repeated
until the current solution does not have better neighboring solutions. Considering that the used
model seeks to minimize the largest diameter among the M clusters from a partition, neighboring
solutions with lower maximum diameter value are sought.

The proposed local search was defined based on the neighborhood obtained using the following
movement: remove the pair of elements that defines the largest diameter among all clusters
and allocate them to other clusters so that the largest diameter is reduced. The local search is
applied to a partition of the objects from the data set. The local search proposed is detailed in
Algorithm 2.
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Local Search

Step 1. Given a partition of objects from the data set {G1, G2, . . . , G M }, let Gk be

the set of elements with the largest paired distance (diameter) and Dk be the value

of this diameter.

Step 2. Find in Gk the pair of elements (a, b) whose d(a, b) = Dk , where d(a, b)

is the distance from a to b.

Step 3. Try to assign the objects a and b to different clusters, since the allocation

of these objects to others clusters do not increase the largest diameter and since this

allocation causes the smallest change on the diameters of the clusters that receive

the objects a and b.

Step 4. If any object does not change the cluster in Step 3, then Stop and return the

partition found. Otherwise, go to Step 1.

Algorithm 2 – Procedure of Local Search.

The starting point of GHLS is a partition with bK ∗Mc clusters generated from the previously
described CH, where K ∈ R is chosen experimentally as reported in Section 6. The constant
bK ∗Mc indicates the greatest integer value lesser than or equal to K ∗M . The two clusters whose
union results in the smallest increase in the objective function are then selected and grouped.
Notice that this is a greedy strategy. As a result, we obtain bK ∗Mc − 1 clusters. This process is
repeated until we obtain a feasible solution, that is, a partition with M groups. Thus, we have the
Greedy Heuristic with Local Search algorithm described by Algorithm 3.

Greedy Heuristic with Local Search

Step 1. Build a partition with bK ∗ Mc clusters using CH.

Step 2. Do m ← bK ∗ Mc.

Step 3. If m = M , then go to Step 6.

Step 4. Find the pair of clusters Gi and G j in the current partition, so that the

cluster resulting from their union has the smallest diameter.

Step 5. Join Gi with G j and do m ← m − 1. Go to Step 3.

Step 6. Apply the Local Search to the current partition and return the solution.

Algorithm 3 – Greedy Heuristic with Local Search algorithm.

4.3 GRASP

GRASP (Feo & Resende, 1995) is a metaheuristic consisting of two phases: a constructive and
local search ones. The constructive phase consists in obtaining, iteratively, a pseudo-greedy
solution. At each iteration of this phase, a set S of all possible choices of elements to be added
to the current partial solution is evaluated. One from the best t , with t ≤ N , options is drawn
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and added to the partial solution. A shortlist of candidates is designated to this restricted list of
candidates (RLC). At the end of this phase, a feasible solution to the problem is found, for which
is applied a local search procedure.

The GRASP metaheuristic is known for finding good quality solutions in various optimization
problems (Nascimento et al., 2010; Marinakis et al., 2008). For this reason, two GRASP meta-
heuristics for the MMD problem are proposed in this paper. The proposed constructive phase of
GRASP is the GHLS with Step 4 modified. In this modification, instead of grouping the clusters
of a partition π that produces the lowest maximum diameter, two clusters that provide one of the
smallest t maximum diameters are grouped. The pseudo code of the constructive phase of the
proposed metaheuristics is detailed in Algorithm 4. Note that in Step 4, the size of vector V is
equal to the combination of m pairs of objects.

Constructive Phase (π)

Step 1. If m = M , return the feasible solution found.

Step 2. Otherwise, consider an ascending ordered vector V of size t , with all diam-

eter values from every pairwise clusters union from partition π .

Step 3. Get a random real value α in the interval [0, 1].

Step 4. Get a random position j of the vector V , such Vj < V0 + α∗(Vt−1 − V0),

whose V0 and Vt−1 are the first and the last position of V , respectively.

Step 5. Update π joining the clusters corresponding to the diameter Vj and do

m ← m − 1. Go to Step 1.

Algorithm 4 – Constructive Phase of the proposed GRASP.

In Step 3 of Algorithm 4, α changes in all iterations, thus this algorithm can be considered a
reactive GRASP (Resende & Ribeiro, 2010). In Algorithm 4 it is necessary to build a sorted
vector with the values of the diameters resulted from the pairwise junction of all clusters from
π . To construct the vector V it is necessary to scan the distance matrix D and to sort it. Thus the
order of Algorithm 4 is O(n2 + m∗ log(m)).

The two GRASP (GRASP-I and GRASP-II) proposed in this paper differ because GRASP-II
applies the local search to the partial solutions from the constructive phase and GRASP-I does
not. At the end of the constructive phase of the proposed metaheuristics, at each iteration, a
feasible solution is obtained, which is improved by the local search procedure. Several iterations
of these steps are carried out and the highest quality solution is kept. The proposed metaheuristics
are detailed in the pseudo codes presented, respectively, in Algorithms 5 and 6.

In Algorithms 5 and 6, the function Zπ gives the value of largest diameter among the clusters
from partition π ; the constants Max it and INFINITY are, respectively, the maximum number of
iterations of the proposed GRASP and a large initial value for the empty solution.
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GRASP-I

Step 1. Do i t ← 0; Zπ min ← INFINITY .

Step 2. Build a partition with bK ∗Mc clusters using CH.

Step 3. Do m ← bK ∗Mc.

Step 4. While m > M do

Step 4.1. π ← Constructive Phase(π).

Step 5. Do π ← Local Search(π).

Step 6. Do i t ← i t + 1.

Step 7. If Zπ < Zπ min, do πmin ← π .

Step 8. If i t = Max it , return πmin. Otherwise, go to Step 2.

Algorithm 5 – Pseudo code GRASP-I.

GRASP-II

Step 1. Do i t ← 0; Zπ min ← INFINITY .

Step 2. Build a partition with bK ∗Mc clusters using CH.

Step 3. Do m ← bK ∗Mc.

Step 4. While m > M do

Step 4.1. π ← Constructive Phase(π).

Step 4.2. π ← Local Search(π).

Step 5. Do i t ← i t + 1.

Step 6. If Z p < Zπ min, do πmin ← π .

Step 7. If i t ≥ Max it , return πmin. Otherwise, go to Step 2.

Algorithm 6 – Pseudo code GRASP-II.

The algorithms GRASP-I and GRASP-II use the constructive heuristic to generate an initial
partition with bK ∗Mc clusters. The order of the best case of this phase is O(bK ∗Mc∗n2) and
in the worst case, its order is O(bK ∗Mc∗n4) (see Step 2). In each of the Max it iterations of
both metaheuristics, the constructive phase is repeated bK ∗Mc − M . The Local Search phase
performed once in each iteration of GRASP-I, whereas in GRASP-II, the Local Search repeated
bK ∗Mc − M (the same number of times as the constructive phase). Considering m the number
of clusters, in the best case, the Local Search performs only one iteration with order O(m∗n2). In
the worst case, although unlikely, all pairs of objects can be changed having the order O(m∗n4).
In the best case, GRASP-I has an order of O(Max it∗((bK ∗Mc−M)∗(n2+m∗ log(m))+m∗n2))

and, in the worst case, has an order of O(Max it ∗ ((bK ∗Mc−M)∗(n2+m∗ log(m))+m∗n4)).
In the best case, GRASP-II has an order of O(Max it∗(bK ∗Mc−M)∗(m∗ log(m)+m∗n2)) and,
in the worst case, it has an order of O(Max it∗(bK ∗Mc−M)∗(m∗ log(m)+m∗n4)). Therefore,
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if we consider only the number of objects (n), the proposed GRASP heuristics have the same
order of complexity as the 2-Clusters Algorithm, presented in Section 3.

5 COMPLETE LINKAGE

Complete Linkage is a hierarchical agglomerative method for data clustering (Mingoti, 2007). An
agglomerative hierarchical method considers, initially, each element of the data set with n objects
as a group with a single object (initial clustering with n isolated groups). In the second iteration
of the algorithm, two clusters are chosen, according to a measure of similarity (or dissimilarity),
to be joined thus forming an n − 1 cluster. The process is repeated until a group of only one
cluster is obtained that contains all the objects, therefore, in n iterations.

The hierarchical property consists in the fact that at a certain iteration of the algorithm a pair of
the elements appears in the same group. These elements will be kept together in the subsequent
iterations. This property allows the construction of a tree of unions (dendrogram) that occurred
in the iterations of the algorithm. Thus a partition with M clusters (M > 1) can be obtained by
cutting the tree at the (n − M + 1)-th iteration.

In the Complete Linkage the similarity between two clusters G1 and G2 is defined as the largest
distance between an object of G1 and an object of G2. In other words, the similarity between
two clusters is defined as the diameter of the cluster resulting from the union of these clusters.
Therefore, Hansen & Delattre (1978) suggest that the Complete Linkage can be considered as a
heuristic for the MMD problem. Its pseudo code with the tree cut for M clusters is shown in
Algorithm 7.

Complete Linkage

Step 1. Given a data set with n objects, consider each object as a cluster, i.e., build

a clustering with n clusters isolated.

Step 2. Perform m ← n.

Step 3. Find the pair of clusters Gi and G j in the current partition, so that the

cluster resulting from their union has the smallest diameter.

Step 4. Join Gi with G j and do m ← m − 1.

Step 5. If m = M Stop. Otherwise, go back to Step 3.

Algorithm 7 – Complete Linkage algorithm.

6 COMPUTATIONAL TESTS

The proposed heuristics were programmed in C and the computational experiments were per-
formed on a microcomputer Core 2 Duo, 2.0 GHz with 3 GB of random access memory (RAM)
under Windows 7 operational system. The tests using the software CPLEX version 12.2 were
carried out on a cluster IBM Quad-core Intel (R) Xeon(R) CPU E5504 2.00 Ghz Linux with a
processor with 2Gb of RAM. The values used for the parameter K of the pseudo code GRASP-I
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and GRASP-II were: 1.5; 2 and 3. Other values of K were used in preliminary tests and, overall,
the results obtained with K < 1.5 showed lower quality than those obtained when K ≥ 1.5.
When K > 3, the results did not show significant improvement to justify its use due to the
considerable computational time increase. The best results were obtained for K equal to 2.
Therefore, this value was adopted for the three proposed heuristics: GRASP-I, GRASP-II and
GHLS. The maximum number of iterations of GRASP-I and GRASP-II, Max it , was defined as
100, a value adjusted by means of computational experiments. In these experiments, we consid-
ered the trade-off between solution quality and necessary computational time to achieve the final
solution.

For the computational tests, we used 60 graphs with the number of nodes ranging from 100 to
1000 containing structures from 3 to 50 clusters. Here, we will refer the nodes of the graphs
as objects when using data clustering algorithms. These artificial graphs were generated by
Nascimento (2010) using the following systematic: let A = {100, 200, 300, . . . , 1000} be the
set of number of nodes and B = {3, 4, 5, 10, 20, 50} be the set of number of clusters. For each
x ∈ A, there is a single graph with y ∈ B clusters. An example of a graph with 100 nodes and
structure with 3 clusters is presented in Figure 2.

Figure 2 – Graph with 3 clusters and 100 nodes with labels of the clusters generated in its construction.

As the original measurement of weights between two nodes is relative to the similarity between
them, a conversion was necessary to measure the distance between them. For such, the following
conversion formula was used:

di j = 1−
wi j

1+ wmax
,

if wi j 6= 0, and di j = INFINITY , if wi j = 0. To obtain the distance matrix between all nodes,
after this step, the shortest path between each pair of nodes was considered, which can be calcu-
lated using the Dijkstra’s algorithm. With these distance matrices (referred here to as data sets),
the experiments were developed. The results of the heuristics were evaluated according to two
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criteria: 1) the quality of the solutions obtained according to the objective function value; and 2)
the adequacy of the solution according to NMI (Danon et al., 2005), which is an external evalua-
tion criteria for data clustering. In the first case, to assess the proposed methods’ solution quality,
their results were compared with each other and with Complete Linkage (Hansen & Delattre,
1978), described in Section 5. The implementation used for this algorithm is available in the
cluster package of R-project software (Ihaka, 1993). In addition, the results were compared with
the optimal solution of the problems. Thus, the problems were solved using the optimization
CPLEX 12.2 software (IBM ILOG, 2010). Also, to evaluate the suitability of our algorithm we
considered the classical algorithm from literature, C-Means (Bezdek, 1981), whose used imple-
mentation is from the e1071 package of R-project. Roughly speaking, the Fuzzy C-Means, or
simply C-Means algorithm, was proposed in Bezdek (1981). This algorithm follows the Fuzzy
logic, where each object belongs to one cluster with certain degree of membership and one object
can belong to more than one cluster. The basic idea of the algorithm is to start with the random
central points of the clusters and go to updating these points according to an objective function.
The C-Means algorithm searches for a partition that minimizes the objective function that is av-
erage of the squares of the distances of each object to the centers of all clusters weighted with
the degree of pertinence of each object with respect to the group.

The computational tests were performed in three experiments. In the first experiment, the four
proposed methods (CH, GHLS, GRASP-I and GRASP-II) were applied to the described data
sets. Furthermore, their solutions were compared with each other to verify their performance
and to analyze the best proposal. In the second experiment, the solutions obtained by the best
method were compared with those obtained by the Complete Linkage algorithm. In addition,
both methods were evaluated with the solutions obtained by the CPLEX optimization software
with the computational time limited to 3 hours. Finally, at the third step, the results obtained by
the best proposed method, CPLEX, Complete Linkage and C-Means were evaluated regarding
their classification suitability according to the NMI.

In the first two experiments, the gap was used as the main comparative variable. The used gap
formula is:

gap =
(heur sol− best heur)

best heur
where heur sol is the heuristic solution and best heur is the best heuristic solution.

6.1 Comparison between the proposed methods

Figure 3 illustrates the results obtained with the proposed heuristics, considering its objective
function, that is, the variable Z value of the problem. In these graphs, one can observe the
superiority of the solutions found by GRASP-II over the other heuristics. For 59 of the 60 data
sets, GRASP-II had the results better than or equal to the solutions from the other heuristics.
GRASP-I and GHLS had the results better than or equal to the solutions from the other heuristics
in 25 and 15 instances, respectively. For only one of the instances CH had the best result and, in
7 data sets, its results were equal to the best solution found.
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(a) 3 clusters (b) 4 clusters

(c) 5 clusters (d) 10 clusters

(e) 20 clusters (f) 50 clusters

Figure 3 – This figure shows 6 graphics regarding the results of the proposed heuristics.
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Regarding the computational time, as CH and GHLS are simplifications of GRASP-I, both had
the computational time lower than the computational time of GRASP-I. In the worst case, they
took about six minutes to run. GRASP-II is computationally more expensive than GRASP-I,
because GRASP-II applies local search every time two clusters are grouped in the construction
phase. In addition, in GRASP-II, the number of cluster unions in each iteration is proportional to
the number of clusters of the final partition (M). This means that the computational cost increases
with the number of clusters. Therefore, it is expected that in problems with many clusters, the
computational cost of GRASP-II is high. The highest computational cost of GRASP-II occurred
for the instance with 1000 objects and 50 clusters, when the method required about 25 minutes
to complete the run. For additional analysis, Table 1 from the appendix of this paper reports the
objective function values of the solutions found by the heuristics and their computational time.

As GRASP-II generated the best results for most of the assessed problems, the next experiments
were performed only for this metaheuristic.

6.2 Comparison of GRASP-II, Complete Linkage and CPLEX

In order to assess the quality of solutions obtained by GRASP-II, we compare them with the
solutions obtained by the heuristic from literature, the Complete Linkage (Hansen & Delattre,
1978). The results of this comparison can be observed in Figure 4. In Figure 4, the displayed
graphs show the gaps obtained by the Complete Linkage and GRASP-II heuristics with relation
to the best feasible solution found among the three methods: Complete Linkage, GRASP-II and
CPLEX. GRASP-II had a mean gap equals to 0.3%, a standard deviation of 1.1% and a maximum
gap equals to 5.6%. Complete Linkage obtained a mean gap of 8.4%, a standard deviation of
11.3% and a maximum gap of 44.0%. In addition, according to the 60 assessed problems, 7 of
them obtained the same results using Complete Linkage and GRASP-II. For only 9 instances, the
Complete Linkage results were better than the results from GRASP-II.

Analyzing the results obtained by CPLEX, only 12 optimal solutions were found by it. For
these instances, GRASP-II also found the optimal solutions, whereas Complete Linkage obtained
the optimal solution for four of these instances. Regarding the other instances, for only 3 of
them GRASP-II obtained worse solutions than CPLEX, whereas Complete Linkage obtained 16
inferior results. For more details about these solutions, the authors recommend analyzing the
values reported in Table 2 of the appendix of this paper. This table presents the results obtained
by the heuristics, the bounds obtained by CPLEX, and the execution time of each tested method.

According to these results, we can conclude that GRASP-II had an excellent performance, de-
spite the higher computational time in some test cases. Thus, one can consider this metaheuristic
as a better alternative than Complete Linkage, a classical heuristic from literature.

Next, other criteria are evaluated with respect to the results of Complete Linkage, CPLEX and
of the best heuristic proposed in this paper, GRASP-II. For this assessment we used an external
evaluation criterion, consistent with the classification of data sets.
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(a) 3 clusters (b) 4 clusters

(c) 5 clusters (d) 10 clusters

(e) 20 clusters (f) 50 clusters

Figure 4 – Graphs with the results achieved by GRASP-II, Complete Linkage and CPLEX.
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6.3 Assessment of the solutions according to NMI

To evaluate the results of GRASP-II with respect to the real classification of the used data sets,
an external evaluation criterion for data clustering was used, the Normalized Mutual Informa-
tion (NMI) (Danon et al., 2005). The use of this measure is inspired on the study performed by
Lancichinetti & Fortunato (2009). The authors compare partitions from data sets found by clus-
tering algorithms taking the known labels of the data sets into account. For such, first consider
a partition as a vector containing the labels (the cluster number) at the corresponding position of
the object. For example, if the i-th object belongs to the k-th cluster, then the i-th position of
its label vector is k. Having this definition, let π(1) and π(2) be partitions whose label vectors
are represented, respectively, as p(1) and p(2). The NMI, the normalized form of the Mutual
Information measure, that estimates the dependence of two random variables used in this paper
is presented in Equation (5).

N M I =
I (X, Y )

√
H(X)H(Y )

(5)

where X and Y are the random variables that describe p(1) and p(2), respectively,

H(X) =
k1

∑

h=1

|C p(1)

h | log
|C p(1)

h |

n

and

I (X, Y ) =
k1

∑

h=1

k2
∑

i=1

|C p(1)

h ∩ C p(2)

i | log
n|C p(1)

h ∩ C p(2)

i |

|C p(1)

h | |C
p(2)

i |
.

The closer to 1, the better is the clustering according to the original labels. There are other ver-
sions for the normalization of NMI, however, the one presented is better for comparing partitions
which are not guaranteed for having balanced clusters. The case of the data sets from our exper-
iments. The graphs in Figure 5 show the results achieved by the GRASP-II, Complete Linkage,
C-Means and CPLEX methods, according to NMI.

For only 14 instances the Complete Linkage obtained lower results than the other heuristics.
GRASP-II, C-Means and CPLEX obtained best solutions for 9, 4 and 1, respectively. Even
for the 12 instances for which CPLEX and GRASP-II obtained optimal solutions, the Complete
Linkage still had better NMI mean values. The mean NMI of GRASP-II and of C-Means were
0.7 and 0.6, respectively, with standard deviations of 0.2, for both, whereas for the Complete
Linkage, the mean NMI was 0.9, with standard deviation of 0.1. CPLEX showed the worst results
in this experiment, with a mean NMI of 0.3, and a standard deviation of 0.3. It should be noticed
that Complete Linkage achieved better results than GRASP-II in 83% of the problems, while C-
Means and CPLEX obtained for 92% and 95%, respectively. Even though GRASP-II has worse
results than Complete Linkage, its results were higher than 0.7 for 58% of the instances. These
data can be found in Table 3 of the appendix of this paper.
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(a) 3 clusters (b) 4 clusters

(c) 5 clusters (d) 10 clusters

(e) 20 clusters (f) 50 clusters

Figure 5 – Graphs with the NMI of the partitions found by the following methods: GRASP-II, Complete

Linkage (CL), C-Means and CPLEX.
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To sum up, it must be highlighted that GRASP-II was the solution method that obtained the best
results among all the tested methods. In other words, this metaheuristic found better solutions for
the studied integer problem. Furthermore, it is possible that if we find partitions with different
number of clusters for a same data set, the NMI results of the proposed heuristic may improve.
Moreover, possibly, more robust solutions could be achieved by the heuristics regarding the
external evaluation criterion, NMI.

7 FINAL REMARKS

In this paper we studied the data clustering problem based on formulation which aims at the
minimization of the largest diameter of a partition. To solve it approximately, four heuristics
were proposed and assessed: two greedy heuristics (CH and GHLS) and two GRASP meta-
heuristics (GRASP-I and GRASP-II). In the first experiment, the performance of the methods
was comparatively evaluated. The results showed that the solutions obtained by GRASP-II were
superior to the other proposed methods. However, as expected, this method was computationally
the most expensive. In the second experiment, the main purpose was to compare the objective
function value obtained by GRASP-II with respect to the solutions of the Complete Linkage
method and to the optimal solutions found by the optimization software CPLEX. GRASP-II
proved to be very efficient in 85% of the cases obtaining better results than Complete Linkage.
Moreover, it found the optimal solutions for the twelve problems for which CPLEX provided
the optimal solutions. In the third and last experiment, we performed a suitability test using an
external validation criterion for data clustering, the Normalized Mutual Information (NMI). In
this experiment, the partitions found by GRASP-II, CPLEX, Complete Linkage and C-Means
were validated with the original partition of the data set. In this case, it was observed that,
for the studied data sets, Complete Linkage obtained solutions closer to the real classification
than GRASP-II and C-Means.

The results of this study indicate that, for a considerable large number of instances, the MMD
problem can be solved efficiently by the GRASP-II. Moreover, by the first two experiments,
GRASP-II achieved the best results in this paper. The improvement we aimed is with regard to
the internal validation criterion, that is, the objective function of the MMD problem. Thus, the
proposed metaheuristic is characterized for being highly efficient. Nevertheless, even though the
results obtained by the proposed metaheuristic according to the external validity criterion had
good quality, they were lower than those of the Complete Linkage. These values were closer
to the results obtained by C-Means and CPLEX in the problems for which it found the feasible
solution. These results may indicate that the MMD problem perhaps is not the most appropriate
formulation for the data clustering problem.
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APPENDIX A: NUMERICAL RESULTS

In this Appendix, we present the numerical results obtained in the experiments. The values
reported in Tables 1, 2 and 3 correspond to the data from the graphs displayed in Figures 3,
4 and 5.

Table 1 presents the results obtained by the four algorithms proposed in this paper. The first
column shows the name of the used data sets. The names of these data indicate, respectively, the
number of objects and its number of clusters. For example the data set 100 3 has 100 objects
and 3 clusters. In the second to fifth columns, the results of the heuristics are presented, that
is, their execution time in seconds (Time) and objective function value (Z). The best results are
highlighted in bold.

Pesquisa Operacional, Vol. 32(3), 2012



“main” — 2012/12/4 — 15:02 — page 518 — #22

518 HEURISTICS FOR MINIMIZING THE MAXIMUM WITHIN-CLUSTERS DISTANCE

Table 1 – Proposed method results.

Data Set
CH GHLS GRASP-I GRASP-II

Time Z Time Z Time Z Time Z

100 3 0.031 0.603 0.031 0.448 0.296 0.448 0.437 0.448

100 4 0.032 0.590 0.031 0.412 0.234 0.412 0.467 0.412

100 5 0.015 1.276 0.016 0.968 0.280 0.901 0.640 0.901

100 10 0.031 1.732 0.031 1.462 0.266 1.340 1.124 1.340

100 20 0.032 2.046 0.015 1.333 2.122 1.295 2.932 1.295

100 50 0.094 1.414 1.373 1.455 125.675 1.455 126.345 1.455

200 3 0.234 0.086 0.530 0.081 0.951 0.067 2.012 0.065

200 4 0.093 1.538 0.764 1.483 1.451 1.254 3.837 1.254

200 5 0.063 0.396 0.110 0.381 1.092 0.347 5.398 0.271

200 10 0.109 0.566 0.234 0.484 1.528 0.420 8.268 0.390

200 20 0.187 2.315 0.296 1.932 4.196 1.710 17.146 1.459

200 50 0.343 2.439 1.779 1.487 131.118 1.487 141.056 1.347

300 3 0.452 0.608 0.796 0.594 4.400 0.594 6.535 0.594

300 4 0.437 0.277 0.515 0.277 2.684 0.277 8.112 0.277

300 5 0.203 1.001 0.296 0.971 1.310 0.971 5.055 0.971

300 10 0.234 1.057 0.374 1.024 3.323 0.989 15.974 0.954

300 20 0.328 1.110 0.578 0.985 9.392 0.913 54.585 0.865

300 50 0.671 2.151 2.324 1.767 142.725 1.534 175.423 1.401

400 3 0.514 0.376 1.123 0.351 8.252 0.269 24.804 0.269

400 4 0.281 0.591 3.963 0.537 12.496 0.392 34.367 0.392

400 5 0.374 0.543 0.546 0.489 3.790 0.477 64.896 0.460

400 10 0.343 0.850 0.514 0.817 11.966 0.770 52.323 0.732

400 20 0.577 1.288 0.890 1.151 15.085 1.112 86.206 1.037

400 50 1.139 1.910 3.182 1.590 159.729 1.512 272.581 1.269

500 3 18.470 0.137 28.143 0.111 35.896 0.111 43.758 0.111

500 4 0.609 0.301 6.848 0.274 14.601 0.268 54.008 0.223

500 5 1.325 0.200 4.337 0.140 31.076 0.138 81.869 0.138

500 10 0.609 0.993 1.529 0.950 19.016 0.894 61.137 0.874

500 20 0.952 0.899 1.357 0.831 22.105 0.800 92.961 0.706

500 50 2.106 1.685 4.336 1.530 173.224 1.422 1519.606 1.244

600 3 52.151 0.012 50.310 0.012 57.658 0.012 66.253 0.012

600 4 0.608 0.594 11.919 0.577 25.554 0.547 97.969 0.547

600 5 1.763 0.230 7.971 0.197 34.367 0.175 119.184 0.173

600 10 0.826 0.810 1.701 0.775 32.089 0.770 515.896 0.730

600 20 1.514 1.147 2.403 1.079 37.346 1.037 282.159 0.972

600 50 3.946 1.749 8.549 1.636 198.683 1.558 617.763 1.347

700 3 35.287 0.007 34.975 0.007 38.111 0.007 46.550 0.007

700 4 50.341 0.139 50.982 0.109 78.453 0.109 132.882 0.109

700 5 1.030 0.382 2.496 0.348 26.910 0.345 134.504 0.313
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Table 1 (continuation) – Proposed method results.

Data Set
CH GHLS GRASP-I GRASP-II

Time Z Time Z Time Z Time Z

700 10 1.342 0.538 1.919 0.504 19.469 0.479 118.374 0.426

700 20 3.213 0.456 5.070 0.414 52.603 0.409 239.492 0.395

700 50 5.274 1.404 9.781 1.294 230.710 1.269 674.627 1.124

800 3 143.193 0.042 138.514 0.042 143.209 0.042 155.861 0.042

800 4 165.159 0.082 175.766 0.082 188.933 0.082 245.358 0.082

800 5 4.618 0.333 7.270 0.319 55.536 0.311 192.209 0.311

800 10 2.621 0.738 3.978 0.693 24.118 0.667 157.155 0.646

800 20 5.086 0.988 10.608 0.932 103.382 0.926 672.147 0.903

800 50 6.067 0.843 11.231 0.795 233.487 0.761 711.161 0.689

900 3 56.223 0.112 61.558 0.104 75.317 0.104 113.989 0.104

900 4 291.863 0.036 292.034 0.036 371.828 0.036 503.711 0.036

900 5 65.333 0.170 69.872 0.167 136.798 0.118 408.614 0.118

900 10 2.464 0.335 5.118 0.327 65.457 0.325 274.126 0.322

900 20 3.198 0.658 5.397 0.630 71.651 0.613 1004.287 0.591

900 50 8.268 0.843 14.633 0.795 280.521 0.759 1300.893 0.712

1000 3 243.331 0.009 245.733 0.009 280.241 0.009 289.117 0.009

1000 4 274.015 0.055 271.754 0.055 301.752 0.055 334.420 0.055

1000 5 7.987 0.443 35.770 0.442 77.268 0.436 249.710 0.434

1000 10 112.945 0.079 117.422 0.071 208.230 0.071 456.896 0.070

1000 20 4.712 0.421 8.300 0.406 108.047 0.395 447.504 0.389

1000 50 8.175 0.722 16.270 0.670 360.581 0.660 1499.497 0.629

Table 2 presents the results of GRASP-II, Complete Linkage and CPLEX. The columns GRASP-
II and Complete Linkage exhibit the computational time in seconds (Time), the objective function
value (Z) and the gap of each solution regarding the best solution obtained. The best objective
functions and gaps are highlighted in bold. The CPLEX column shows the value of the objec-
tive function of the node with the best expectation, lower bound (LB), the value of best integer
solution, higher upper limit (UB) and the computational time in seconds (Time). When the LB
coincides with the UB, then the solution obtained is optimal. In this case, these results are high-
lighted in bold. For CPLEX is imposed a time limit of 3 hours (10.800 seconds).
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Table 2 – GRASP-II, Complete Linkage and CPLEX results.

Data GRASP-II Complete Linkage Best CPLEX
Set Time Z Gap % Time Z Gap % Solution LB UB Time

100 3 0.437 0.448 0.00 0.749 0.497 10.94 0.448 0.448 0.448 9
100 4 0.467 0.412 0.00 0.702 0.412 0.00 0.412 0.412 0.412 24
100 5 0.64 0.901 0.00 0.843 0.968 7.44 0.901 0.901 0.901 49
100 10 1.124 1.340 0.00 1.217 1.377 2.76 1.340 0.822 1.340 10800
100 20 2.932 1.295 0.00 1.887 1.333 2.93 1.295 0.000 1.237 10800
100 50 126.345 1.455 0.00 5.335 1.455 0.00 1.455 0.000 1.437 10800
200 3 2.012 0.065 0.00 3.135 0.086 30.30 0.065 0.065 0.065 462
200 4 3.837 1.254 0.00 3.744 1.254 0.00 1.254 1.254 1.254 517
200 5 5.398 0.271 0.00 2.808 0.298 9.96 0.271 0.271 0.271 1912
200 10 8.268 0.390 0.00 3.947 0.435 11.54 0.390 0.344 0.390 10800
200 20 17.146 1.459 0.00 4.914 1.726 18.30 1.459 0.000 1.632 10800
200 50 141.056 1.347 0.00 14.274 1.471 9.21 1.347 0.000 2.253 10801
300 3 6.535 0.594 0.00 7.769 0.595 0.17 0.594 0.594 0.594 681
300 4 8.112 0.277 0.00 11.934 0.277 0.00 0.277 0.277 0.277 688
300 5 5.055 0.971 0.00 11.84 1.001 3.09 0.971 0.971 0.971 5031
300 10 15.974 0.954 0.00 18.002 1.028 7.76 0.954 0.785 0.949 10800
300 20 54.585 0.865 0.00 13.993 0.938 8.44 0.865 0.000 1.186 10802
300 50 175.423 1.401 0.00 44.74 1.44 2.78 1.401 0.000 2.257 11002
400 3 24.804 0.269 0.00 15.803 0.348 29.37 0.269 0.269 0.269 1421
400 4 34.367 0.392 0.00 13.947 0.544 38.78 0.392 0.225 0.575 10801
400 5 64.896 0.46 0.00 15.007 0.514 11.74 0.46 0.267 0.479 10800
400 10 52.323 0.732 5.63 11.482 0.693 0.00 0.693 0.000 0.879 10801
400 20 86.206 1.037 0.29 10.842 1.034 0.00 1.034 0.000 1.565 10803
400 50 272.581 1.269 0.00 58.204 1.356 6.86 1.269 0.000 2.260 10800
500 3 43.758 0.111 0.00 22.636 0.153 37.84 0.111 0.110 0.129 10800
500 4 54.008 0.223 0.00 22.56 0.298 33.63 0.223 0.181 0.298 10800
500 5 81.869 0.138 0.00 21.438 0.142 2.90 0.138 0.097 0.197 10800
500 10 61.137 0.874 0.00 21.199 0.884 1.14 0.874 0.102 1.053 10802
500 20 92.961 0.706 0.00 18.437 0.744 5.38 0.706 0.000 1.038 10803
500 50 1519.606 1.244 0.00 82.914 1.311 5.39 1.244 0.000 Inf 10806
600 3 66.253 0.012 0.00 35.521 0.013 8.33 0.012 0.012 0.012 7444
600 4 97.969 0.547 0.00 30.514 0.584 6.76 0.547 0.375 0.586 10801
600 5 119.184 0.173 0.00 31.606 0.218 26.01 0.173 0.105 0.232 10801
600 10 515.896 0.73 0.00 27.487 0.748 2.47 0.73 0.000 0.996 10802
600 20 282.159 0.972 0.00 25.834 1.022 5.14 0.972 0.000 1.297 10803
600 50 617.763 1.347 0.00 54.741 1.409 4.60 1.347 0.000 Inf 10807
700 3 46.55 0.007 0.00 50.404 0.007 0.00 0.007 0.007 0.007 10801
700 4 132.882 0.109 0.00 47.081 0.116 6.42 0.109 0.088 0.150 10800
700 5 134.504 0.313 0.00 51.09 0.326 4.15 0.313 0.108 0.382 10800
700 10 118.374 0.426 0.00 40.966 0.454 6.57 0.426 0.000 0.606 10802
700 20 239.492 0.395 0.51 35.849 0.393 0.00 0.393 0.000 0.504 10805
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Table 2 (continuation) – GRASP-II, Complete Linkage and CPLEX results.

Data GRASP-II Complete Linkage Best CPLEX
Set Time Z Gap % Time Z Gap % Solution LB UB Time

700 50 674.627 1.124 0.00 72.213 1.153 2.58 1.124 0.000 Inf 10810
800 3 155.861 0.042 0.00 66.098 0.052 23.81 0.042 0.042 0.052 10801
800 4 245.358 0.082 0.00 61.449 0.102 24.39 0.082 0.054 0.118 10802
800 5 192.209 0.311 5.07 63.433 0.296 0.00 0.296 0.094 0.342 10800
800 10 157.155 0.646 0.78 60.979 0.641 0.00 0.641 0.000 1.125 10804
800 20 672.147 0.903 2.27 108.666 0.883 0.00 0.883 0.000 Inf 10808
800 50 711.161 0.689 0.00 47.415 0.702 1.89 0.689 0.000 2.202 10808
900 3 113.989 0.104 0.00 98.885 0.113 8.65 0.104 0.103 0.138 10803
900 4 503.711 0.036 0.00 79.785 0.044 22.22 0.036 0.031 0.051 10800
900 5 408.614 0.118 0.00 79.059 0.17 44.07 0.118 0.000 0.175 10802
900 10 274.126 0.322 0.94 69.631 0.319 0.00 0.319 0.000 0.389 10804
900 20 1004.287 0.591 0.00 67.666 0.605 2.37 0.591 0.000 0.816 10806
900 50 1300.893 0.712 0.00 124.647 0.72 1.12 0.712 0.000 Inf 820
1000 3 289.117 0.009 0.00 115.173 0.009 0.00 0.009 0.008 0.010 10802
1000 4 334.42 0.055 0.00 106.926 0.055 0.00 0.055 0.043 0.076 10802
1000 5 249.71 0.434 0.00 99.2 0.436 0.46 0.434 0.000 0.490 10802
1000 10 456.896 0.07 0.00 89.038 0.071 1.43 0.07 0.000 0.110 10804
1000 20 447.504 0.389 2.10 84.401 0.381 0.00 0.381 0.000 0.511 10808
1000 50 1499.497 0.629 2.78 80.931 0.612 0.00 0.612 0.000 0.890 1008

Table 3 presents the values of NMI achieved by the solutions found by GRASP-II, Complete
Linkage, C-Means and CPLEX. Again, the best results are marked in bold.

Table 3 – Normalized Mutual Information (NMI).

Data Set
NMI

Best NMI
GRASP-II CL C-Means CPLEX

100 3 0.912 0.951 0.782 0.923 0.951
100 4 0.917 1.000 0.591 0.877 1.000
100 5 0.786 0.865 0.707 0.721 0.865
100 10 0.643 0.803 0.765 0.500 0.803
100 20 0.888 0.895 0.587 0.898 0.898
100 50 0.788 0.797 0.743 0.789 0.797
200 3 0.647 0.646 0.810 0.667 0.810
200 4 0.946 0.898 0.797 0.366 0.946
200 5 0.918 0.942 0.664 0.899 0.942
200 10 0.804 0.934 0.541 0.710 0.934
200 20 0.818 0.916 0.374 0.640 0.916
200 50 0.789 0.855 0.548 0.676 0.855
300 3 0.783 0.981 0.920 0.762 0.981
300 4 0.738 0.802 0.831 0.435 0.831
300 5 0.370 0.836 0.769 0.117 0.836
300 10 0.475 0.774 0.467 0.335 0.774
300 20 0.670 0.881 0.425 0.172 0.881
300 50 0.749 0.837 0.434 0.601 0.837
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Table 3 (continuation) – Normalized Mutual Information (NMI).

Data Set
NMI

Best NMI
GRASP-II CL C-Means CPLEX

400 3 0.981 0.975 0.907 0.977 0.981
400 4 0.979 0.961 0.855 0.359 0.979
400 5 0.625 0.812 0.683 0.328 0.812
400 10 0.388 0.929 0.561 0.078 0.929
400 20 0.623 0.866 0.489 0.134 0.866
400 50 0.771 0.883 0.352 0.309 0.883
500 3 0.938 0.860 0.874 0.759 0.938
500 4 0.934 0.817 0.809 0.160 0.934
500 5 0.910 0.951 0.724 0.143 0.951
500 10 0.328 0.924 0.505 0.064 0.924
500 20 0.662 0.841 0.501 0.201 0.841
500 50 0.700 0.894 0.343 0.000 0.894
600 3 0.869 0.765 0.752 0.707 0.869
600 4 0.903 0.926 0.765 0.075 0.926
600 5 0.851 0.861 0.762 0.113 0.861
600 10 0.784 0.899 0.618 0.000 0.899
600 20 0.556 0.905 0.415 0.110 0.905
600 50 0.698 0.892 0.357 0.000 0.892
700 3 0.693 0.745 0.776 0.456 0.776
700 4 0.944 0.911 0.804 0.073 0.944
700 5 0.627 0.914 0.651 0.026 0.914
700 10 0.658 0.819 0.505 0.048 0.819
700 20 0.545 0.901 0.584 0.082 0.901
700 50 0.629 0.883 0.239 0.000 0.883
800 3 0.812 0.903 0.865 0.091 0.903
800 4 0.838 0.869 0.804 0.034 0.869
800 5 0.521 0.904 0.777 0.023 0.904
800 10 0.330 0.896 0.524 0.000 0.896
800 20 0.544 0.922 0.451 0.000 0.922
800 50 0.590 0.823 0.383 0.000 0.823
900 3 0.943 0.924 0.915 0.015 0.943
900 4 0.840 0.845 0.728 0.012 0.845
900 5 0.877 0.836 0.709 0.009 0.877
900 10 0.226 0.935 0.527 0.000 0.935
900 20 0.429 0.878 0.481 0.000 0.878
900 50 0.563 0.838 0.316 0.000 0.838
1000 3 0.730 0.769 0.790 0.410 0.790
1000 4 0.827 0.961 0.796 0.015 0.961
1000 5 0.817 0.915 0.741 0.000 0.915
1000 10 0.621 0.764 0.534 0.000 0.764
1000 20 0.367 0.886 0.495 0.000 0.886
1000 50 0.571 0.872 0.329 0.000 0.872
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