
Pesquisa Operacional (2020) 40: e220764 p.1-22
doi: 10.1590/0101-7438.2020.040.00220764
© 2020 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope
ARTICLES

IMPROVING THE SHIFT-SCHEDULING PROBLEM
USING NON-STATIONARY QUEUEING MODELS

WITH LOCAL HEURISTIC AND GENETIC ALGORITHM

Caio Vitor Beojone1* and Regiane Máximo de Souza2

Received March 4, 2019 / Accepted October 27, 2019

ABSTRACT. We improve the shift-scheduling process by using nonstationary queueing models to evaluate
schedules and two heuristics to generate schedules. Firstly, we improved the fitness function and the initial
population generation method for a benchmark genetic algorithm in the literature. We also proposed a sim-
ple local search heuristic. The improved genetic algorithm found solutions that obey the delay probability
constraint more often. The proposed local search heuristic also finds feasible solutions with a much lower
computational expense, especially under low arrival rates. Differently from a genetic algorithm, the local
search heuristic does not rely on random choices. Furthermore, it finds one final solution from one initial
solution, rather than from a population of solutions. The developed local search heuristic works with only
one well-defined goal, making it simple and straightforward to implement. Nevertheless, the code for the
heuristic is simple enough to accept changes and cope with multiple objectives.

Keywords: nonstationary queues, genetic algorithm, local search heuristic.

1 INTRODUCTION

Emergency service systems (ESSs) still see workforce scheduling as a challenge and have even
been studied within operations research/management science for more than fifty years (Green &
Kolesar, 2004; Simpson & Hancock, 2009). The main objective of workforce scheduling is to
minimize operational costs while maintaining adequate service level. However, the daily oper-
ations of ESSs are surrounded by randomness and require studies to consider variations in the
morning, afternoon, and night operations (Schmid, 2012; Souza et al., 2015).

Due to the nature of the events they answer, ESSs usually must have a low workload through
the day. This is a characteristic of systems with a low event frequency (Chiyoshi et al., 2011).
The literature is thin for such systems. The majority of the literature studies high event frequency
systems such as call centers.

*Corresponding author.
1Department of Production Engineering, São Paulo State University – UNESP, Bauru, Brazil, 17033-360 – E-mail:
caio.beojone@epfl.ch – https://orcid.org/0000-0002-6491-7104
2Department of Production Engineering, São Paulo State University – UNESP, Bauru, Brazil, 17033-360 – E-mail:
regiane@feb.unesp.br – https://orcid.org/0000-0002-4695-2678

2 IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS

The majority of the queueing models used on employee scheduling are stationary or piecewise
constant (Green et al., 2001). This approximation creates distortions related to the user arrival
process and, more rarely, to the service process (Kim & Whitt, 2014). There are also distortions
to model the process of servers leaving the system at the end of their shifts. (Ingolfsson et al.,
2007).

The use of time-dependent queueing models makes employee scheduling a larger but more real-
istic challenge by revealing its nonlinear and dynamic behavior. These characteristics are associ-
ated with problems involving difficult-to-find optimal solutions, so the use of heuristics becomes
necessary, as raising server requirements is often unrealistic (Ingolfsson et al., 2010). We can
enumerate some efforts on how the genetic algorithm is used (Ingolfsson et al., 2002), as an inte-
ger programming heuristic (Ingolfsson et al., 2010), and as the heuristic used in Chung and Min
(2014).

Shift-scheduling problems still face limitations. As mentioned before, the use of stationary ap-
proximations is extremely common (Defraeye and Van Nieuwenhuyse, 2016). Also, Ingolfsson
et al. (2002, 2010) pointed out that improved heuristics with lower computational efforts are de-
sired, as the use of genetic algorithm is computationally expensive. Also, Feldman et al. (2008)
and Defraeye and Van Nieuwenhuyse (2016) stated that systems with low arrival rates are a
challenge for many optimization methods, turning small-scale systems into avenues for further
research. Finally, Defraeye and Van Nieuwenhuyse (2016) indicated that the development of
easy-to-compute problems could benefit the study of more complex performance metrics and
their relations in queueing systems.

Hence, this paper aims to improve the shift-scheduling process revisiting the police precinct
study from Kolesar et al. (1975) and Ingolfsson et al. (2002). Firstly, the genetic algorithm used
in Ingolfsson et al. (2002) is analyzed regarding its convergence, fitness function, number of iter-
ations, and computational times. The purpose of the genetic algorithm here is to determine how
many servers will work on each possible shift. This answer must satisfy all constraints and have
adequate cost and delay probability. This application of the genetic algorithm for shift-scheduling
problems is based on the application found in Ingolfsson et al. (2002). We also propose a new
fitness function and initial population generation method based on previous results, to make the
genetic algorithm more reliable. A local search heuristic is also proposed for the same purpose.
Such a simple heuristic is passed through an initial test, and its results are compared to that of
the genetic algorithm through a sensitivity analysis decreasing and increasing arrival rates in a
small-scale system. Therefore, this paper contributes to the literature by improving the genetic
algorithm for shift scheduling problems, by presenting a simple and fast local search heuristic,
and by evaluating these methods in a benchmark case study.

The remaining paper is structured as follows. Section 2 presents the related literature to the
topic. Section 3 presents the methodology of our study, including: data used for the New York
police precinct; the queueing model and its performance measures used to evaluate schedules; the
base genetic algorithm and the proposed improvements; and the proposed local search heuristic.
Section 4 shows the results of the proposed methods in the benchmark case and a brief analysis

Pesquisa Operacional, Vol. 40, 2020: e220764

CAIO VITOR BEOJONE and REGIANE MÁXIMO DE SOUZA 3

about both the genetic algorithm and proposed local search heuristic under demand changes.
Finally, Section 5 shows some final considerations about this study and perspectives for further
research.

2 RELATED LITERATURE

Dantzig (1954) and Edie (1954) mark the advent of the personal scheduling problems back in
the 1950s. Firstly, Edie (1954) collected data on tolls to obtain hourly personnel requirements
and suggested that a linear programming problem could make use of such requirements to calcu-
late an optimal shift-scheduling. The calculations for the requirements used stationary queueing
models as the M/M/s (Erlang C) for each day hour. Green et al. (2001) called this approach as
Stationary Independent Period-by-Period (SIPP). Dantzig (1954) presented an integer program-
ming solution for Edie’s (1954) suggestion. The combined formulation of Dantzig (1954) and
Edie (1954) are known as SIPP-IP (SIPP solved with Integer Programing) method (Ingolfsson et
al., 2002).

Baker (1976) classified personal scheduling in three categories: shift-scheduling, days-off
scheduling, and tour-scheduling (combination of the first two categories). Our focus is on shift-
scheduling problem, where planning considers a daily planning horizon for the scheduling
problem (Van den Bergh et al., 2013).

The literature on shift-scheduling evolved a lot since its advent in the 1950s. A quick search
in a Scopus database revealed 121 published papers about shift-scheduling in the last 20 years.
Half of them were published after 2012. Preferred journals include (but are not limited to) the
European Journal of Operational Research, Journal of Scheduling, Computers and Operations
Research, and Annals of Operations Research.

Building a shift schedule has some steps (Ingolfsson et al. 2002). One can find papers on the
literature with different orders and method to get the schedules (see Thompson (1997) and the
references therein). Typically, it is necessary to (Buffa et al., 1976):

1. Forecast period-by-period demand,

2. Convert demand forecasts into staffing requirements,

3. Determine set of possible shifts,

4. Find a shift schedule that obey all requirements raised and minimize a goal as number of
employees or labor costs.

Demand forecasts are made using historical data (Gillard and Knight 2014; Angelo et al., 2017);
converting calls (arrivals) into arrival rates obeying a nonhomogeneous Poisson process (Ingolf-
sson et al. 2002). Kim and Whitt (2014) shows statistical tests to evaluate if an arrival rate is
well-modeled using nonhomogeneous Poisson processes.

Pesquisa Operacional, Vol. 40, 2020: e220764

4 IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS

The requirements often respect a service level measure, which we consider as the probability
that there is going to be at least one idle server when a new user arrives in the system. Gillard
and Knight (2014) uses Singular Spectrum Analysis (a technique to decompose a time series
into oscillatory components and noise) to generate demand forecasts and requirements because
they consider that other means do not capture seasonal variations properly. Defraeye and Van
Nieuwenhuyse (2016) and Schwarz et al. (2016) presented comprehensive literature reviews on
this topic.

Possible shifts depend on the problem modeled. For instance, typically, industrial companies
have non-overlapping shifts (Van den Bergh et al., 2013). Most of the problems are related to
systems with a great number of events, such as call centers (Brown et al., 2005; Dietz, 2011;
Kim & Ha, 2012). Some other papers are related to hospital emergency units (Creemers et al.,
2012; Green & Kolesar, 1991; Green, et al., 2001; Gillard & Knight, 2014; Sungur et al., 2017).
One can find other services in Ko and Gautam (2010), Chung and Min (2014), Thompson (1993,
1997), and Jennings et al. (1996). Among papers about ESS, one can cite Kolesar et al. (1975),
using data from a police precinct.

As the problems themselves, finding a solution (schedule) that obeys all requirements and opti-
mizes the goal is a great challenge and many methods arise in the literature. Alfares (2004) cat-
egorized solutions of scheduling problems in 10 groups: manual solutions, integer programing,
implicit modeling, decomposition, goal programming, working set generation, linear-programing
based solution, construction/improvement, metaheuristics, and others.

Ingolfsson et al. (2002) developed a method for workforce scheduling. The approach modeled
the structure of possible shifts and the dynamic nature of demand. A genetic algorithm solved
a benchmark case (shown in Section 3.1) and a numerical solution of non-stationary queueing
system evaluated service levels. The authors found that the SIPP-IP method can significantly
overestimate the service level that results from a schedule.

The non-stationary queueing model used in Ingolfsson et al. (2002) is a set of the Chapman-
Kolmogorov equations (Kleinrock, 1975). However, Ingolfsson (2005) and Ingolfsson et al.
(2007) pointed flaws on the direct use of Chapman-Kolmogorov equations without considering
what happens the moment a busy server is scheduled to leave. The literature identified two possi-
bilities for this moment, which are called end-of-shift disciplines. Firstly, the service is preempted
and the user rejoins the head of the queue (preemptive discipline). Secondly, the server completes
the job before leaving (exhaustive discipline). Ingolfsson (2005) points that the exhaustive dis-
cipline is often more realistic when users are humans. However, the exhaustive discipline still
requires more advances to represent mealtime breaks (Beojone, 2017). Those interested on non-
stationary queueing models may find detailed explanation for them and their numerical solutions
in Schwarz et al. (2016), Defraeye and Van Nieuwenhuyse (2016) and the references therein.

Pesquisa Operacional, Vol. 40, 2020: e220764

CAIO VITOR BEOJONE and REGIANE MÁXIMO DE SOUZA 5

3 METHODOLOGY

This section presents the studied case, a benchmark problem from the literature. It also presents
the schedule evaluator (non-stationary queueing model). Further in this section we present the
genetic algorithm and the proposed improvements for a shift-scheduling problem. Finally, we
present the proposed local search heuristic.

A portion of our study is inspired on Ingolfsson et al. (2002). Therefore, it is imperative to clarify
the points of convergence between this paper and Ingolfsson et al. (2002). Firstly, we used the
same benchmark problem from New York’s police. Secondly, we used the same queueing model.
Finally, we use a similar construction for the genetic algorithm, which we improve in the next
subsections. Besides the improvements on the genetic algorithm, this paper also contributes with
a new local search heuristic, compared to Ingolfsson et al. (2002).

3.1 Data and studied case

Kolesar et al. (1975) studied a police precinct in New York to develop a shift-scheduling problem
based on stationary queueing models. Ingolfsson et al. (2002) revisited this case to implement a
shift-schedule problem using a genetic algorithm, which is explained in more detail ahead. Table
1 summarizes the main information about the New York police case seen in Kolesar et al. (1975)
that will be used in our study, such as the arrival rates and the working hours for each possible
tour. Note that there are three major shifts, with four mealtime breaks between 2 and 5 hours after
the shift’s beginning, for a total of 12 possible shifts, as used in Ingolfsson et al. (2002). Service
time is considered constant throughout the day, with a constant rate µ equal to 2 calls/hour. This
information is the same as used in both Kolesar et al. (1975) and Ingolfsson et al. (2002).

3.2 Schedule evaluator (non-stationary queueing model)

According to Gillard and Knight (2014), it is usual to ESSs to operate under stochastic conditions,
so it is absolutely important to be able to plan for such situations. Also, these stochastic condi-
tions are time-varying, and it is reasonable to approximate an ESS with a M(t)/M/s(t) queueing
model. For those unfamiliar with Kendall’s notation, M(t)/M/s(t) represents a queueing system
with a nonhomogeneous Poisson arrival process M(t), a negative exponential service time M, and
a time-varying number of working servers s(t). Arrival and service processes are represented by
the λ (t) and µ rates, respectively, in calls/hour.

As servers have defined shifts, it is necessary to define what happens in case a server is providing
service the moment he is scheduled to leave. The behavior assumed by servers in this circunstance
is called end-of-shift discipline. As Ingolfsson et al. (2010) did, we adopted preemptive end-of-
shift discipline to facilitate the comparison of our computational results. Hence the non-stationary
queueing model used in this paper is the same as the one seen in Ingolfsson et al. (2002), Green
and Soares (2007), and Ingolfsson et al. (2010). The remaining of this subsection presents a brief
explanation on the queueing model.

Pesquisa Operacional, Vol. 40, 2020: e220764

6 IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS

Ta
bl

e
1

–
Su

m
m

ar
y

of
ar

riv
al

ra
te

s
an

d
w

or
ki

ng
ho

ur
s

of
ea

ch
to

ur
fo

rt
he

N
ew

Y
or

k
po

lic
e

ca
se

.

t
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
λ
(t
)

9.
8

9.
6

8.
7

7.
6

6.
7

5.
3

4.
1

3.
2

2.
5

2.
5

2.
9

3.
8

4.
3

5.
0

5.
9

6.
6

7.
8

8.
6

9.
4

9.
8

10
.2

10
.4

10
.2

10
.0

Tourpresence

1
1

0
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

1
0

1
1

Pesquisa Operacional, Vol. 40, 2020: e220764

CAIO VITOR BEOJONE and REGIANE MÁXIMO DE SOUZA 7

Let πn (t) denote the transient state probability that n customers are in the system at time t.
We can write the Chapman–Kolmogorov forward differential equations for a time-dependent
multiserver queue as seen in Equation (1) to describe the exact behavior of such a system.
The Chapman–Kolmogorov forward differential equations were solved, numerically, using the
Runge–Kutta method.

π
′
0 (t) =−λ (t)π0 (t)+µπ1 (t)

π
′
n (t) =−(λ (t)+nµ)πn (t)+λ (t)πn−1 (t)+(n+1)µπn+1 (t) , forn = 1,2, . . .s(t)−1

π
′
n (t) =−(λ (t)+ s(t)µ)πn (t)+λ (t)πn−1 (t)+ s(t)µπn+1 (t) , forn = s(t) ,s(t)+1, . . .,K−1

π
′
K (t) =−s(t)µπK (t)+λ (t)πK−1 (t)

(1)

In this paper, nonstationary queueing models are firstly aimed at calculating instantaneous delay
probabilities and hourly mean delay probabilities. To do so, we define delay probability πD (t)
as the probability that an arriving new user must wait before being served. Our objective is to
guarantee a lower πD (t) than a given probability P for all values of time t. Equation (2) shows
the delay probability as calculated in nonstationary queueing models.

πD (t) = 1−
s(t)−1

∑
i=0

πi (t) (2)

We also need to calculate the hourly mean service level, defined as follows in Equation (3):

π́D (t) =
t+1∫
t

λ (t)πD (t)dt/
t+1∫
t

λ (t)dt (3)

As λ (t) is constant on the interval [t, t +1), t∈{0,1,2,3, . . .,23}, we can simplify the Equation
(3) into Equation (4):

π́D (t) =
t+1∫
t

πD (t)dt, for t ∈ {0,1,2, . . .,23} (4)

We use the schedule evaluator (non-stationary queueing model) to support the decision process
of both heuristics from subsections 3.3 (genetic algorithm) and 3.4 (local search).

3.3 Genetic Algorithm

Many characteristics of shift-scheduling problems lead us to the use of heuristics to solve
them, such as the size and complexity of the search space and the non-linear behavior of delay
probabilities, along with its discontinuities. We started this application with a standard genetic
algorithm.

Pesquisa Operacional, Vol. 40, 2020: e220764

8 IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS

Goldberg (1989) presented the genetic algorithm. Its main idea is based on Darwin’s evolutionary
theory, so it needs a population of individuals that will compete to select the most adapted individ-
ual. Each individual might be selected to breed with another one. The most adapted individuals
will have higher chances to breed and will thus pass its characteristics to the next generations.
The least adapted individuals will have smaller chances to breed and will thus tend to disappear.
Individuals are also susceptible to random mutations, altering their chances to survive and breed
(for more information, see Goldberg, 1989).

The algorithm uses chromosomes to represent individuals, and each individual is a potential
solution for the problem. The most adapted individual to have passed through the population at
any time will be chosen as the final solution. These solutions are encoded in the form of binary
vectors, as shown in Figure 1. With a fixed number of individuals (called the population), a new
generation is created as an offspring of the previous population (no members of the previous
generation are included in the next generation). To select individuals (chromosomes – Figure 1)
for breeding, we measure their adaptation by calculating a fitness function. Then, two distinct
individuals are selected to breed with replacement. Higher fitness leads to higher chances of
being selected. Regarding the breeding process, selected individuals have their chromosomes
pass through a process called crossover, in which their chromosomes are combined to create two
new chromosomes (individuals). After crossover, these new chromosomes may suffer “mutation”
at any point, where a bit may change from 0 to 1 and vice-versa. When a new generation emerges,
we have an iteration, and the selection process begins once more until a number of iterations is
reached or another stop criterion becomes true.

0 1 ...0 1 0 1 110

Tour 1

2 servers

Tour 2

5 servers

Tour 12

3 servers

Figure 1 – Example of a chromosome encoded as a binary vector.
Based on Figure 2 from Ingolfsson et al. (2002, p. 591).

The seed for the initial population is the solution of the scheduling problem using SIPP method
and integer programing (Dantzig, 1954). This solution method is referred in the remaining of the
paper as “SIPP-IP method” and the solution itself (shift schedule for servers) from this method
is referred as “SIPP-IP solution”.

The process for generating the initial population used here was proposed by Ingolfsson et al.
(2002). The initial population size is 60 individuals. The initial population was generated starting
from the SIPP-IP solution. The SIPP-IP was one of the members of the initial population, and
the remaining 59 individuals were generated randomly as follows: (1) we calculated the mean
and variance of the SIPP-IP solution (number of servers in each shift is the piece of data for this
calculation); (2) we sampled from a normal distribution with the calculated mean and variance

Pesquisa Operacional, Vol. 40, 2020: e220764

CAIO VITOR BEOJONE and REGIANE MÁXIMO DE SOUZA 9

for each shift (defining new shift schedule for all shifts); and (3) sampled numbers were rounded
to the nearest integer between 0 and 7 (limits of the adopted chromosome binary encoding; see
Figure 1). The mutation probability for each bit was set to 1%, and the maximum number of
iterations was set to 100.

Minimizing labor costs here means fewer vehicles, and maintaining an adequate service level
means to keep the delay probability lower than 10%. Thus, our fitness functions were built using
the same three parameters as in Ingolfsson et al. (2002): (1) CARS, or the sum of all vehicles
from each tour; (2) MAXPROB, or the maximum delay probability along the time horizon; and
(3) NUMHOURS, or the number of hours with a higher delay probability than the desired 10%.

The first fitness function used here is based on the third fitness function presented in Ingolfsson et
al. (2002), and it is presented as Equation (5). M indicates a number large enough that the fitness
function will not become negative. This fitness function is referred as FITNESS0 in the remainder
of the paper. The second stop criterion (besides the number of iterations) for FITNESS0 was a
difference between the fitness of the current population’s best individual and average fitness of
the population lower than 0.5.

FITNESS 0 = M− (CARS∗ (1+MAXPROB)+NUMHOURS∗MAXPROB) (5)

The fitness values of individuals were linearly scaled to ensure that the average fitness value
would not change (Ingolfsson et al., 2002). Hence, the selection of individuals for breeding used
the scaled value. The purpose of scaling fitness values was to avoid premature convergence during
the first iterations and to avoid a random walk among the mediocre individuals in late iterations
(Goldberg, 1989). Scaling process is also useful to avoid some bias caused by using a value of
M in the fitness function.

3.3.1 FITNESS function choice

However, FITNESS0 puts too much attention to MAXPROB, which cannot indicate whether the
service level constraint is respected or not. In the other hand, NUMHOURS is an interesting
option, because it only assumes values different from 0 if the service level is higher than the
constraint limit. Therefore, as an option for FITNESS0, we worked on a fitness function that
tries to obey the service-level constraint at all costs. Equation (6) shows FITNESS1, built using
the same parameters as before, except for MAXPROB.

FITNESS 1 = M−CARS∗ (1+NUMHOURS) (6)

3.3.2 Initial population generation

When evaluating the population along the iterations, the breeding process comes across several
individuals that are certainly not optimal. However, due to scaling and the nature of genetic al-

Pesquisa Operacional, Vol. 40, 2020: e220764

10 IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS

gorithms, the chromosomes of these individuals might pass through generations. In a Markovian
process, as the queueing models we use, it is very unlikely that a situation in the beginning of
the first shift will interfere in the third shift, and even in the second shift. For this reason, we
propose another method to generate the initial population, focused in the shifts that do not obey
the service level constraint. Before generating any initial population members, we ran the non-
stationary queueing model to find the tours in which the delay probability constraint was not
obeyed. For example, if the constraint was not obeyed somewhere between 2 and 3 a.m., then all
tours beginning at midnight and ending at 8 a.m. were chosen because police officers are in the
middle of their shift (mealtime breaks were considered as part of their shifts). This strategy was
used to modify only tours that did not obey the service level constraint. Equation (7) shows the
proposed method, where CARS0

i is the number of vehicles assigned to tour i for iteration 0 (ini-
tial population); Ui and U j are random numbers generated according to a uniform distribution
(0 as minimum and 1 as maximum); l is the set of tours chosen; and CARSSIPP−IP

j is the number
of vehicles assigned to chosen tours in the SIPP-IP solution:

CARS0
i =

Ui ∑
j∈l

CARSSIPP−IP
j

∑
j∈l

U j
(7)

3.4 Local Search Heuristic

If we consider that the SIPP-IP solution is a reasonably good initial guess to the problem, it is
straightforward to think about using a local search heuristic to find a solution. The module uses
the SIPP-IP solution and tries to satisfy the delay probability constraints through minor changes
to the current solution (for an introduction to local search algorithms, see Luke, 2013). The main
idea is to try to change servers’ tours to satisfy the delay probability constraint. In case it is not
possible to fulfill the constraints only changing servers’ tours, we add one new server to a chosen
tour and try to manage it until the delay probability constraint is obeyed. In the other hand, if the
SIPP-IP solution fulfills the delay probability constraint, it will be replaced by a poorer SIPP-IP
solution, which is calculated after relaxing the delay probability constraint. Table 2 shows the
notation used for the local search heuristic.

Table 3 illustrates the proposed local search heuristic through a pseudocode. It starts on iteration
k← 0 and calculates a solution from the SIPP-IP. At this point, the SIPP-IP considers a rCD to
ensure that CD is still active on the nonstationary queueing model (measured on the schedule
evaluator). Then, the code set maxt as 24 hours. Note that the primary stop condition is to make
CD inactive. The code verifies whether maxt is acceptable (capable of identifying a mts

w inside
[0,maxt)). Then, it seeks the mts

w in which πk
D (mts

w)>CD, defining the tour w as one reference.
In the next step, the code looks for y, where y∈WSw and with the lowest hourly mean delay
probability (π́D) on its mealtime break, yk

sched. Then, it takes one server from tour w and adds
one server to tour y, if possible. If this exchange turns πD

(
tk
y
)

or πk
D
(
tk
w
)

worse than π
k−1
D

(
tk−1
w
)
,

then the script will cancel the server exchange and will not allow the same shift w to be chosen,

Pesquisa Operacional, Vol. 40, 2020: e220764

CAIO VITOR BEOJONE and REGIANE MÁXIMO DE SOUZA 11

Table 2 – Notation and description for the local search heuristic.

Notation Description
W Set of all tours.
w,y Tours of work (one of the rows from Table 1).
k Current iteration.
nk

w Number of servers scheduled to tour w at iteration k.
mts

w Starting time of the mealtime break of tour w.
WSw Set of tours with the same starting time as tour w.
rCD Relaxed delay probability constraint.
CD Delay probability constraint.
maxt Observable time horizon.
πk

D (t) Delay probability on iteration k at epoch t.
π́k

D (t) Mean delay probability on iteration k at period [t, t +1).

by limiting the maxt to mts
w−1. If there is no acceptable time horizon, the tour y receives a new

server and starts a new iteration, resetting maxt to 24 hours.

4 COMPUTATIONAL RESULTS

This section presents the results computed for the aforementioned studied case with the genetic
algorithm and the proposed improvements. Ahead in this section we present the results for the
local search and some comparisons between both solution methods in a sensitivity analysis. All
computations ran in a Windows 10 Home, with a processor Intel Core® i5 7300HQ 2.50GHz
and 8GB of RAM memory.

4.1 Genetic algorithm

Figure 2 shows the first results for configuration explained here. To obtain more consistent data,
we ran the genetic algorithm and calculated an average value for each measure. Hence, Figure
2 does not show actual values for any run of the algorithm but an average value for all of them.
Max., min., and avg. are the highest, lowest, and average FITNESS0 values for the population in
each iteration, respectively. In observing the reference values of Figure 2, one can see a slight im-
provement to the average and minimum values for FITNESS0. However, the highest FITNESS0
value is in the initial population (iteration 0) and then falls and increases again, but it never
reaches the initial solution value for FITNESS0. On 25 out of 30 runs, the best solution found
was the SIPP-IP solution. In four runs, the genetic algorithm found a solution with 28 CARS,
and in one run, it found a solution with 27 CARS. None of the 30 solutions obeyed the delay
probability constraint. It is important to note that the SIPP-IP solution found (number of servers
for each shift) was different from that shown in Ingolfsson et al. (2002) but with the same CARS
value. This SIPP-IP solution had a MAXPROB of 0.12, against 0.14 for the SIPP-IP solution
from Ingolfsson et al. (2002).

Pesquisa Operacional, Vol. 40, 2020: e220764

12 IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS

Algorithm 1 Proposed pseudocode for the local search heuristic.
start

k← 0;
CD← 0.1;
rCD← rCD;
Run SIPP-IP;
Schedule Evaluator;
while maxπD (t)< rCD, do

k← k+1;
rCD← rCD +0.05;
Run SIPP-IP using rCD as delay probability constraint to obtain server requirements;
Schedule Evaluator;

end while
while maxπk

D (t)> rCD, do
maxt← 24 hours;
while maxt > mte

1 , do
Identify last mts

w, such that mts
w≤maxt and πk

D (mts
w)>CD;

Identify tour mts
y such that π́k

D
(
mts

y
)
≤π́k

D (mts
x) ,∀x∈WSw;

k← k+1;
nk

x← nk−1
x ,∀x∈W ;

if nk
w−1≥0, then

nk
w← nk−1

w −1;
nk

y← nk−1
y +1;

Schedule Evaluator;
if πk

D (mts
w)> π

k−1
D (mts

w) Or πk
D
(
mts

y
)
> π

k−1
D (mts

w), then
nk

w← nk−1
w ;

nk
y← nk−1

y ;
maxt← mts

w−1;
elseif maxπk

D (t)>CD

return
end if

else
maxt← mts

w−1;
end if

end while
k← k+1;
nk

y← nk
y +1;

Schedule Evaluator;
end while

end
return

Pesquisa Operacional, Vol. 40, 2020: e220764

CAIO VITOR BEOJONE and REGIANE MÁXIMO DE SOUZA 13

530

540

550

560

570

0 10 20 30 40 50 60 70 80 90 100

F
IT

N
E

S
S

0

Iteration

Max. Avg. Min.

Figure 2 – Average reference values for FITNESS0 at each iteration.

Figure 3 shows the average results for the genetic algorithm after using FITNESS1 for 30 runs.
Differently from FITNESS0, one can see a greater gap between the reference values in the first
iterations and greater improvements to the average and minimum values. However, the upper
reference values show a slight increase on the first iterations and an even slighter decrease until
the final iterations. Only four solutions were found after the 20 first iterations, and 19 were found
until iteration 10.

230

280

330

380

430

480

530

580

0 10 20 30 40 50 60 70 80 90 100

F
IT

N
E

S
S

1

Iteration

Max. Avg. Min.

Figure 3 – Average reference values for FITNESS1 at each iteration.

Figure 4 shows the results for both fitness functions. The circle sizes represent the number of
times that a solution was the solution found. Firstly, FITNESS0, as mentioned before, found
only three solutions, none of which obeyed the delay probability constraint. Secondly, FITNESS1
found 18 different solutions, but it did not obey the delay probability constraint just twice. The
most common solution had 31 CARS and a MAXPROB of 0.09; this solution was found eight
times.

Pesquisa Operacional, Vol. 40, 2020: e220764

14 IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS

26

28

30

32

34

36

0.06 0.08 0.1 0.12 0.14 0.16 0.18

C
A

R
S

MAXPROB

FITNESS1 FITNESS0

Figure 4 – Experimentation with two fitness functions in the genetic algorithm.

It is also important to note that changing the fitness function had an effect on runtimes. While
FITNESS0 had an average runtime close to 400 seconds, FITNESS1 had 600-second runtimes.
There was also a difference in variation, with FITNESS0 having greater variance and FITNESS1
having a smaller one. We stored previous solutions in a database, which was erased at each new
run. FITNESS0 found its solutions after looking at 2,500 solutions, while FITNESS1 looked at
3,200 solutions, on average.

Figure 5 – Boxplot for runtimes in both fitness functions.

Figure 6 shows the average reference results for FITNESS1 after using the alternative method
for generating the initial population. Note that the initial population had good reference values,
even for the poorest solution. In 20 out of 30 runs, the best solution was found among the initial

Pesquisa Operacional, Vol. 40, 2020: e220764

CAIO VITOR BEOJONE and REGIANE MÁXIMO DE SOUZA 15

population and the first iteration. This solution uses 30 CARS and has 0.09 MAXPROB. For
comparison, using the previous initial population generation method, this solution was found
only eight times, versus 26 times using the new method. Also, no solutions were found after the
eighth iteration. The upper solutions decreased their FITNESS1 along the iterations, even though
the average solutions had only slight improvements.

350

400

450

500

550

600

0 10 20 30 40 50 60 70 80 90 100

F
IT

N
E

S
S

1

Iteration

Max. Avg. Min.

Figure 6 – Average reference values for FITNESS1 at each iteration using
the new method to generate the initial population.

4.2 Local search heuristic

Figure 7 presents the MAXPROB and CARS results for each iteration of the proposed local
search heuristic under different delay probabilities. Each marker represents the results of a single
iteration. Larger markers indicate the final solution, and the numbers linked to them denote at
which iteration the final solution was found. Hence, no more than 6 iterations separate the SIPP-
IP solution (iteration 1) from the final solutions. This solution is final, and the local search will
not find any other solution for this problem because there were no random choices or steps. Note
that, although the algorithm tries to change servers from tours in the best way (taking a server
with a mealtime break during a busy period and put it into a tour with a calm mealtime break),
it always found worse solutions than the SIPP-IP solution. In the other hand, after adding new
servers, rearranging them among tours decreased MAXPROB. Moreover, it is interesting to note
that the simple idea of adding servers based on their mealtime breaks is a good strategy to reduce
delays.

4.3 Comparisons

This final set of tests was aimed at comparing the results from the genetic algorithm and the pro-
posed local search algorithm. The comparisons focused on increases and decreases in demand.
The service times remained the same.

Pesquisa Operacional, Vol. 40, 2020: e220764

16 IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS

3

4

6

5

28

29

30

31

32

33

34

35

2% 4% 6% 8% 10% 12% 14% 16%

C
A

R
S

MAXPROB

10%

8%

6%

4%

Figure 7 – Results for the local search heuristic under different delay probability constraints. Large
markers indicate the final solution and the number linked to them the number of iterations.

Figure 8 presents the number of vehicles for both the genetic algorithm and the proposed local
search heuristic as well as the solution from the SIPP-IP, for illustrational purposes. The genetic
algorithm is represented by circles. The larger the circles are, the more times the genetic algo-
rithm found that number of vehicles in the final solution. This does not mean that these solutions
are the same; rather, it only means that they have the same number of vehicles. One can observe
that the local search heuristic usually found the same solution as the genetic algorithm while the
SIPP-IP overestimated the performance, allocating fewer vehicles.

10

15

20

25

30

35

40

45

-80% -60% -40% -20% 0% 20% 40% 60% 80%

C
A

R
S

Demand increase (decrease)

Genetic Algorithm Local Search Heuristic SIPP-IP

Figure 8 – Comparison of the genetic algorithm, proposed local search heuristic, and SIPP-IP for CARS.

Figure 9 explores the delay probability calculated for final solutions from the genetic algorithm,
the proposed local search heuristic, and the SIPP-IP. In none of the cases did the SIPP-IP solution
have acceptable performance. Also, as the demand increased, the genetic algorithm found more
non-acceptable solutions (delay probability higher than 0.10). The genetic algorithm only bested
the proposed local search heuristic, for a 60% demand increase, in which the proposed local

Pesquisa Operacional, Vol. 40, 2020: e220764

CAIO VITOR BEOJONE and REGIANE MÁXIMO DE SOUZA 17

search needed 43 vehicles to guarantee an adequate delay probability, the genetic algorithm found
a solution with only 42 vehicles.

0

0.05

0.1

-80% -60% -40% -20% 0% 20% 40% 60% 80%

M
A

X
P

R
O

B

Demand increase (decrease)

Genetic Algorithm Local Search Heuristic SIPP-IP (Actual)

Figure 9 – Comparison of results from the genetic algorithm, proposed local search heuristic,
and SIPP-IP (actual performance) for MAXPROB.

Another important point regards runtimes. Figure 10 shows the correlation between the average
runtimes and the number of iterations for the proposed local search heuristic. The proposed
local search heuristic had almost constant runtimes, much smaller than those seen for the genetic
algorithm (about 600 seconds, as seen in Figure 5).

0

1

2

3

4

0 5 10 15

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Iterations

Figure 10 – Correlation between the number of iterations and
the runtime for the proposed local search heuristic.

5 FINAL CONSIDERATIONS

We revisited the police precinct study from Kolesar et al. (1975) and Ingolfsson et al. (2002) to
improve the shift-scheduling process using nonstationary queueing models to evaluate schedules.
The genetic algorithm used in Ingolfsson et al. (2002) received improvements over the fitness
function and initial population generation method. We also proposed a local search heuristic,
in the form of a hill-climb heuristic. This simple heuristic passed through an initial test, and

Pesquisa Operacional, Vol. 40, 2020: e220764

18 IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS

its results were compared to those of the genetic algorithm through a sensitivity analysis by
decreasing and increasing arrival rates on a small-scale system.

Our work has important implications for managers to improve the service quality and efficiency
of an ESS. Firstly, the improved genetic algorithm found solutions that obey the delay probability
constraint more often and have close to the optimum number of vehicles. Two important features
were responsible for these improvements: the new fitness function, which forced the choice of
schedules that obey the delay probability constraint, and the new initial population generation
method. We illustrated through a series of tests how these new features affect convergence and
the genetic algorithm’s final solutions. In addition, results from the improved genetic algorithm
led us to the proposed local search heuristic. This heuristic also finds close to optimum schedules
with much lower computational expense, especially under low arrival rates. For comparison,
the improved genetic algorithm found solutions after 600 seconds, on average, while the pro-
posed local search heuristic found them in less than 5 seconds (even less than 1 second, in some
tests). Both the genetic algorithm and local search heuristic determined the appropriate number
of vehicles allocated in each possible tour, while considering 1-hour-long mealtime breaks.

Differently from a genetic algorithm, the developed heuristic will always come to the same re-
sults, as it does not rely on random choices. Furthermore, it finds one final solution from one
initial solution (the SIPP-IP solution), rather than from a population of solutions. As the pro-
posed local search heuristic does not use chromosomes, its solutions are not limited to the limits
that the chromosome encoding might impose on the problem.

The developed heuristic works with only one well-defined goal, making it simple and straightfor-
ward to implement. It also relies on the intuitive idea of managing servers’ tours based on their
mealtime breaks. Nevertheless, the code for the heuristic is simple enough to accept changes and
cope with multiple objectives.

There is a wide field for further research. Moreover, using Chapman–Kolmogorov equations is
computationally expensive, so we encourage the use of approximate methods like randomiza-
tion/uniformization (Grassmann, 1977) and the stationary backlog-carryover approach (Stolletz,
2008). The search for better and more efficient heuristics and algorithms is encouraged. Also,
there is still room for improvement to the genetic algorithm, such as by using approximations in-
stead of exact models or better fitness functions using aggregate measures. We suggest the use of
the proposed local search heuristic for small-scale systems, when considering the use of complex
performance measures, to take advantage of the simplicity of our method.

ACKNOWLEDGEMENTS

Research conducted at São Paulo State University – UNESP, but Caio Vitor Beojone is now a
member of Urban Transport Systems Laboratory (LUTS), School of Architecture, Civil and Envi-
ronmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland, CH-1015.

Pesquisa Operacional, Vol. 40, 2020: e220764

CAIO VITOR BEOJONE and REGIANE MÁXIMO DE SOUZA 19

The authors acknowledge the three anonymous reviewers for their comments, which greatly
improved this paper.

References

[1] ALFARES HK. 2004. Survey, Categorization, and Comparison of Recent Tour Scheduling
Literature. Annals of Operations Research, 127: 145-175.

[2] ANGELO SA, ARRUDA EF, GOLDWASSER R, LOBO MS, SALLES A & SILVA JR.
2017. Demand forecast and optimal planning of intensive care unit (ICU) capacity.
Pesquisa Operacional, 37(2): 229-245.

[3] BAKER KR. 1976. Workforce Allocation in Cyclical Scheduling Problems: A Survey.
Operational Research Quarterly, 27(1): 155-167.

[4] BEOJONE CV. 2017. Performance and alternative scenarios evaluation on a SAMU us-
ing the stationary and nonstationary hypercube model. (Master’s dissertation), UNESP,
Bauru. Retrieved from https://repositorio.unesp.br/

[5] BROWN L, GANS N, MANDELBAUM A, SAKOV A, SHEN H, ZELTYN S &
ZHAO L. 2005. Statistical Analysis of a Telephone Call Center: A Queueing-
Science Perspective. Journal of the American Statistical Association, 100(469): 36-50.
doi:10.1198/016214504000001808

[6] BUFFA ES, COSGROVE MJ & LUCE BJ. 1976. An integrated work shift scheduling
system. Decision Sciences, 7: 620-630.

[7] CHIYOSHI F, IANNONI AP & MORABITO R. 2011. A tutorial on hypercube queue-
ing models and some practical applications in emergency service systems. Pesquisa
Operacional, 31(2): 271-299.

[8] CHUNG K & MIN D. 2014. Staffing a service system with appointment based customer
arrival. Journal of the Operational Research Society, 65: 1533-1543.

[9] CREEMERS S, BELIËN J & LAMBRECHT M. 2012. The optimal allocation of server time
slots over different classes of patients. European Journal of Operational Research, 219:
508-521.

[10] DANTZIG GB. 1954. Letter to the Editor - A Comment on Edie’s “Traffic Delays at Toll
Booths”. Journal of the Operations Research Society of America, 2(3): 339-341.

[11] DEFRAEYE M & VAN NIEUWENHUYSE I. 2016. Staffing and Scheduling under
nonstationary demand for service: A literature review. Omega, 58: 4-25.

[12] DIETZ D. 2011. Practical scheduling for call center operations. Omega, 39: 550-557.

Pesquisa Operacional, Vol. 40, 2020: e220764

20 IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS

[13] EDIE LC. 1954. Traffic Delays at Toll Booths. Journal of the Operations Research Society
of America, 2(2): 107-138.

[14] FELDMAN Z, MANDELBAUM A, MASSEY WA & WHITT W. 2008. Staffing of Time-
Varying Queues to Achieve Time-Stable Performance. Management Science, 54(2): 324-
338.

[15] GILLARD J & KNIGHT V. 2014. Using Singular Spectrum Analysis to obtain staffing
level requirements in emergency units. Journal of the Operational Research Society, 65:
735-746.

[16] GOLDBERG DE. 1989. Genetic Algorithms in Search, Optimization & Machine Learning.
Amsterdam: Addison-Wesley.

[17] GRASSMANN W. 1977. Transient solutions in Markovian queues: an algorithm for finding
them and determining their waiting-time distributions. European Journal of Operational
Research, 1(6): 396-402.

[18] GREEN LV & KOLESAR PJ. 1991. The Pointwise Stationary Approximation for Queues
with Nonstationary Arrivals. Management Science, 37(1): 84-97.

[19] GREEN LV & KOLESAR PJ. 2004. Improving Emergency Responsiveness with
Management Science. Management Science, 50(8): 1001-1014.

[20] GREEN LV, KOLESAR PJ & SOARES J. 2001. Improving the Sipp Approach for Staffing
Service Systems That Have Cyclic Demands. Operations Research, 49(4): 549-564.

[21] INGOLFSSON A. 2005. Modeling the M(t)/M/s(t) Queue with Exhaustive Discipline.
Retrieved from http://www.bus.ualberta.ca/aingolfsson/working\ papers.htm

[22] INGOLFSSON A, AKHMETSHINA E, BUDGE S, LI Y & WU X. 2007. A Suvey and
Experimental Comparison of Service-Level-Approximation Methods for Nonstation-
ary M(t)/M/s(t) Queueing Systems with Exhaustive Discipline. INFORMS Journal on
Computing, 19(2): 201-214.

[23] INGOLFSSON A, CAMPELLO F, WU X & CABRAL E. 2010. Combining integer pro-
gramming and the randomization method to schedule employees. European Journal of
Operational Research, 202: 153-163.

[24] INGOLFSSON A, HAQUE A & UMNIKOV A. 2002. Accounting for time-varying queue-
ing effects in workforce scheduling. European Journal of Operational Research, 139:
585-597.

[25] JENNINGS OB, MANDELBAUM A, MASSEY W & WHITT W. 1996. Server Staffing to
meet time-varying demanda. Management Science, 42(10): 1383-1394.

Pesquisa Operacional, Vol. 40, 2020: e220764

CAIO VITOR BEOJONE and REGIANE MÁXIMO DE SOUZA 21

[26] KIM JW & HA SH. 2012. Advanced workforce management for effective customer
services. Quality & Quantity, 46: 1715-1726.

[27] KIM, S-H & WHITT W. 2014. Are Call Centers and Hospital Arrivals Well Modeled by
Nonhomogeneous Poisson Processes. Manufacturing & Service Operations Management,
16(3): 464-480.

[28] KLEINROCK L. 1975. Queueing systems. Volume I: theory. New York: Wiley.

[29] KO YM & GAUTAM N. 2010. Transient Analysis of Queues for Peer-based Multimedia
Content Delivery. IIE Transactions, 42(12): 881-896.

[30] KOLESAR PJ, RIDER KL, CRABILL TB & WALKER WE. 1975. A Queuing-Linear
Programming Approach to Scheduling Police Patrol Cars. Operations Research, 23(6):
1045-1062.

[31] LUKE S. 2013. Essentials of Metaheuristics (2nd ed.). Lulu. Retrieved from http://cs.
gmu.edu/\∼{}sean/book/metaheuristics/

[32] SCHMID V. 2012. Solving the dynamic ambulance relocation and dispatching problemus-
ing approximate dynamic programming. European Journal of Operational Research, 219:
611-621.

[33] SCHWARZ JA, SELINKA G & STOLLETZ R. 2016. Performance analysis of
time-dependent queueing systems: Survey and classification. Omega, 63: 170-189.

[34] SIMPSON N & HANCOCK P. 2009. Fifty years of operational research and emer-
gency response. Journal of the Operational Research Society, 60: S126-S139.
doi:10.1057/jors.2009.3

[35] SOUZA RM, MORABITO R, CHIYOSHI F & IANNONI AP. 2015. Incorporating priorities
for waiting customers in the hypercube queuing model with application to an emergency
medical service system in Brazil. European Journal of Operational Research, 242: 274-
285. doi:10.1016/j.ejor.2014.09.056

[36] STOLLETZ R. 2008. Approximation of the non-stationary M(t)/M(t)/c(t)-queue using sta-
tionary queueing models: the stationary backlog-carryover approach. European Journal
of Operational Research, 190: 478-493.

[37] SUNGUR B, ÖZGÜVEN C & KARIPER Y. 2017. Shift scheduling with break win-
dows, ideal break periods, and ideal waiting times. Flexible Services and Manufacturing
Journal, 29: 203-222.

[38] THOMPSON GM. 1997. Labor Staffing and Scheduling Models for Controlling Service
Levels. Naval Research Logistics, 44: 719-740.

Pesquisa Operacional, Vol. 40, 2020: e220764

22 IMPROVING THE SHIFT-SCHEDULING PROBLEM USING NON-STATIONARY QUEUEING MODELS

[39] VAN DEN BERGH J, BELIËN J, DE BRUECKER P, DEMEULEMEESTER E & DE BOECK

L. 2013. Personnel scheduling: A literature review. European Journal of Operational
Research, 226: 367-385.

How to cite
BEOJONE CA & SOUZA RM. 2020. Improving the shift-scheduling problem using non-stationary queueing

models with local heuristic and genetic algorithm. Pesquisa Operacional, 40: e220764. doi: 10.1590/0101-

7438.2020.040.00220764.

Pesquisa Operacional, Vol. 40, 2020: e220764

