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ABSTRACT. In the context of a heterogeneous fleet, the single-depot Vehicle Scheduling Problem is known
as the Vehicle Type Scheduling Problem (VTSP). In this paper, we extend a VTSP model proposed in the
literature to enable timetabling flexibility. Two strategies were developed to promote flexibility: aggregated
trips and time windows. The former allows to aggregate two or more trips, occurring close in time, into
a single one through the use of larger vehicle types, while the latter allows shifting the departure time of
scheduled trips backward in few minutes. Both approaches were tested on generated instances that simulate
the traffic behavior of a Brazilian city, where clock-face departure pattern is not required and demand peak
times occur. We verified significant savings in the daily operation of the public transportation service with
acceptable impact on passengers’ experience.
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1 INTRODUCTION

The Vehicle Scheduling Problem (VSP) consists of minimizing the assignment costs of vehicles
to a given set of timetabled trips while satisfying two primary constraints: (i) each trip is assigned
precisely to a single vehicle; and (ii) each vehicle performs a feasible sequence of trips [1, 10].
Each vehicle starts and ends its operations in the same depot with travel times and stations fixed
and previously defined. Different approaches to model the VSP have been developed, as well as
solution methods and extensions to enhance reality representation, e.g., the inclusion of multiple-
depots and heterogeneous fleet [2]. The literature on vehicle scheduling predominantly covers
a single type of vehicle; however, in practice, more than one type is used [4]. In the context of
a heterogeneous fleet, the VSP is known as the Vehicle-Type Scheduling Problem (VTSP). The
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latter, when compared with the VSP, increases the degrees of freedom for planning decisions and
therefore, the problem complexity.

The management of heterogeneous vehicle fleet is a common practice in public transportation
and is present in most cities around the world. As an example, [28] showed that transit agencies
from a hundred cities in the US, Canada, and Puerto Rico have a heterogeneous fleet and, at
least, half have articulated buses. By that time, New York City was shown to possess the largest
heterogeneous fleet with 4,344 buses in total, 3,704 them with more than 35 feet of length and
640 are articulated. A different study [18] claimed that in Austria 52.50% of the buses are
articulated, while in Belgium this figure is 12.10%. In São Paulo, Brazil, the fleet is composed
of seven types, characterized by different vehicles capacities as stated in [8].

The heterogeneous fleet is even more striking in urban public transportation systems such as
those in Brazil, where bus timetables are not clock-face and there are demand peak times during
a day. In this configuration, it is often necessary to schedule several vehicles with few minutes
of difference, and it is not uncommon passengers go to the bus stop in order to pick up any bus
within a time window, not a specific one. This scenario is the main motivation of this work
because if we consider heterogeneous fleet, it is possible to aggregate two or more trips close in
time through the use of a larger vehicle and, considering irregular headways, it is also possible to
shift the departure time of trips in few minutes forward or backward. Both approaches have little
or no impact on the perception of the quality of the service provided from the user’s perspective
and reduce operating costs, as well as congestion and pollution.

Important to note that scheduling of heterogeneous fleet is not only closely linked to the economic
interest of management companies, but it also impacts on passengers’ experience and traffic
conditions of urban regions as a whole. For example, the employment of one articulated bus
could meet the demand of two consecutive trips that are close in time, each one made by smaller
buses, keeping service level to passengers untouched. Therefore, a timetable can be changed
through the allocation of different bus types, observing frequency and vehicles’ capacity. The
optimal solution of the corresponding VTSP tends to maximize the system’s gains, resulting in a
reduction of the total number of scheduled vehicles.

Although there are models in the literature that addresses the cost minimization of vehicle
scheduling by modifying the timetable [13, 17, 19], the research is scant on approaches that
focus on both heterogeneous fleet and demand of service trips. Furthermore, the majority of
the developed approaches have difficulties to solve very large instances, or its implementation is
beyond the technical capabilities of private transport operators. Both factors restrict their appli-
cation to real-world public transportations system.

[16] point out that the level of service (captured by the timetabling) and the operating costs (re-
garding vehicle usage) are relevant in the management of the transport system because a high
level of service guarantees a social benefit and saving on costs is necessary to have a profitable
system. From this perspective this paper aims to exploit timetabling flexibility in the VTSP,
evaluating its benefits towards minimizing the total costs involved. To promote timetabling flexi-
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bility two strategies were considered: aggregated trips and time windows (TW). The first strategy
enables the aggregation of two or more trips closes in time, allowing redistribution of their de-
mands to reduce the total number of scheduled vehicles through the use of larger vehicle types.
The second strategy adds time windows, which allows shifting the departure time of scheduled
trips backward in a few minutes. To this end, we extend a VTSP formulation and include these
strategies as constraints, developing an integer linear programming formulations for the VTSP,
based on [31]. The input for the developed models is a timetable, the estimation of passenger
peak demand of each timetabled trip, and a time window parameter. We tested our approaches
on generated instances that simulate the traffic behavior of a Brazilian city. In these instances
irregular headways and demand peak-time are considered.

Our approach was designed to be used by a service provider to strategic planning, e.g., the def-
inition of fleet size considering several peak demand scenarios. It can also be used for tactical
planning, e.g., to define an off-line vehicle scheduling and a timetabling for daily or weekly fre-
quencies. Further, the results obtained in both planning can be employed by the service provider
towards the negotiation of lower cost timetabling with the regulating authorities. Since the level
of service and the operating costs are naturally in conflict [16], our model takes into account
the trade-off between these criteria by optimizing the timetabling and vehicle scheduling. Thus,
development of this study makes relevant the extent to which public transport not only can im-
prove the quality of life of urban dwellers, providing adequate mobility, but also contributes to
the solution of urban problems such as noise, congestion, lack of public spaces, pollution, etc
[25].

The significant contributions of this paper are the following: (i) VTSP modeling with timetabling
flexibility, using the demand as a parameter, an attribute largely overlooked in vehicle scheduling
literature; and (ii) a simple and efficient TW implementation which demands small modifications
of the underlying network structure.

The paper is organized as follows. A brief review of the literature is presented in Section 2.
In Section 3, we introduce our modeling approaches. Following, we describe the configuration
of our experiments and computational results for the generated instances in Sections 4 and 5,
respectively. Finally, we present the conclusion of the paper with final remarks and suggestions
for further researches in Section 6.

2 LITERATURE REVIEW

Although much attention has been paid to vehicle scheduling and timetabling of the bus-based
public transportation literature, few papers addressed the problem of minimizing the scheduled
vehicle costs by modifying the timetable [12, 9, 16, 15]. Approaches that simultaneously handle
these two critical phases of the transit system planning can lead to efficient solutions, mainly in
the presence of heterogeneous fleet [31].

Especially relevant to our work is the paper of [20], in which the authors presented an ILP model
applying TW to the multiple-depot VSP (MDVSP) to reduce the total amount of scheduled vehi-
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cles. The shift of some timetabled trips few minutes backward or forwards introduces flexibility
in the beginning or end of a trip. The authors implemented “shadow arcs” of the original ser-
vice arcs, which leads to a substantial increase in the network size. In a later publication, [19]
expanded their previous work integrating TWs to vehicle and crew scheduling problems. Due
to network size and problem complexity, two heuristics were developed to determine a subset of
critical trips and eliminate uninteresting shadow arcs, reducing the number of variables of model
drastically. A combination of Lagrangian relaxation and column generation was employed to
solve the integrated problem. Considering instances available in the literature, the authors re-
ported savings in the number of vehicles and crew comparing with previously reported results
[14, 30].

[31] employed a time-space network (TSN) to integrate the timetabling and the VTSP, solving
the integrated problem by sequentially applying mathematical programming and metaheuristics.
A solution of the VTSP model is provided as input to a simulated annealing algorithm, which
promotes small changes in the timetable, shifting the departure time of trips in few minutes
forward or backward for some randomly selected bus line. Their approach does not take into
consideration the service level offered to passengers.

[4] integrated heterogeneous fleet and timetable using the Deficit-Function Theory (DFT). The
problem was formulated as a cost-flow network problem, aiming to reduce the number of sched-
uled vehicles to a particular timetable. A heuristic incorporating DFT components was developed
and tested with two small examples. Recently, [5] developed a multi-objective methodology to
create bus schedules using vehicles of several sizes, with the following simultaneous objectives:
minimize both the waiting time of passengers on stations and the difference between the number
of expected and observed passengers in each timetabled trip. However, their methodology has
the drawback of being applied to only individual bus lines since they did not address interline
vehicle scheduling.

[12] also considered the integrated problem of timetabling and vehicle scheduling towards min-
imizing passengers’ total waiting time via transfer synchronization. They proposed an iterated
local search heuristic to solve such a problem. Experiments were conducted in urban traffic of
a region of France, composed of some cities and several villages. The study has been expanded
in [13] introducing the additional objective of minimizing time spent on empty trips. Their
proposed heuristics were also applied to change the timetable according to a vehicle schedule
solution. Such an integrated approach resulted in a reduction of 17.15% of vehicles used when
compared to the sequential approach. The authors solved the integrated problem in the context
of the unconstrained capacity homogeneous fleet.

[27] introduced the simultaneous vehicle scheduling and passenger service problem that seeks
to optimize, simultaneously, the passenger’s service level, and operating costs. The problem
was modeled as an ILP model and solved using large neighborhood search. Although this study
presents a very interesting formulation, the required data for the transfer stations are so inten-
sive that it is difficult to apply for transit systems predominantly based on buses, as the case of
Brazil. [16] developed a bi-objective formulation to integrate timetabling and vehicle scheduling
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problems towards analyzing the trade-off between operating costs and level of service of tran-
sit systems. Solutions were provided for instances inspired in the transit network of Monterrey,
Mexico, with up 50 lines and five synchronization nodes. Despite the solution method captures
the multi-criteria aspects and heterogeneity of the urban transit networks planning, the capacity
of the vehicles are not considered in the presented formulations.

[29] presented a vehicle routing with time windows based formulation for the integrated
timetabling and VSP with balanced departure times, considering homogeneous fleet. Due to
the complexity of the formulation, the authors developed a hybrid metaheuristic framework, de-
composing the problem into scheduling and a balancing component. The authors applied their
approach in two lines with higher trip frequency and three lines with lower trip frequency in a
rural public transport network in Germany. Given the high CPU times spent to solve these small
problems, it is unclear whether if the developed method can be directly applied to more generic
real-world instances, which can involve thousands of trips and hundreds of vehicles. [23] and
[24] integrated passengers into the problem of integrating VSP and timetabling. However, to
cope with the problem complexity introduced extreme assumptions, such as the nonexistence of
deadheads, restricting their application to handle real-world problems.

More recently, [7] solved the MDVSP with trip shifting, in which the overall quality of the
timetabling is controlled using the following criteria: the number of shifted trips, the headway
between the consecutive trips of a line, and the quality of some passenger connections. To solve
the problem, the authors developed a two-phase heuristic. The first phase finds suitable vehicle
schedules (using a column generation heuristic), while the second phase optimizes the schedules
of the first phase to generate a timetabling. The authors considered a homogeneous fleet and did
not consider the peak demand for each trip.

We can conclude that works on conceding flexibility to the VSP with multiple vehicle types are
somewhat limited and that [31] presented a problem that is most similar to our study. However,
our approach allows to exogenously control the level of service to passengers by limiting the
maximum interval in which timetabled trips can be shifted. Further, our approach can be used
more strategically to fleet redimensioning, in situations of demand volatility, as is the current
case in Brazil [6], by considering the peak demand for each trip.

3 PROBLEM STATEMENT AND MODELING

The VTSP can be defined as follows. For a given set of trips from a predefined timetable, esti-
mated peak passenger demand for each trip, travel times between all pairs of stations, and a set
of vehicles of different types, find a feasible minimum-cost bus schedule, in which (i) each trip
is assigned to a single vehicle; (ii) the capacity of each scheduled vehicle must not be exceeded
the peak passenger demand of the assigned trip; and (iii) each scheduled vehicle performs a se-
quence of compatible trips [31]. Trips i and j are a compatible pair of trips if the same vehicle
can reach the starting point of trip j after it finishes trip i.
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In this section, we introduce a variant of the VTSP known as VTSP with Sequential Change of
Timetabling, or simply VTSP-SCT, in which it is possible to introduce changes in a predefined
timetabling. This variant enables two or more trips to be combined into a single trip, as long as
the resulting peak demand be compatible with the capacity of some vehicle of the fleet.

Following [14], we assume that there is available information about possible scenarios to cope
with the assumption that demand is known beforehand. For example, a holiday scenario will
likely have different necessities than a regular working day; Thus the referring demands will also
differ.

Regarding the VTSP-SCT, our objective is to minimize fixed and operating costs over an un-
derlying feasible network, exploiting several scheduling possibilities for different vehicle types.
An efficient network representation is needed to reach such an objective. Before describing the
mathematical formulation for the problem, we first introduce the applied network model.

3.1 Underlying network

The TSN was firstly described for the vehicle scheduling problem in [21] and subsequently
applied in [20], [22], [19], and [30]. Previously, the VSP was formulated using a connec-
tion network [3]. The TSN can be defined as a cyclic directed graph G = (N,A) where N is
the set of nodes and A is the set of arcs. Each node n ∈ N represents a specific station s or
the depot d at a particular time t. Let S be the set of stations and T the planning horizon,
set N can be defined as N = {(s, t) : s ∈ S∪ {d}, t ∈ T}. Set A is composed of six subsets,
A = Ase∪Await ∪Adh∪Apout ∪Apin∪Ac, defined as follows:

• Ase is the set of service arcs that connect the corresponding departure and arrival nodes
at the start and end locations of a timetabled trip. There is an exact correspondence for
every timetabled trip to one service arc. Thus, each arc (i, j) ∈ Ase has a demand of Pi j

passengers.

• Await is the set of waiting arcs in which a vehicle is waiting at a station/depot before starting
a new trip.

• Adh is the set of deadheading arcs which represents trips with no passengers between a
compatible pair of service trips, specifically from the end node of the first arc to the start
node of the second one.

• Apout is the set of pull-out arcs, expressing arcs departing from depot d to some station
s ∈ S.

• Apin is the set of pull-in arcs, expressing arcs departing from some station s ∈ S to depot d.

• Ac is the set of circulation arcs, such that each arc connects the last node in the depot
timeline to the first node in this timeline. As the TSN was designed to represent one
working day, the amount of unit flows of circulation arc represents the total of scheduled
vehicles.
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Figure 1 depicts a TSN to one depot (Depot) and three stations (A, B and C). For a heteroge-
neous fleet, the network has a multi-layer structure, with one layer for each vehicle type. The
service, deadhead, pull-in/out and circulation arcs denote the bus in movement while waiting
arcs represent the bus stopped at a station or in the depot [30].

Service

Pull-in/out

Deadheading

Waiting

Circulation

Time

Station A

Station B

Station C

Depot

Figure 1 – Example of a time-space network to one depot and three stations

3.2 Mathematical Formulation for the VTSP

The VTSP can be modeled as follows based on [31]. Let Pi j be the demand for a service arc
(i, j) ∈ Ase and let F be the set of vehicle types. Let p f be the capacity of each vehicle type
f ∈ F and ci j f be the cost of vehicle type f ∈ F traveling arc (i, j) ∈ A. Introducing integer
decision variable xi j f , representing the flow of vehicle type f ∈ F in arc (i, j) ∈ A, the model is
formalized as follows:

Model VTSP:

min ∑
(i, j)∈A

∑
f∈F

ci j f xi j f (1)

s.t.

∑
(i, j)∈A

xi j f − ∑
( j,l)∈A

x jl f = 0 ∀ j ∈ N, ∀ f ∈ F (2)

∑
f∈F : p f≥Pi j

xi j f = 1 ∀(i, j) ∈ Ase (3)

xi j f ∈ N ∀(i, j) ∈ A,∀ f ∈ F (4)

The objective function (1) minimizes the total vehicle costs. Constraints (2) ensure the flow
properties of the network. Constraints (3) assure that all service trips are operated precisely once
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for a single vehicle type with enough capacity to attend the trip demand. Constraints (4) define
the domain of the decision variables.

The multilayer network used with the VTSP to consider different vehicle types cannot be decom-
posed to solve each layer independently. The VTSP can be described as a multi-commodity flow
problem, analogously to the MDVSP, a well-known NP-hard problem [1]. As a result, the VTSP
is also an NP-hard problem [31].

As the VTSP is challenging to solve, requiring a large number of decision variables to be mod-
eled, [20] and [31] proposed preprocessing routines that conveniently decreases the number of
deadheading arcs and depot nodes in the TSN, allowing to solve the problem using a standard
MILP solver (see Section 5). For a detailed description of the TSN reduction procedures, please
refer to the above-aforementioned papers.

3.3 Preprocessing and Mathematical Formulation for the VTSP-SCT

As introduced in Section 3, the VTSP-SCT enables timetabling flexibility by allowing the com-
bination of two or more service trips with departure times within a predetermined interval. Al-
gorithm 1 is used to detect possible trips to be grouped, composing time intervals k ∈ K. Each
time interval k ∈ K has an associated set of arcs Ase

k which have the same departure and arrival
stations. Furthermore, the most substantial difference between the start time of any pair of arcs
in Ase

k is limited by a time parameter ∆t. Sets Ase
k , k ∈ K, are disjoint.

Algorithm 1 Generation of time intervals used in VTSP-SCT.
1: procedure GENERATESCT(Ase, ∆t)
2: K← /0
3: k← 0
4: Ase← sort trips of Ase by their start times
5: if ∆t > 0 then
6: for all s ∈ S do
7: for all w ∈ S do
8: for t ∈ T do
9: Ase

k ← all arcs from Ase departing from s to w with start time in [t, t +∆t]
10: if |Ase

k |> 1 then
11: Pk ← ∑(i, j)∈Ase

k
Pi j

12: K← K∪{k}
13: Ase← Ase \Ase

k
14: k← k+1
15: end if
16: end for
17: end for
18: end for
19: end if
20: return (K,Ase

k )
21: end procedure
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MONIZE S. VISENTINI, OLINTO C. B. DE ARAÚJO, DENIS BORENSTEIN and ALBERTO F. KUMMER NETO 93

The Algorithm 1 takes the set Ase and time parameter ∆t as input. For each pair of departure
and arrival stations s ∈ S, w ∈ S and a time t ∈ T , the routine selects all arcs from Ase \⋃k′∈K Ase

k′

which depart from s to w and have start time in [t, t +∆t]. This selection is further used to create
set Ase

k of combinable arcs of time interval k subjected to demand parameter Pk. By its design,
the routine outputs K = /0 to ∆t = 0.

Introducing parameter Pk as the total demand of each time interval k ∈ K, the VTSP-SCT can be
formulated as follows:

VTSP-SCT Model:

min ∑
(i, j)∈A

∑
f∈F

ci j f xi j f (1)

s.t.

∑
(i, j)∈A

xi j f − ∑
( j,l)∈A

x jl f = 0 ∀ j ∈ N, ∀ f ∈ F (2)

∑
(i, j)∈Ase

k

∑
f∈F

p f xi j f ≥ Pk ∀k ∈ K (5)

∑
f∈F

xi j f ≤ 1 ∀k ∈ K,∀(i, j) ∈ Ase
k (6)

∑
f∈F : p f≥Pi j

xi j f = 1 ∀(i, j) ∈ Ase \
⋃
k∈K

Ase
k (7)

xi j f ∈ N ∀(i, j) ∈ A,∀ f ∈ F (4)

This model has the same objective function (1) of the VTSP, and the same constraints (2) and
(4) related to the conservation of flow and decision variables domain, respectively. Constraints
(5) ensure that the combined capacity of vehicles that perform the service trips of time interval k
met at least the total demand Pk. Constraints (6) guarantee that each service arc belonging to any
interval k ∈K is operated at most once for a single vehicle type. These two last sets of constraints
allow changes in the timetable. Constraints (7) assure that service trips that are not in any time
interval k ∈K are operated precisely once by a single vehicle type with enough capacity to attend
the trip demand.

Since the number of vehicles which met the total demand Pk can be smaller than the number
of service trips in the interval k, some unperformed arcs of Ase

k might be removed from the
timetabling in the optimal solution, having their demand redistributed between the remaining
arcs of the interval.

3.4 Including TW constraints to the VTSP-SCT

We propose a new TW implementation in which TW arcs are generated similarly to waiting
arcs, which ease its integration to the VTSP and the VTSP-SCT. In our approach, we extend
the set of arcs of the underlying network [21] with the set of TW arcs, A = A∪{Atw}. With a
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simple implementation, a TW arc is used to link two service arcs that have at least one station in
common and have a difference between departure and arrival time less than Ttw minutes. TW can
be expressed as reversed waiting arcs, i.e., waiting arcs implemented in reverse “time” direction.
This approach increases the number of arcs, but it keeps the number of nodes unchanged.

In Figure 2, we illustrate the insertion of a TW arc (color blue) in the network of Figure 1. This
arc enables the compatibility between two service trips and allows the saving of one vehicle from
the VTSP optimal solution.

Service

Pull-in/out

Deadheading

Waiting

Circulation

Time-window

Time

Station A

Station B

Station C

Depot

2 min

a

b

w

c

Figure 2 – Network on Figure 1 with time window arc.

For a maximum Ttw=2 minutes, Figure 2 (highlighted in blue) enables the synchronization of
two trips1, a and b, subtly modifying the timetable for the itinerary served by these trips. Such
synchronization can minimize the number of scheduled vehicles and reduce the number of ex-
press trips, resulting in lower operating costs. For a better understanding of the time window arcs
application, Table 1 simulates a possible timetable applied to the example of Figure 2.

As shown in Table 1, a solution without (w/o) time windows need two vehicles to run the trips
a and c, while the solution with (w/) time windows (Ttw=2 minutes) needs just one. Note that
for trip b, the solution with time windows entails in an adjustment at timetabling, modifying the
departure time to 08:20, at station A, and arrival time to 08:46, at station B. It should be noted
that to reduce the impact of the small delays caused by the use of time window arcs (at trip
b, for example), we impose the use of subsequent waiting arcs (arcs w) following the delayed
service trips (arcs b). The duration time of these subsequent waiting arcs must be, at least, equal
to the duration time of used time windows arc (Ttw). Thus, the delay of the arrival time of the

1For ease of reading, in this case, trips a, b, and c will be used as synonyms of trips of arcs a, b, and c, respectively.
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Table 1 – Two solutions for the timetable for network of Figure 2.

Trip ID
Start
time

Finish
time Origin Dest.

Solution w/o
time windows

Solution w/
time windows

a 08:00 08:20 C A v1 v1

b 08:18 08:44 A B v2 v1

c 08:55 09:26 B A v1 v1

Amount of vehicles used 2 1

trip b is deducted from the subsequent waiting time, and the operating times of the trip c remain
unchanged.

Constraints (8) and (9) are included in VTSP-SCT-TW mathematical model to ensure this con-
dition.

Small Ttw values are used to reduce changes in the timetabling, avoiding possible disturbances to
passengers. Thus, delays may remain unnoticed by passengers due to changes in speed, traffic
jams and the time spent at the bus stop for embarking and disembarking passengers. Finally,
another strategy applied to minimize the disturbance of timetabling is to penalize TW arcs with
a high cost to discourage the use of this type of arc.

The proposed TW implementation can be easily integrated with VTSP and VTSP-SCT models.
The two new models can be defined as follows:

VTSP-TW Model:

min ∑
(i, j)∈A

∑
f∈F

ci j f xi j f (1)

s.t.

∑
(i, j)∈A

xi j f − ∑
( j,l)∈A

x jl f = 0 ∀ j ∈ N, ∀ f ∈ F (2)

∑
f∈F : p f≥Pi j

xi j f = 1 ∀(i, j) ∈ Ase (3)

xhi f ≤ xi j f ∀(h, i) ∈ Atw,∀(i, j) ∈ Ase,∀ f ∈ F (8)

xhi f ≤ x jl f ∀(h, i) ∈ Atw,∀( j, l) ∈ Await ,∀(i, j) ∈ Ase,∀ f ∈ F (9)

xi j f ∈ N ∀(i, j) ∈ A,∀ f ∈ F (4)
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VTSP-SCT-TW Model:

min ∑
(i, j)∈A

∑
f∈F

ci j f xi j f (1)

s.t.

∑
(i, j)∈A

xi j f − ∑
( j,l)∈A

x jl f = 0 ∀ j ∈ N, ∀ f ∈ F (2)

∑
(i, j)∈Ase

k

∑
f∈F

p f xi j f ≥ Pk ∀k ∈ K (5)

∑
f∈F

xi j f ≤ 1 ∀k ∈ K,∀(i, j) ∈ Ase
k (6)

∑
f∈F : p f≥Pi j

xi j f = 1 ∀(i, j) ∈ Ase \
⋃
k∈K

Ase
k (7)

xhi f ≤ xi j f ∀(h, i) ∈ Atw,∀(i, j) ∈ Ase,∀ f ∈ F (8)

xhi f ≤ x jl f ∀(h, i) ∈ Atw,∀( j, l) ∈ Await ,∀(i, j) ∈ Ase,∀ f ∈ F (9)

xi j f ∈ N ∀(i, j) ∈ A,∀ f ∈ F (4)

Objective function (1) and constraints (2–4) and (5–7) are the same of the previous models. The
novelty is in the inclusion of constraints (8) and (9). They ensure that when a TW arc is used,
compatible service and its subsequence waiting arcs must also be used.

4 EXPERIMENTS CONFIGURATION

The models presented in the previous section were implemented in C++ programming language
and solved with IBM ILOG CPLEX Optimization Studio 12.7.1. The experiments were made in
PC on a 2.70 GHz Intel Xeon E2697 CPU and 32 GB RAM.

As the use of artificial instances is a well-consolidated approach to conduct experiments and
evaluate solution methods for the VSPs [3, 26], we generated our benchmarking instances based
on real data from the transportation system of a Brazilian city. Unfortunately, there is no available
method to generate instances considering demands for trips, and therefore suitable for the VTSP
and its variants. We had to develop our method in which an instance is generated through three
steps.

We adapted [3]’s method to generate a set of bus lines. Each line has a starting and ending relief
points, i and j, respectively, generated by a uniform integer distribution. A relief point represents
a point (x,y) on the Cartesian plane with coordinates 1 ≤ x ≤ 60 and 1 ≤ y ≤ 60. A bus line
must belong to one of the following classes: short or long itineraries. A short itinerary had their
trip length tlen given by a uniform distribution U(τi j + 5, τi j + 40), where τi j is the Euclidean
distance between starting and ending relief points of the trip. The class of long itineraries, as the
name suggests, have a larger trip length tlen given by uniform integer distribution U(180,300).
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MONIZE S. VISENTINI, OLINTO C. B. DE ARAÚJO, DENIS BORENSTEIN and ALBERTO F. KUMMER NETO 97

Following [3], we imposed that i = j for long itineraries, and used a proportion of 60% of long
itinerary bus lines and 40% of short ones.

In the second step of the generation procedure, we start the construction of the timetable.
Each trip i performs the itinerary of some bus line, which is used to compute the start (sti)
and finish (eti) times of the trip. The starting time of trip i for a short itinerary is generated
with the following probabilities: 15% of probability of sti ∈ U(60,360); 70% of probability
of sti ∈U(360,1080); and 15% of probability of sti ∈U(1080,1380). The procedure is more
straightforward for trips that perform long itineraries. The starting time of trip i follows an
uniform integer distribution U(300,1200). Finally, the ending time eti of trip i is computed as
sti + tlen.

The final step of the instance generation covers the demand simulation. We used the approach
developed by [11] to generate the demand of each trip of the timetabling based on the trip starting
time. The trip demand is computed by a weighted sum of three Gaussian distributions, with
averages of 7, 12, and 18, standard deviations of 2, 1.5, and 3, and weights of 4.5, 1, and 5,
respectively. Thus, the demand of each trip is computed based on the probability value and the
capacity of the largest vehicle of the fleet. The resulting curve is shown in Figure 3, where the
averages represent peak demand hours.
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Figure 3 – Probability density function used in demand simulation.

In the computational experiments, we used a heterogeneous fleet composed of three different
vehicle types: type A, corresponding to an articulated bus, with a capacity to 141 passengers; type
B with a capacity to 100 passengers; and type C, able to carry up to 83 passengers. From data
provided by Brazilian transportation companies, vehicle costs were defined according to their
capacities. Vehicle types A, B, and C have a fixed cost factor (c f ) of 1.7, 1.2 and 1, respectively.
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The costs of service, waiting and deadheading arcs were calculated based on their respective
length. Circulation and TW arcs were penalized with a high cost value to guarantee the objectives
of minimum cost flow problem, following [26], and to reduce the introduction of delays in the
timetable. Arc costs were computed as follows:

ci j f = c f ∗



250 ∀(i, j) ∈ Apin∪Apout

106 ∀(i, j) ∈ Ac

2000 ∀(i, j) ∈ Atw

10∗ (t j− ti) ∀(i, j) ∈ Ase

8∗ (t j− ti) ∀(i, j) ∈ Adh

1∗ (t j− ti) ∀(i, j) ∈ Await ,si = s j 6= d

0∗ (t j− ti) ∀(i, j) ∈ Await ,si = s j = d

(10)

Two different experiments were carried out on benchmark instances to evaluate the developed
models as follows: (i) to compare the results of the proposed VTSP-TW and the approach de-
scribed in [20, 19]; and (ii) to compare the results of VTSP-SCT, VTSP-TW, and VTSP-SCT-TW
models.

For the first computational experiment, we implemented in C++ the approach described in [20,
19]. We refer to this implementation as KBS. Following [20, 19], we also applied a higher fixed
cost to TW arcs to ensure that only arcs that imply in vehicles savings will appear in the optimal
solution.

Table 2 shows the characteristics of the generated benchmark instances, which totalize 40 in-
stances grouped in eight configurations, named according to the number of trips and number of
stations.

Table 2 – Characteristics of benchmark instances.

Configuration Trips Stations

1000 10 1000 10

1000 23 1000 23

3000 10 3000 10

3000 23 3000 23

5000 10 5000 10

5000 23 5000 23

10000 10 10,000 10

10000 23 10,000 23
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5 COMPUTATIONAL EXPERIMENTS

Our first analysis refers to the comparison of the size of the network structure for KBS and
VTSP-TW models. Figure 4 shows a comparison of TSN network size to benchmark instances,
regarding vertices and arcs, for Ttw = {1,2} minutes.
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Figure 4 – Comparison of network size for KBS and VTSP-TW models.

As claimed on Section 2, “shadow” arcs, implemented in KBS model as time window arcs, lead
to a substantial increase of the network size than the proposed implementation of time windows
at VTSP-TW model. The difference of network sizes for both KBS and VTSP-TW is negligible
to instances with 1000 trips. On instances with 3000 or more trips, KBS model creates a greater
network size, due to the application of “shadow” arcs. On average, KBS model has at most
36.2% more arcs and 17.4% more vertices than VTSP-TW model. It is also important to note
that for the VTSP-TW model there is a smaller growth rate in the network size when increasing
both the size of the instances and the time window intervals.

In Table 3 we compares the results obtained by VTSP-TW and KBS models with Ttw ∈ {1,2} for
five instances of each configuration. Column O.F. refers to the average optimal solution value
found by the MILP solver, column CPU (sec.) corresponds to the average CPU time (in seconds)
required to solve the problem to optimality, column # Vehicles indicates the average number
of scheduled vehicles of each vehicle type, and column Active TW corresponds to the average
number of active TW arcs in the optimal solution.

Regarding the computational time of the tested models, usually, VTSP-TW and KBS tend to
consume more CPU time to solve configurations with 10 than 23 stations, mainly due to the
increasing number of trip compatibilities. Figure 5 shown a comparative for both models con-
sidering the CPU times and the objective function value of instances detailed in Table 2.
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Figure 5 – Comparison of cost and solution time for KBS and VTSP-TW models.

As an example, instances with 10.000 trips and 10 stations took at least 5 times more CPU usage
than instances with 10.000 trips and 23 stations with VTSP-TW and Ttw = 2 min. VTSP-TW
increased the CPU usage 3.7 times, on average, in comparison with the KBS model. In general,
instances up to 5000 trips were solved to optimality within 30 seconds, where the configuration
5000 10 /Ttw = 2 took up to 41.82 seconds to be solved by KBS model. An independent-samples
t-test was conducted to compare the CPU times required to solve instances with 10 and 23 sta-
tions for both models. There was no significant difference in the scores for 10, arithmetic mean
(x̄)=67.69, standard deviation (s)=148.82, and 23 stations (x̄=52.25, s=96.70), for t(160)=0.7776,
and p = 0.2191.

As shown in Figure 5b, this result probably occurs due to the time spent by VTSP-TW model
to solve some of the 10000 10 instances (Ttw = 2 minutes), which significantly increased the
average CPU time of such configuration.

Excepting configuration 10000 10 / Ttw = 2 minutes, VTSP-TW model was, on average, about 1.5
times faster than KBS model. This result is confirmed by an independent-sample t-test comparing
CPU time required to solve both VTSP-TW and KBS models for all instances (excepting instance
10000 10, Ttw = 2 minutes). There was a significant difference of scores between VTSP-TW
(x̄=21.34, s=24.61) and KBS models (x̄=33.46, s=58.28), for statistical values of t(140)=1.6017,
and p = 0.05631.

Regarding the total number of scheduled vehicles, results were on average the same for both
models, as follows: VTSP-TW (x̄=711.12, s=498.35); KBS model (x̄=719.36, s=497.44). For
some instances, the number of scheduled vehicles by VTSP-TW is slightly different from the
obtained by KBS model, but considering the average of all instances, the difference value is
smaller than 1%. This result can be clearly verified when comparing the means and standard
deviations from Figure 5a for both models.
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Table 3 – Computational results for different TW approaches.

Model Instance Ttw O.F. CPU (sec.)
# Vehicles

# Active TW

A B C Total

KBS

1000 10 1 1.67699×108 3.09 30.40 111.40 1.40 143.20 11.00

1000 10 2 1.66921×108 3.11 30.20 111.20 2.80 144.20 10.80

1000 23 1 1.82981×108 3.72 34.60 115.80 0.60 151.00 14.40

1000 23 2 1.82581×108 3.75 34.60 115.40 1.40 151.40 14.40

3000 10 1 4.97884×108 10.75 85.00 336.40 8.80 430.20 33.00

3000 10 2 4.93905×108 12.73 83.40 335.00 31.40 449.80 32.60

3000 23 1 5.15722×108 14.61 97.60 334.60 3.00 435.20 35.60

3000 23 2 5.13968×108 14.71 97.80 332.60 8.60 439.00 35.60

5000 10 1 8.00922×108 21.28 137.60 536.40 19.00 693.00 55.20

5000 10 2 7.88420×108 41.82 134.80 528.20 99.80 762.80 54.60

5000 23 1 8.26756×108 23.52 135.60 565.60 10.40 711.60 54.60

5000 23 2 8.21933×108 26.66 134.40 562.20 30.40 727.00 54.60

10000 10 1 1.62851×109 130.73 107.00 277.40 1102.20 1486.60 87.20

10000 10 2 1.60690×109 195.92 106.00 274.40 1085.40 1465.80 318.40

10000 23 1 1.65201×109 157.97 116.20 283.60 1102.80 1502.60 39.00

10000 23 2 1.63620×109 340.73 115.60 281.60 1090.20 1487.40 132.20

VTSP-TW

1000 10 1 1.66903×108 1.41 11.00 30.40 110.60 152.00 2.20

1000 10 2 1.66206×108 1.40 10.80 30.60 110.00 151.40 3.20

1000 23 1 1.82982×108 1.76 14.40 34.60 115.80 164.80 0.60

1000 23 2 1.82184×108 1.60 14.40 34.60 115.00 164.00 1.60

3000 10 1 4.97973×108 7.85 33.00 85.40 336.00 454.40 8.00

3000 10 2 4.95296×108 8.00 32.80 84.40 334.60 451.80 19.00

3000 23 1 5.15088×108 9.41 35.60 96.40 335.40 467.40 4.20

3000 23 2 5.12743×108 14.07 35.60 96.60 332.80 465.00 10.20

5000 10 1 8.00679×108 31.31 55.40 139.60 533.40 728.40 16.40

5000 10 2 7.94416×108 26.37 55.40 137.00 530.20 722.60 42.20

5000 23 1 8.25036×108 24.59 54.80 137.20 561.60 753.60 13.20

5000 23 2 8.21231×108 26.38 54.80 134.00 561.60 750.40 30.00

10000 10 1 1.63073×109 66.99 108.00 280.20 1099.40 1487.60 71.00

10000 10 2 1.61211×109 520.29 107.20 279.60 1082.40 1469.20 279.00

10000 23 1 1.65342×109 77.74 116.40 288.00 1098.60 1503.00 32.40

10000 23 2 1.64206×109 94.93 116.00 286.00 1090.20 1492.20 87.00

Analyzing the number of used TW arcs, VTSP-TW used about 35% less TW arcs than KBS
model, but this difference was not statistically significant in a t-test (t(158)=-9.928, p = 0.355).
Although VTSP-TW model is less efficient than KBS, the former introduced fewer disruptions
to the original timetabling than the latter. Therefore, VTSP-TW is a competitive option to KBS,
offering good compromise solutions concerning CPU usage, total fixed and variable costs, and
flexible schedules with low impact on passengers.

Another analysis is made in Table 4 compares the performance of models VTSP, VTSP-SCT,
VTSP-TW, and VTSP-SCT-TW for 5 instances of each configuration. In this table, we included

Pesquisa Operacional, Vol. 39(1), 2019



102 TIMETABLING FLEXIBILITY IN THE CONTEXT OF THE VEHICLE SCHEDULING PROBLEM

column Grouped trips, which refers to the average number of trips grouped from the original
timetable, and replaced column Solution by column SSV that refers to the average Scaled Solution
Value obtained by the models for each problem size, so that the objective function obtained by
model VTSP is equal to 1. Computational time for all experiments was limited to 7200 seconds.

As expected, model VTSP is the most efficient to be solved to optimality, since it has fewer
constraints. Among the models incorporating flexibility, model VTSP-SCT-TW, in general, was
the most efficient, with exception of three test cases of some instances of 10000 trips (signaled
with a ‘*’ in Table 4). VTSP-SCT model led to higher cost savings than VTSP model, on average,
7.2%, 10.4%, and 13.4% for ∆t = 1, ∆t = 2 and ∆t = 3, respectively. For instance, with 10000
trips, the savings on the average number of vehicles exceeded 23%, considering ∆t = 3. As
the number of trips increased, greater was the savings of vehicles obtained by VTSP-SCT. This
result was expected, because in the smallest instances trips tend to be separated by larger time
intervals, decreasing the number of trips that can be grouped.

The 10000 10 instances required, on average, more time to be processed. In addition to larger
problem sizes, the required CPU times also increased with ∆t, due to the increase in the number
of possibilities for grouping trips. Regarding the strategic and tactical applications, a large CPU
time has a less critical role when facing the potential savings introduced of the developed models.
Moreover, because many managers solve the VSP manually, which is a very time-consuming
task, a period of one to two hours to obtain an optimal computational solution can be considered
reasonable.

Comparing VTSP and VTSP-TW, Ttw = 1 enabled 0.6% less scheduled vehicles, on average,
while Ttw = 2 reduces the scheduled vehicles by 1.3%. The number of vehicles saved with VTSP-
TW was lower than with VTSP-SCT. Comparing the number of #Grouped Trips and #Active TW,
it was clear that VTSP-TW model performed fewer changes in the timetabling than VTSP-SCT
model, explaining the proportion of saved vehicles. In contrast, the CPU time required to solve
VTSP-TW was potentially lower than to solve VTSP-SCT, especially for instances with more
trips.

Overall, VTSP-SCT-TW model led to the most substantial vehicle savings. For all tested in-
stances, this model showed the largest savings concerning vehicle numbers, without introducing
excessive modifications to the timetabling. The results in Table 4 indicated at least 1% more
savings, on average, in the number of vehicles by applying VTSP-SCT-TW in comparison with
VTSP-SCT model. Instances with 10000 trips obtained more than 24% savings compared to
VTSP when ∆t = 3 and TW arcs were allowed. Interesting to note that VTSP-SCT-TW grouped,
on average, 0.2% fewer trips than VTSP-SCT, considering the proportional ∆t interval, and acti-
vated 17.6% more TW arcs than VTSP-TW. Based on these results, it is possible to affirm that
VTSP-SCT-TW model introduces minimal changes to the timetabling and offered promising
savings in the number of scheduled vehicles when compared to the remaining models.
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Table 4 – Computational results for generated instances.

Instance Model ∆t Ttw SSV
CPU
(sec.)

# Vehicles
# Grouped

trips
# Active

TWA B C Total

1000 10

VTSP 0 0 1.000 1.65 11.17 30.17 112.00 153.33 0.00 0.00

VTSP-SCT

1 0 0.981 1.65 12.20 31.00 106.20 149.40 0.00 16.40

2 0 0.973 2.11 12.80 29.60 105.40 147.80 0.00 28.00

3 0 0.964 2.14 14.20 29.00 102.20 145.40 0.00 38.20

VTSP-SCT-TW

1 1 0.973 1.51 12.20 30.80 105.00 148.00 2.20 16.20

2 1 0.965 2.03 12.80 29.40 104.40 146.60 2.00 28.20

3 1 0.956 2.06 14.20 28.80 101.20 144.20 2.00 38.00

1 2 0.969 1.55 12.00 30.80 104.60 147.40 3.60 16.60

2 2 0.961 1.80 12.60 29.40 104.00 146.00 3.40 28.20

3 2 0.952 1.97 14.00 28.80 100.80 143.60 3.80 38.40

1000 23

VTSP 0 0 1.000 2.07 14.40 35.00 115.80 165.20 0.00 0.00

VTSP-SCT

1 0 0.987 2.40 15.40 34.40 112.40 162.20 0.00 18.80

2 0 0.982 2.52 16.40 33.20 111.20 160.80 0.00 26.60

3 0 0.975 2.93 16.60 33.80 109.00 159.40 0.00 39.00

VTSP-SCT-TW

1 1 0.984 2.45 15.40 34.00 112.40 161.80 0.60 18.80

2 1 0.979 2.47 16.40 32.60 111.40 160.40 0.80 27.40

3 1 0.971 2.67 16.40 33.80 108.60 158.80 1.00 39.80

1 2 0.980 2.65 15.40 33.80 111.80 161.00 1.80 19.00

2 2 0.974 2.50 16.40 32.60 110.60 159.60 1.80 27.40

3 2 0.968 2.69 16.40 33.60 108.20 158.20 1.80 39.40

3000 10

VTSP 0 0 1.000 6.21 33.20 86.20 337.60 457.00 0.00 0.00

VTSP-SCT

1 0 0.966 20.27 41.60 84.00 309.00 434.60 0.00 146.40

2 0 0.946 23.25 46.00 81.40 294.80 422.20 0.00 240.00

3 0 0.930 33.41 49.00 81.60 281.40 412.00 0.00 321.40

VTSP-SCT-TW

1 1 0.960 22.93 41.20 83.40 307.40 432.00 10.20 147.40

2 1 0.941 41.01 45.60 80.40 294.20 420.20 9.80 238.00

3 1 0.924 37.79 47.60 80.20 282.60 410.40 10.40 317.00

1 2 0.954 41.77 41.20 83.40 304.60 429.20 23.40 147.60

2 2 0.936 44.50 46.00 81.40 289.80 417.20 22.80 241.40

3 2 0.920 40.58 47.80 81.00 279.00 407.80 22.20 320.00

3000 23

VTSP 0 0 1.000 7.29 35.60 98.00 335.20 468.80 0.00 0.00

VTSP-SCT

1 0 0.959 12.34 43.40 90.80 309.60 443.80 0.00 153.40

2 0 0.942 15.52 47.80 90.20 294.00 432.00 0.00 233.60

3 0 0.919 23.35 51.60 87.60 278.60 417.80 0.00 311.00

VTSP-SCT-TW

1 1 0.956 14.50 43.60 89.80 308.60 442.00 4.60 153.00

2 1 0.938 27.14 48.00 90.20 291.80 430.00 4.80 234.00

3 1 0.915 65.78 52.40 87.80 275.00 415.20 6.40 313.80

1 2 0.952 23.43 43.80 89.60 306.40 439.80 12.60 151.60

2 2 0.934 26.94 48.20 90.00 289.60 427.80 12.20 233.20

3 2 0.911 39.35 52.40 87.80 273.00 413.20 15.80 314.60

5000 10

VTSP 0 0 1.000 15.35 55.60 139.40 540.00 735.00 0.00 0.00

VTSP-SCT

1 0 0.944 42.26 71.60 138.40 468.80 678.80 0.00 399.20

2 0 0.914 41.43 78.00 139.40 433.00 650.40 0.00 619.20

3 0 0.886 76.11 89.40 138.20 392.80 620.40 0.00 819.20

VTSP-SCT-TW

1 1 0.936 31.96 72.20 136.80 463.40 672.40 26.80 398.00

2 1 0.907 49.66 77.80 138.80 428.40 645.00 26.60 619.60

3 1 0.879 75.35 88.40 138.20 388.40 615.00 24.80 820.20

1 2 0.928 63.25 70.80 136.60 459.80 667.20 68.20 396.00

2 2 0.900 164.98 76.60 137.60 426.20 640.40 59.80 615.80

3 2 0.872 97.38 87.80 137.80 384.60 610.20 56.80 817.80

(continued on next page)
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Table 4 – (cont.) Computational results for generated instances.

Instance Model ∆t Ttw SSV CPU
(sec.)

# Vehicles
# Grouped

trips
# Active

TWA B C Total

5000 23

VTSP 0 0 1.000 12.43 54.60 136.60 568.20 759.40 0.00 0.00

VTSP-SCT
1 0 0.945 36.17 76.40 132.60 490.80 699.80 0.00 403.60

2 0 0.919 108.91 81.80 132.20 460.40 674.40 0.00 623.20

3 0 0.893 75.99 90.00 130.20 427.20 647.40 0.00 811.20

VTSP-SCT-TW

1 1 0.939 30.70 74.60 132.20 489.00 695.80 17.60 404.60

2 1 0.913 90.25 81.20 131.00 457.60 669.80 18.60 620.00

3 1 0.887 96.92 90.00 129.80 422.80 642.60 16.20 812.40

1 2 0.934 38.39 75.60 131.00 484.80 691.40 38.40 403.40

2 2 0.908 74.39 81.80 130.00 454.20 666.00 37.00 616.40

3 2 0.882 127.88 89.80 131.40 417.00 638.20 40.00 814.00

10000 10

VTSP 0 0 1.000 83.95 108.20 284.00 1108.60 1500.80 0.00 0.00

VTSP-SCT
1 0 0.904 332.70 178.60 264.60 855.60 1298.80 0.00 1476.00

2 0 0.902 462.96 202.60 271.60 733.80 1208.00 0.00 2176.80

3 0 0.860 1494.43 217.40 279.40 648.40 1145.20 0.00 2735.20

VTSP-SCT-TW

1 1 0.859 472.74 177.20 262.80 847.80 1287.80 88.60 1470.40

2 1 0.828 729.13 200.00 268.40 729.80 1198.20 89.00 2169.80

3 1 0.825 3628.73 215.40 275.60 644.80 1135.80 81.60 2731.00

1 2 0.897* 4662.24 176.00 260.60 835.40 1272.00 314.60 1467.20

2 2 0.896* 5397.34 197.00 269.00 719.20 1185.20 301.40 2167.20

3 2 0.852 5214.92 397.00 262.60 539.20 1198.80 215.60 2740.20

10000 23

VTSP 0 0 1.000 107.22 116.40 289.00 1107.00 1512.40 0.00 0.00

VTSP-SCT
1 0 0.854 361.75 179.60 264.80 866.20 1310.60 0.00 1448.60

2 0 0.822 1606.85 203.20 268.00 751.80 1223.00 0.00 2152.60

3 0 0.820 2883.99 219.60 275.20 659.60 1154.40 0.00 2712.00

VTSP-SCT-TW

1 1 0.887 411.41 178.60 265.00 858.80 1302.40 52.00 1437.40

2 1 0.890 726.23 204.20 263.80 746.00 1214.00 53.80 2146.20

3 1 0.844 1955.73 218.80 272.20 656.20 1147.20 44.60 2703.00

1 2 0.847 934.32 178.80 259.80 853.40 1292.00 133.00 1440.20

2 2 0.938 1841.96 204.00 263.60 736.00 1203.60 130.40 2142.80

3 2 0.815* 4843.70 213.60 274.80 652.60 1141.00 115.00 2705.60

We also tested benchmark instances up to 5000 trips applying VTSP-SCT-TW model to larger
values of ∆t ∈ {5,10,15} and Ttw ∈ {5,10}, towards evaluating the robustness of a commercial
MILP to solve more difficult configurations. Figure 6 presents the results for instances with
1000, 3000 and 5000 trips regarding CPLEX gaps and required CPU time.

As expected, VTSP-SCT-TW model became more difficult to be solved with larger ∆t and Ttw

parameter values. The higher of both possibilities of aggregated trips and insertion of TW arcs
significantly increased the number of constraints in the model, directly affecting the CPU usage.
Instances with 10 stations remained challenging to be solved, reflecting higher CPU times (Fig-
ure 6a) and higher gap values (Figures 6b and 6c), since less station concentrates more service
trips. Considering that the developed flexibility approaches focuses mainly on strategic planning,
the implemented model can be solved for a quite broad range of configuration by a robust com-
mercial MILP solver. Further, it should be noted that high values of ∆t and Ttw might become
unacceptable to regulating authorities due to their undesired impact on passengers’ everyday life.
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Figure 6 – Impact of increasing ∆t and Ttw in (6a) CPU time and (6b, 6c) GAP values.
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6 CONCLUSION

We extended the ILP model of [31] to solve a variant of the single-depot VSP, in which het-
erogeneous fleet and timetabling flexibility are simultaneously considered. To effectively enable
timetabling flexibility, we proposed two different approaches: the inclusion of TW arcs in the
network, and the grouping of trips, considering the possibility of a higher capacity vehicle to
perform two or more closed starting time trips in the original scheduling.

The developed approach for the insertion of TW arcs creates small changes in the network,
offering the following advantages in comparison with previous implementations described in the
literature [20, 19]: (i) preprocessing to remove uninteresting TW arcs is not needed, and (ii)
VTSP-TW model leads to fewer disruptions to the original timetabling than the KBS model.
Based on the results, VTSP-TW model emerges as a suitable alternative approach to solve large
instances of this problem, with very similar CPU times and optimal solution values.

The other developed approach considers the possibility of grouping multiple trips into a single
one, making use of a larger vehicle type. Since the timetable presents irregular headways, in
which the departure times of trips do not have a fixed interval, grouping trips are possible in short
time intervals. This approach, based on computational experiments, resulted in small changes to
the timetable and no significant effect on passengers’ experience.

The results obtained in the computational experiments demonstrated that our approach has po-
tential to significantly reduce the total costs related to the operation of public transit systems,
by decreasing the number of scheduled vehicles, while satisfying the demand. For a problem
including 10000 trips, the processing time can take up to two hours, which is quite acceptable,
considering the effort necessary to solve the problem manually.

This first approach to the VTSP problem, considering timetable integration, is a case study ap-
plied to the Brazilian reality. However, the main idea of the problem tends to be applied to
different timetabling and vehicle scheduling problems. Then, we intend to extend our future
research efforts in two directions as follows: (i) to implement a heuristic approach towards in-
creasing the solution efficiency of the models, allowing to increase the number of scenarios to be
evaluated; and (ii) to contemplate multiple depots in the modeling approach.
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