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ABSTRACT. This work aims at complementing the development of the EFM (Ellipsoidal Frontier Model)
proposed by Milioni ez al. (2011a). EFM is a parametric input allocation model of constant sum that uses
DEA (Data Envelopment Analysis) concepts and ensures a solution such that all DMUs (Decision Making
Units) are strongly CCR (Constant Returns to Scale) efficient. The degrees of freedom obtained with the
possibility of assigning different values to the ellipsoidal eccentricities bring flexibility to the model and
raises the interest in evaluating the best distribution among the many that can be generated. We propose two
analyses named as local and global. In the first one, we aim at finding a solution that assigns the smallest
possible input value to a specified DMU. In the second, we look for a solution that assures the lowest data

variability.
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1 INTRODUCTION

DEA (Data Envelopment Models) Models of Constant Sum refer to problems in which a new
(or already existing) input or output variable has to be assigned (or reassigned) to a group of
DMUs (Decision Making Units) such that the total sum of this new (or existing) variable across
all DMUs has to remain constant.

Such models may be parametric or nonparametric. Examples of nonparametric DEA Models of
Constant Sum are Cook & Kress (1999), Wei at al. (2010), Beasley (2003), Lins er al. (2003)
and Gomes & Lins (2008). Parametric DEA models were first proposed by Kozyreff & Milioni
(2004). Further publications on Parametric DEA Models are Avellar (2004, 2010), Avellar et al.
(2005, 2007 and 2010), Milioni et al. (2011a and 2011b), Silva & Milioni (2012), Guedes (2007)
and Guedes et al. (2012).

Parametric DEA models are characterized by the assumption of the geometrical shape or locus
of points of the production frontier. This may be considered a strong assumption, but parametric
DEA models are also the only ones for which it is possible to prove a desirable property known
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as coherent property, within the context of sensitivity analysis (see, for instance, Milioni ef al.,
2011a and Guedes et al., 2012).

This work aims to complement the development of an input allocation model of constant sum,
parametric, adapted to the characteristics of Data Envelopment Analysis (DEA) and that guar-
antees a strongly efficient solution to all the Decision Making Units (DMUs), in models with
constant return of scale. This is the Ellipsoidal Frontier Model (EFM), based on an efficiency
frontier with ellipsoidal shape that is capable of distributing inputs taking into account the
problem.

The EFM provides several possibilities for different solutions due to its flexibility derived from
the degrees of freedom (eccentricities) of the model. For this reason, it became interesting to
guide the decision maker to select the best solution, which is the purpose of this work. Therefore,
two different types of analyzes are proposed, classified as: Local (LA) and Global (GA). The
first one (LA) has the objective of finding the lowest possible input value associated to a specific
DMU. The second (GA) searches for a solution with the lowest total variability of the data set:
input and output values.

2 EFM MODEL

According to Avellar (2010) and Milioni er al. (2011a), the Ellipsoidal Frontier Model (EFM)
is a parametric model of constant sum such that the efficiency frontier has an ellipsoidal shape.
It assures several solutions that are CCR strongly efficient for all DMUs, by distributing (redis-
tributing) a new (already existing) input variable among all DMUs, taking into account all other
input and output variables involved in the problem.

Model construction is presented in three different cases:

(1) two outputs and a single input,
(i1) s Outputs and a single input and
(iii) s Outputs and m + 1 Inputs.
According to Avellar (2010): “Consider y, j (> 0) the measured value of outputr(r =1, ...,s)

for DMU j(j = 1,...,n), F(> 0) the total fixed input (or cost) to be distributed to all DMUs,
ie, F = Z?:l fj, where f; is the input value to be allocated to each DMU j.”

Thus, the coordinate values and the values of the new Input ( f;) to be distributed for each case
will be:
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The value assigned to e refers to the eccentricity of the ellipse. Thus, the model allows a dif-
ferent solution (frontier) for each different value of e. It is noteworthy that an ellipse with zero
eccentricity is a sphere (thus, spherical frontier is a particular case of this model).

Case (ii):
2 2
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As it is shown in Avellar (2010), EFM solution can be obtained with the use of a Linear Pro-
gramming Problem (LPP) presented in the following set of equations:

Min  Wiax — Whin

. fi
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fi
Whin =
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- (5)
Z Urkyrk = 1

k=1 fi

fj >0

According to the author, their properties and characteristics make EFM a Cooperative, Competi-
tive and Flexible model. Namely:

e Frontier Homogeneity property: replaces the original piece-wise linear DEA frontier by a
smooth frontier.

e DEA control weights Effective solutions generating property (flexibility model): gives the
decider the possibility of obtaining a weight distribution for each combination of eccen-
tricity, strongly efficient solutions CCR (characteristic competitive);

e Coherent Distribution Ownership (cooperation characteristics): Inputs to distribute special
consistently in the presence of errors;

e Input distribution characteristic considering input and output values existing in the current
problem.

e No DMU has to increase input value to become efficient.

Further details of the model can be found in Avellar (2010) e Milioni et al. (2011a).

3 METHOD

EFM model is in essence flexible due to its many degrees of freedom. By using different eccen-
tricities values one can generate many different solutions. Moreover, in the illustrative example
presented in Milioni ef al. (2011a) the authors show that by choosing different values to the
eccentricities one can gain control on the weights assigned to each input and output variable in
the DEA solution.

In their example, they propose two solutions, analyze the characteristics of each one of them and
then claim:
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“So, for both strongly efficient solutions, the decision maker can choose which weight distribu-
tion is more adequate to his or her reality (...)".

Further ahead they point out that:

“The kind of procedure could provide a guideline for how one chooses specific parameters based
on the ellipsoidal shape of the frontier, an issue so important and dense that we intend to address
it in another paper”.

This is precisely our goal in this paper. We propose two different analyses denominated as Local
(LA) and Global (GA):

(1) in the first one (LA), by varying the values assigned to the eccentricities (0 < e < 1),
we investigate the solution that achieves the smallest possible input value to a specific and
previously chosen DMU;

(i1) in the second (GA), we suppose that there is a prior solution (i.e., the input variable with
constant sum is already somehow distributed among all DMUs) and seek the values of ec-
centricities for which one has the smallest total variability, considering the current existing
distribution.

For this variability, it is used the Euclidean Distance as a metric. We mean the total sum of
squares of the differences between prior (currently existing) and new (provided by the solution)
input variable for each DMU.

4 EXAMPLE

We use the same real data presented in Gomes & Lins (2008). In their case, DMUs are countries
and the problem is to fairly distribute a single input, which is emission of CO; (carbon equiv-
alent ton’) considering three outputs: population (in million), energy (million BTU) and Gross
Domestic Product (GDP, in billions of dollars).

Since this is a three outputs problem, the model formulation has two degrees of freedom, i.e.,
there are two eccentricities to be chosen. The 64 countries regarded as DMUs are:

(01) Argentina (02) Australia (03) Austria (04) Belgium
(05) Bolivia (06) Brazil (07) Bulgaria (08) Canada

(09) Chile (10) China (11) CostaRica (12) Croatia

(13) Czech Republic  (14) Denmark (15) Egypt (16) El Salvador
(17) Estonia (18) Finland (19) France (20) Germany
(21) Greece (22) Guatemala  (23) Honduras  (24) Indonesia
(25) Ireland (26) Israel (27) Italy (28) Japan

(29) Kazakhstan (30) Latvia (31) Lithuania  (32) Luxembourg
(33) Malaysia (34) Maldives (35) Malta (36) Mexico
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(37) Netherlands (38) New Zealand  (39) Nicaragua (40) Norway

(41) Panama (42) Paraguay (43) Peru (44) Philippines
(45) Poland (46) Portugal (47) Republic of Korea  (48) Romania
(49) Russian Federation  (50) Seychelles (51) Slovakia (52) Slovenia
(53) Spain (54) Sweden (55) Switzerland (56) Thailand
(57) Turkmenistan (58) Ukraine (59) United Kingdom (60) United States
(61) Uruguay (62) Uzbekistan (63) Vietnam (64) Zambia

Input and output real data values for each country are presented in Table 1.

Table 1 — Inputs x Outputs from the example.

DMUs | CO, | Population | Energy GDP DMUs CO, Population | Energy GDP
1 34.85 37.52 | 2664.87 | 280.05 33 36.15 23.63 | 227495 | 11221
2 99.03 19.49 | 497421 | 453.26 34 0.13 0.28 6.77 0.54
3 18.19 8.08 141942 | 268.65 35 1.07 0.39 5141 3.99
4 39.36 10.26 | 277355 | 321.57 36 96.05 101.75 | 6004.00 | 372.41
5 2.62 8.47 161.63 8.04 37 67.52 16.04 | 4231.06 | 502.58
6 95.77 17239 | 8782.13 | 77145 38 9.61 3.85 844.12 70.98
7 15.48 7.87 927.93 12.59 39 1.02 521 58.12 2.38
8 156.19 31.08 | 12513.07 | 718.13 40 11.45 451 1906.09 | 17291
9 14.75 15.40 | 1060.30 81.93 41 2.26 2.86 138.46 9.40
10 831.74 1285.00 | 39665.26 | 1113.59 42 0.96 5.64 110.93 9.59
11 1.39 3.87 154.08 15.10 43 7.19 26.35 550.33 60.89
12 5.69 4.66 429.16 23.35 44 18.62 77.13 1254.27 91.24
13 29.01 10.29 | 1530.56 57.09 45 78.61 38.64 | 3536.04 | 165.27
14 16.24 533 895.23 | 207.44 46 16.25 10.02 | 1088.21 131.88
15 34.29 67.89 | 2132.60 80.80 47 120.80 4734 | 8058.12 | 639.24
16 1.53 6.40 114.66 11.24 48 25.97 2241 1637.66 34.92
17 1.94 1.38 95.67 4.81 49 440.26 144.40 | 28197.17 | 366.90
18 14.41 5.19 | 1326.01 173.57 50 0.17 0.08 8.45 0.62
19 108.13 59.19 | 10521.36 | 1812.35 51 10.83 5.40 832.04 23.81
20 223.24 82.36 | 14351.56 | 2701.90 52 4.06 1.99 305.56 23.86
21 28.08 10.60 | 139320 | 144.77 53 82.72 4027 | 5699.31 | 723.24
22 2.52 11.68 158.70 18.19 54 14.58 8.83 | 2221.20 | 281.29
23 1.27 6.58 86.47 4.68 55 12.27 723 1304.67 | 340.28
24 87.13 214.84 | 4629.78 | 21593 56 48.49 6291 | 290394 | 17497
25 11.15 3.84 609.29 | 11291 57 7.68 4.88 477.26 6.97
26 16.32 6.45 792.02 | 107.30 58 96.58 49.11 | 6076.24 36.43
27 121.50 5795 | 8110.68 | 1225.57 59 154.33 59.54 | 9810.06 | 1334.92
28 315.83 127.34 | 21921.99 | 5651.49 60 1565.31 283.97 | 97049.88 | 9039.46
29 33.37 14.83 1734.57 21.81 61 1.69 3.36 157.36 20.79
30 2.65 2.36 205.87 6.03 62 30.16 25.56 | 2075.01 12.80
31 433 3.49 329.19 751 63 12.56 79.18 760.13 30.99
32 247 0.44 203.10 2547 64 0.56 10.65 89.46 4.08

In the Local Analysis (LA) we seek the values of eccentricities that assign the lowest possible
input value for a single chosen DMU, still assuring the existence of a solution in which all DMUs
are strongly CCR efficient.
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Table 2 shows the results obtained for the analysis carried out for each DMU.

Table 2 — Local Analysis.

DMU f;‘ € € DMU f;‘ € €
1 41.81 | 0.90 | 0.00 33 19.20 | 0.99 | 0.99
2 49.84 | 0.50 | 0.99 34 0.10 | 0.99 | 0.50
3 26.18 | 0.00 | 0.00 35 0.55 | 0.50 | 0.99
4 34.19 | 0.70 | 0.99 36 64.38 | 0.99 | 0.99
5 2.18 | 0.99 | 0.99 37 53.42 | 0.70 | 0.99
6 127.83 | 0.99 | 0.80 38 8.11 | 0.50 | 0.99
7 324 1 099 | 0.99 39 1.00 | 0.99 | 0.00
8 80.09 | 0.50 | 0.99 40 18.22 | 0.50 | 0.99
9 13.67 | 0.99 | 0.99 41 1.64 | 0.99 | 0.99
10 328.17 | 0.99 | 0.99 42 1.78 | 0.99 | 0.10
11 2.41 1 099 | 0.00 43 9.73 |1 0.99 | 0.00
12 3.96 | 099 | 0.99 44 20.05 | 0.99 | 0.00
13 9.92 | 0.99 | 0.99 45 28.59 | 0.99 | 0.99
14 19.42 | 0.00 | 0.00 46 16.10 | 0.00 | 0.00
15 19.49 | 0.99 | 0.99 47 78.88 | 0.50 | 0.99
16 1.97 | 0.99 | 0.00 48 8.01 | 0.99 | 0.99
17 0.84 | 0.99 | 0.99 49 88.66 | 0.90 | 0.99
18 18.34 | 0.50 | 0.90 50 0.10 | 0.70 | 0.99
19 180.81 | 0.00 | 0.00 51 434 1 0.99 | 0.99

20 263.72 | 0.00 | 0.00 52 3.06 | 0.50 | 0.99
21 17.73 | 0.50 | 0.99 53 82.13 | 0.00 | 0.70
22 3.13 |1 0.99 | 0.00 54 29.84 | 0.50 | 0.99
23 1.41 |1 099 | 0.10 55 31.18 | 0.00 | 0.00
24 56.71 | 0.99 | 0.99 56 3141 | 0.99 | 0.99
25 11.13 | 0.00 | 0.00 57 1.80 | 0.99 | 0.99
26 12.12 | 0.00 | 0.00 58 17.30 | 0.99 | 0.99
27 130.16 | 0.00 | 0.00 59 14490 | 0.00 | 0.00
28 519.47 | 0.00 | 0.00 60 963.10 | 0.50 | 0.99
29 5.90 | 0.99 | 0.99 61 2.90 | 0.99 | 0.00
30 1.16 | 0.99 | 0.99 62 7.12 |1 0.99 | 0.99
31 1.56 | 0.99 | 0.99 63 14.33 | 0.99 | 0.00
32 2.63 | 0.50 | 0.99 64 1.85 | 0.99 | 0.00

If we look at the result for DMU 1 presented in Tables 1 and 2 we conclude that Argentina’s
current CO2 emission, which 34.85 carbon equivalent ton? has to climb to a minimum of 41.81
such that there will still be a solution for which global total CO; emission remains constant and
all DMUs (countries) are strong CCR efficient.

On the global analysis we investigated in all distributions (varying eccentricity values), the less
variability on the data conjunct. The results are presented in Table 3:
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Table 3 — Global Analysis.

GA er)=00]|e=01|e=02|e=03]|e=04]| e =05
e; =0.0 5346 5346 1867 1893 1929 1979
e =0.1 1842 1847 1862 1887 1924 1974
e =02 1826 1831 1845 1871 1908 1958
e =03 1799 1804 1819 1844 1880 1930
e =04 1761 1766 1780 1805 1842 1892
e =05 1708 1713 1727 1752 1789 1839
e =0.6 1636 1640 1655 1680 1717 1767
e =0.7 1541 1546 1561 1586 1623 1674
e; =0.8 1520 1523 1534 1553 1581 1619
e =09 1577 1581 1594 1615 1647 1691
e; =0.99 1728 1734 1750 1778 1819 1878

GA e, =05]|e=06|e=07]|e=08]|e=09|e=09
e; =0.0 1979 2045 2129 2239 2384 2559
e =0.1 1974 2039 2124 2234 2379 2555
e =02 1958 2023 2108 2219 2365 2542
e =03 1930 1996 2081 2193 2341 2521
e =04 1892 1958 2043 2155 2305 2489
e =05 1839 1906 1992 2105 2256 2444
e =0.6 1767 1834 1921 2037 2195 2393
e =0.7 1674 1742 1831 1950 2113 2322
e; =0.8 1619 1669 1737 1829 1997 2220
e =09 1691 1750 1830 1938 2092 2307
e; =0.99 1878 1957 2066 2220 2450 2811

As we can see from Table 3, the pair of eccentricities that minimizes total variability is the pair
(0.8, 0.0).

For this study, all Local Analysis (Table 2) of the EFM model (Equation 2) were conducted using
MSExcel. The Global Analysis (Table 3) was implemented on Matlab.

5 RESULTS AND CONCLUSION

In the LA, the largest differences between current and minimum possible values were observed
for DMUs 10 (China), 28 (Japan), 49 (Russian Federation) and 60 (United States). For these
Countries, the differences are, 503.57, 203.64, 351.60 and 602.23 ton3 CO; found in eccentric-
ities (e1, e2) = (0.99, 0.99), (0.00, 0.00), (0.90, 0.99) and (0.50, 0.99), respectively. Among
these countries, only DMU 28 (Japan) has a minimum value that is greater than its current value
of emission.

Regarding Global Analysis (GA), it was possible to realize once more the merits of the EFM
model to provide various distributions in which the decision maker can choose how to redis-
tribute their data with strongly efficient solutions. The values in Table 3 illustrate these possi-
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bilities ranging from 1520 ton> CO, (minimum) — found in the eccentricities values (e;, €2) =
(0.80, 0.00) — which represents 28% of the total F value, to 5346 ton> CO, (maximum). The
average was 1990 ton® CO,.

While observing both analysis results (LA and GA) the minimum value found on GA distribu-

tion do not reveal any of the cases of LA distribution. However, the merit of this study is attained

by indication of distributions with eccentricities values that occurs the solution of analyses LA

and GA, according to each problem. The guidance while choosing one solution from many

possibilities is now feasible, since it requires minimum data treatment. This is a relevant fact

mainly due to the nature of input associated with many resources quantity.
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