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ABSTRACT. In order to model the preferences of a decision-maker (DM) by means of fuzzy preference
relations, a DM can utilize different preference formats (such as ordering of the alternatives, utility values,
multiplicative preference relations, fuzzy estimates, and reciprocal as well as nonreciprocal fuzzy prefer-
ence relations) to express his/her judgments. Afterward, the obtained information is utilized to construct
fuzzy preference relations. Here we introduce a procedure that allows the use of so-called preference func-
tions (which is a preference format utilized in the methods of PROMETHEE family) to construct nonrecip-
rocal fuzzy preference relations. With diverse preference formats being offered, a DM can select the one
that is the most convenient to articulate his/her preferences. In order to demonstrate the applicability of the
proposed procedure a multicriteria decision-making problem related to the site selection for constructing a

new hospital is considered here.

Keywords: multicriteria decision-making, fuzzy preference relations, preference functions.

1 INTRODUCTION

The approaches to dealing with multicriteria (multiattribute) decision-making problems, which,
for instance, are discussed in Orlovsky (1978), Chiclana et al. (1998), Ekel et al. (1998), Chi-
clana ef al. (2001), are directed at processing the individual preferences as a pair (X, R), X =
{X1, X2, ..., X,} represents a finite and discrete set of alternatives, which are to be evalu-
ated, compared, ordered, and/or prioritized under the consideration of a set of fuzzy nonstrict
preference relations R = {Ri, Ry, ..., Ry}, given in accordance with a set of criteria /' =
{F1, F2, ..., Fy)} being considered.

A fuzzy nonstrict preference relation (Orlovsky, 1978) consists of a binary fuzzy relation (BFR),
which is a fuzzy set with bi-dimensional membership function R, (X, X;): X x X — [0, 1].
In essence, the membership function of the pth fuzzy preference relation indicates in the unit
interval the degree to which the alternative X} is at least as good as X;, when the criterion Fp,
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is considered by a particular decision-maker (DM). In a somewhat loose sense R, (X}, X;) also
represents the degree of truth of the statement “Xj is at least as good as X;” (Kulshreshtha &
Shekar, 2000).

In dealing with (X, R) models, a fundamental question arises on how one can construct fuzzy
preference relations to reflect the preferences of a DM. In practice, a DM can use different for-
mats to establish preferences for the alternatives under consideration (Herrera-Viedma et al.,
2002; Zhang et al., 2007; Pedrycz et al., 2011), including, the ordering of the alternatives, the
utility values, multiplicative preference relations, fuzzy estimates, and fuzzy preference relations
(additive reciprocal and nonreciprocal). In real world applications, several factors may lead a
DM to select a different way for expressing his/her preferences about each criterion. Among
these factors we can list the following (Pedrycz et al., 2011):

e cach criterion comes with its significance (a fundamental feature which provides sig-
nificance to the difference between two degrees evaluated on this criterion). Depending
whether this significance has a qualitative or quantitative character, the use of certain pref-
erence formats can make the preference elicitation process easier and also more reliable;

e cach criterion is associated with information arising from different sources and with infor-
mation having different levels of uncertainty;

e a DM may find that his/her preference strengths can be better reflected or quantified by a
specific preference format;

e a fact that a DM may posses previous knowledge or experience in expressing a specific
preference format can motivate him/her to choose using it again.

The information captured by those different preference formats can be utilized to construct fuzzy
preference relations by means of applying adequate transformation functions (Chiclana et al.,
1998, 2001; Herrera-Viedma et al., 2002; Pedrycz et al., 2011). Alternatively, a DM can directly
assess the fuzzy nonstrict preference relation by determining the preference strength of one alter-
native over another as a number in the unit interval. Current literature contains different encoding
schemes which can be utilized in the construction of fuzzy preference relations (refer to (Wang,
1997) for instances of fuzzy preference relations based on different encoding schemes). In this
paper, we consider a particular encoding scheme which can be utilized to construct a nonrecip-
rocal fuzzy preference relation (NRFPR) (Orlovsky, 1978; Fodor & Roubens, 1994a; Ekel &
Schuffner Neto, 2006; Pedrycz et al., 2011). Such encoding scheme allows one to construct a
NRFPR which is compatible with:

e a rational approach (Ekel ef al., 1998) for deriving fuzzy preference relations, which is
based on the comparison of the fuzzy estimates provided by a DM to evaluate each alter-
native (a discussion of the advantages of such rational approach can be found in (Pedrycz
etal., 2011));

e the notion of fuzzy nonstrict preference relation belonging to fuzzy preference structures
with incomparability relation (Fodor & Roubens, 1994a). In this way, the use of a NRFPR
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permits one to capture the preference degree of each pairwise comparison and the confi-
dence degree of each pairwise comparison as well. A DM should assign a low credibility
degree to a paired comparison whenever he/she can not define with conviction the pref-
erence degree for one alternative over another. The lack of conviction may be associated
with missing information or to the occurrence of contradictory information about one al-
ternative or both alternatives belonging to the pair (Fodor & Roubens, 1994a,b).

Motivated by a demand for different preference formats to choose it as comfortable as possible
for a DM to articulate his/her preferences (Zhang et al., 2007; Pedrycz et al., 2011), here we
introduce a procedure that allows the use of preference functions to construct NRFPRs. In the
methods of PROMETHEE family (Brans & Vincke, 1985), a DM must define the shape of the
preference functions in accordance with his/her preferences so that they can be utilized to com-
pare the alternatives and to construct outranking relations for each criterion being considered in
the multicriteria analysis. Here, the preference functions are implemented as part of a general
framework for preference modeling in a fuzzy environment, which offers six preference formats
for preference articulation. They are: the ordering of the alternatives, the utility values, the multi-
plicative preference relations, the fuzzy estimates, the fuzzy preference relations (reciprocal and
nonreciprocal), and the preference functions. With the availability of several preference formats,
the choice of the most suitable one is a prerogative of a DM. The applicability of the prefer-
ence functions to construct NRFPRs, within such general framework for preference modeling, is
demonstrated through the solution of a decision-making problem related to the site selection for
constructing a new hospital (Vahidnia et al., 2009).

2 JUDGMENTS OF STRICT PREFERENCE, INDIFFERENCE, AND
INCOMPARABILITY

Let us consider that a DM is asked to compare two alternatives X; € X, X; € X for a given
criterion and determine which, between these two, he/she prefers. One of the following answers
is expected (Fodor & Roubens, 1994a):

e X} and X; are indifferent;
e X} is strictly better than Xj;
e Xj is strictly better than Xy;

e Xj and X; are incomparable (a DM may not be able to compare the alternatives due to
missing or uncertain information or as a consequence of the existence of conflicting infor-
mation).

Accordingly, in order to realistically characterize this comparison between two alternatives, three
main types of judgments can be distinguished, namely indifference, strict preference, and incom-
parability. Given the pth criterion, these judgments can be modeled by means of three specific
BFRs, namely the fuzzy indifference relation /,, the fuzzy strict preference relation P,, and
the fuzzy incomparability relation Jj,, in such a way that the membership function of each BFR
quantifies in the interval [0, 1], the credibility or the intensity of the observed judgment.
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In fuzzy preference models based on BFRs, given De Morgan triplet (7, S, N), it is possible to
define I, Py, and J), exclusively in terms of the fuzzy nonstrict preference relation R,. It is
important to indicate that the fuzzy nonstrict preference relation, by definition, can be expressed
as (Fodor & Roubens, 1994a):

R,=P,Ul,. @)

By considering that I, corresponds to all pairs of alternatives that simultaneously satisfy
R, (Xk, X)) and R, (X, X}), the indifference relation can be stated as

I, =R,NR,", )
where R;‘ is the inverse relation of R, that is R;‘ (Xk, X1) = Rp(Xy, Xi) (Orlovsky, 1978,
1981).

Similarly, as P,(Xj, X;) implies that R, (X, X;) and N (R, (X, X)), the strict preference can
be specified as
P,=R,NRY, &)

where R? corresponds to the dual relation of R p, that is
RO(Xy, Xp) = 1 = Ry(X1, Xp))

(Fodor & Roubens, 1994a).

Finally, as the relation J, (X}, X;) implies that N(R, (X, X;)) and N(R,(X;, X})), the incom-
parability relation is given by
Jp=R,NRY, *

where R p corresponds to the complementary relation of R, that is
Rp( Xy, X1) =1 — Rp(Xi, X))

(Fodor & Roubens, 1994a).

Therefore, once we have at hand the values of R, (X}, X;) and R, (X}, X}), the estimation of 1,
P, and J,, is realized on the basis of (2), (3), and (4), respectively. As one can note, those three
expressions require the selection of a #-norm operator. Unfortunately, as it has been discussed,
for instance, in De Baets & Fodor (1997), it is not simple to select a #-norm to implement (2)-(4),
if we want to preserve certain desirable properties of a fuzzy preference structure. Indeed, a
negative result demonstrated in Alsina (1985) indicates that, if a De Morgan triplet is utilized to
represent the complement, the intersection and the union of BFRs, then the equality

Z=ZNWYU(ZNW) (5)

is not satisfied for any binary fuzzy relations Z and W. If we consider Z as being R, and W
as RZ, then it implies that the relationships (2), (3), and (1) are inconsistent for any reflexive
fuzzy binary relation, if we use the same intersection operator to implement the two intersection
operations in (5).
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Among the admissible 7-norms to be utilized in this context (Fodor & Roubens, 1994b), we
selected the min operator to implement the intersection in (2) and in (4) and the Lukasiewicz
t-norm to implement the intersection in (3), as given by the following expressions:

I, ( Xk, X1) = min{R ), (Xk, X1), Rp(X1, Xi)}, (6)
Py ( Xk, X1) = min{ R, (Xj, X1) — Rp(X1, Xi), 0}, (7N
Jp(Xi, X)) = min{l — R,(Xg, X7), 1 — R, (X;, Xp)} . ®)

It should be indicated that the definition of the fuzzy strict preference relation as given by (7)
is in conformity with the Orlovsky choice procedure (Orlovsky, 1978), which is described in
Section 5.

3 DIRECT ASSESSMENT OF NONRECIPROCAL FUZZY NONSTRICT
PREFERENCE RELATIONS

In real applications, a DM is usually asked to pick up the values in the unit interval that reflect
the level of credibility or just the strength of his/her nonstrict preference for one alternative over
the other. The encoding scheme considered here is reflected by a NRFPR which verifies the
following conditions (Pedrycz et al., 2011):

o if R, (X, X)) =1and R, (X, Xi) = 1, then X} is indifferent to X;;

if Rp(Xg, X1) = 1and R, (X;, Xi) = 0, then X is strictly preferred to Xj;

if R,(Xi, X;) = 0and R, (X}, Xi) = 1, then X is strictly preferred to Xj;

if Rp(Xg, X;) = 0and R,(X;, Xi) = 0, then X} and X; are not comparable;

the entries of the main diagonal are filled with 1, due to the reflexivity of R, (X}, X}).

Intermediate judgments among the situations described above are also allowed. They can be
interpreted as follows:

o if 0 < R,(Xi, X;) < land R, (X}, Xy) = 1, then X; is weakly preferred to X;
o if R,(Xi, X1) =1and 0 < R,(X;, Xy) < 1, then X} is weakly preferred to Xj;

o if 0 < R,(Xy, X)) < 1and Ry(X;, Xi) = 0, then X} is weakly preferred to X; and, at
the same time, X} and X7 are to a degree considered incomparable;

o if Ry(Xi, X)) = 0and 0 < R,(X;, Xi) < 1, then X; is weakly preferred to Xj and, at
the same time, X and X; are to a degree considered incomparable.
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It is important to indicate that relations (6) and (7) determine a clear relationship between the
values of R, (X, X;) and R, (X;, Xi). If (6) and (7) are utilized for defining the fuzzy indiffer-
ence relation and the fuzzy strict preference relation, respectively, then the difference between
R, (Xk, X)) and R, (X, X;) reflects the level of strict preference between the alternatives Xj
and X;. Besides, the minimum value between R, (X, X;) and R, (X, X) reflects the level of
indifference between the alternatives X and X;.

With reference to the consistency of NRFPRs, the weak transitivity, which is given by (Herrera-
Viedma et al., 2004).

If R,(Xi. X;) > Rp(X;, Xp) and R, (X}, X)) > R,(X), X;), then
Ry(Xg, X1) > Rp(Xy, Xi), VX, X, X1e X ©)

leads to the minimum requirement that should be satisfied by rational preference judgments. It
implies that if someone says that X is preferred to X; and that X is preferred to X, then X is
preferred to X;, without considering the strength of the preferences. It is also the minimum re-
quirement for the application of decision-making methods based on the Orlovsky choice function
(Orlovsky, 1978), if one wants some rational properties to be attained (Sengupta, 1998).

4 INDIRECT ASSESSMENT OF NONRECIPROCAL FUZZY NONSTRICT
PREFERENCE RELATIONS

In individual (as well as in group decision-making), when different preference formats are uti-
lized by a DM to express his/her preferences, the information must be made uniform under ade-
quate transformation functions, before being analyzed. These transformation functions can con-
vert heterogeneous preference information, which may be qualitative or quantitative, two-valued
or fuzzy, ordered or non-ordered, ordinal or cardinal into fuzzy preference relations, which form
a more general preference model (Chiclana et al., 1998, 2001; Herrera-Viedma et al., 2002;
Pedrycz et al., 2011). As it was indicated above, the five main formats, that can be utilize by a
DM to articulate his/her preferences, in addition to the NRFPRs, are:

e Vector with the ordering of all alternatives. The ordering of alternatives from best to
worst can be represented as an array O, = [O,(X1), ..., Op(X,)], with O, (X}) being
a permutation function, which returns the position of alternative X; among the integer
values {1, 2, ..., n} (Chiclana et al., 1998).

o Vector of the utility values. A measurable utility function U,(x): X — [0, 1], founded
on differences in preference strengths (Belton, 1999; Farquhar & Keller, 1989), allows a
DM to assign a utility value from the unity interval [0, 1] to each alternative belonging
to X.

e Multiplicative preference relation. The multiplicative preference relation can be rep-
resented as a n x n positive reciprocal matrix M, reflecting the preference intensity ra-
tio between the alternatives in accordance with the Analytic Hierarchy Process approach
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(Saaty, 1980). Each entry M, (Xj, X7) of this reciprocal matrix represents a preference
intensity ratio and can be interpreted as “ X} is M), (X, X;) times more dominant than X;”
(Saaty, 1980) or as “ X} is M, (Xj, X;) times as good as X;” (Chiclana et al., 2001). Under
the condition of multiplicative reciprocity, once a DM provides M, (X, X;), the value of
My (X, Xi) is automatically inferred as M), (X, Xi) = 1/M, (X, X)).

Fuzzy estimates. The elements of X can be evaluated with the use of fuzzy estimates
L, ={l,(X1),...,1,(X,)}, being [,(X}) the fuzzy estimate associated with alternative
X} from the point of view of a given criterion F),. The fuzzy estimate /, (X)) refers to
a fuzzy number that can be directly specified by a DM or indirectly expressed by means
of linguistic terms from some set S such as, for instance, S(£,) = {low quality, average
quality, high quality}. In the latter case, the linguistic terms must be converted into fuzzy
estimates, as required to perform the analysis of the problem.

Additive reciprocal fuzzy preference relation (ARFPR). An ARFPR consists of a spe-
cific type of fuzzy preference relation which satisfies the additive reciprocity condition:

RR,(Xi, X)) + RR,(X;, X)) =1, VXp, X e X, (10)

where R R, represents the ARFPR (here, NRFPR is denoted as R, and ARFPR is denoted
as RRp).

The encoding scheme usually associated with ARFPRs can be summarized as the following

rules:

RR, (X, X;) = 0.5 means that X} is indifferent to X;;
0 < RR, (X, X1) < 0.5 means that X; is preferred to Xj;
0.5 < RR(Xy, X7) < 1 means that X} is preferred to X7;

the entries of the main diagonal are filled with 0.5, as each element is equal to itself and,
as a result, indifferent to itself.

In (Chiclana et al., 1998), one can find different transformation functions for converting a vec-

tor with the ordering of all alternatives or a vector of the utility values associated with each

alternative into an ARFPR. A transformation function for converting multiplicative preference
relations into an ARFPR is proposed in (Chiclana ef al., 2001). In (Pedrycz et al., 2011), new
transformation functions are proposed. They convert preference information expressed in those

five different formats described above into NRFPRs. Some of the transformation functions pro-

posed in (Queiroz, 2009; Pedrycz ef al., 2011) are summarized in Table 1. It should be indicated

that they are defined for the case of maximization criteria (if the criterion being considered has

a minimization character, then the direction of the signs of all the inequalities appearing in the

transformation functions should be reversed).
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Table 1 — Transformation functions for the conversion of preference information expressed in
different formats into a NRFPR (Pedrycz et al., 2011).

Original preference format | Transformation function
Vector with the ordering R( Xy, X;) = HI(O(Xy), O(X))) =
of all alternatives 1 + w if O(Xy) > O(X))
2 2(n —1)
1, if O(Xy) < O(X))
Vector of the utility values R(Xy, X)) = Hh(U(Xy), U(X))) =
based on an interval scale 1+ UXy) — U, ifUXy) <UX))
1, if U(Xg) = U(X))
Multiplicative preference R(Xy, X)) = H3(M (X, Xp), M(X;, X)) =
relation 1+ % log,, % if log,, M (Xy, X1) <0
1, if log,,, M(Xy, X)) =0
Additive reciprocal fuzzy R(Xy, X;) = Hy(RR(X}, X1), RR(X], X)) =
preference relation 1+ RR(Xy, X)) — RR(X), Xy), if RR(Xy, Xp) < 0.5
1, if RR(X), X)) > 0.5

In this paper, those transformation functions summarized in Table 1 are utilized to create a gen-
eral framework for constructing NRFPRs on the basis of preference information which may be
expressed in different formats. Given a set X of alternatives, a DM can express his/her pref-
erences by ordering the alternatives from best to worst, by constructing a utility function or by
performing pairwise comparisons between the alternatives to construct a multiplicative prefer-
ence relation, a ARFPR or a NRFPR. At the same time, in order to increase the flexibility of
such general framework, the results of (Ekel ef al., 1998) are utilized to derive NRFPRs from
the fuzzy estimates given by a DM to evaluate the alternatives. In this way, once a DM provides
fuzzy estimates F,(X;), k = 1,2, ..., n to evaluate all the alternatives for a criterion £, which
can be measured on a numerical scale, if the essence of preference is coherent with the natu-
ral order (>) along the axis of measurable values of F),, then the following expressions can be
utilized to construct a NRFPR:

Rp(Xi, X1) = sup min (Fp(f,(X), Fp(fp(XD)), (11)
SoXp). fp(XDEF)
SoX)zfp(XD)

Ry (X1, Xi) = sup min (Fp (fp(Xi), Fp(fp(X1)) (12)
Jr(X0). fp(XD)eF,
Tp (XD = fp(Xe)

where f,(X;) and f,(X;) are real numbers reflecting the evaluation of the attribute /), (with a
maximization character) for the alternatives Xy and X;; F,(f,(Xy)) and F,(f,(X))) represent
the membership functions of the fuzzy sets £, (Xy) and F,(X;) evaluated at f,,(Xy) and f, (X)),
respectively. It should be indicated that (11) and (12) are defined for maximization criteria. The
direction of the signs of the inequalities in (11) and (12) should be reversed, if a minimization
criterion is being considered.
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5 CONSTRUCTION OF NONRECIPROCAL FUZZY PREFERENCE RELATIONS
WITH THE USE OF PREFERENCE FUNCTIONS

The results of (Brans & Vincke, 1985) permit one to apply preference functions as an additional
format that can be used by a DM to express his/her preferences. In particular, in the family of
PROMETHEE methods, the preferences being restricted to a single criterion F),, are modeled
through a preference function s, (X, X;), in such a way that it reflects the preference level of X}
over X7, according to the following rules:

o ifs,(Xj, X;) = 0, both alternatives are considered indifferent to each other;
o ifs, (X, X)) = 1, X is strictly preferred to X;

o if 0 < s, (X, X1) < 1, X is weakly preferred to X;.

The preference functions are usually defined in terms of the difference

dp( Xk, X1) = fp(Xi) = fp(XD) (13)

in such a way that they transform the difference in the evaluations of two alternatives into a
preference intensity between 0 and 1. The preference functions can have different shapes, as
long as they are nondecreasing functions of the difference d, (X}, X;) (Brans & Vincke, 1985).
The methods PROMETHEE I and PROMETHEE II admit six different generalized models for
the preference function, which cover most part of the scenarios encountered in real applications
(Brans & Vincke, 1985). They are: the usual criterion, the quasi-criterion, the level-criterion,
the linear criterion, the linear criterion with indifference region, and the Gaussian criterion. With
the availability of those generalized functions, it may be easier for a DM to define a preference
function reflecting his/her preferences. Next, we describe how one can construct NRFPRs based
on each one of those preference functions. It should be indicated that, here we consider the
criteria as being of maximization type (without loss of generality).

Let us begin by considering three preference functions that are particularly easy to define: the
usual criterion, the quasi-criterion, and the level-criterion. Figure 1 shows the graphical represen-
tation of the usual criterion, which may be considered as being the simplest type of preference
function, since it does not require any parameter to be set by a DM. As it can be seen in Fig-
ure 1, the level of strict preference of X} over X; is equal to 1 for d), (X, X;) > 0 and is null for
dp(Xy, X;) < 0. If a DM wants to construct a NRFPR based on the usual criterion, the following
rules must be applied to the comparison of each pair of alternatives:

o if d,(Xy, X)) <0, then R, (Xy, X)) =0and R,(X;, Xi) = 1;
o ifd,(Xg, X;) =0, then R, (X, X;) =1 and R, (X}, Xi) = 1;

o if d,(Xy, X)) > 0, then R, (X, X;) =1 and R, (X}, X;) = 0.
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$p( X5 X7) R,(X X))

0 d, (X X)) 0 d, (X X))

Figure 1 — Left side: Preference function based on the usual criterion; Right side: NRFPR based
on the usual criterion, expressed in function of the difference d) (X, X}).

Figure 2 shows a graphical representation of the preference function corresponding to the quasi-
criterion and of the NRFPR based on the quasi-criterion. It is worth noting that the usual criterion
can be seen as a particular case of the quasi-criterion where the bounds of the indifference interval
[—ap, ap] are null, that is a, = 0. If a DM wants to construct a NRFPR coherently with the
quasi-criterion, the pairwise comparisons must attain the following conditions:

o ifd,(Xy, X)) < —ap, then R, (X, X)) = 0 and Ry(Xy, X)) =1;
o if —a, <d,(Xi, X)) < ap, then Rp(Xi, X;) = 1 and R, (X}, Xj) = 1;
o ifd, (X, X;) > ap, then R, (X, X;) = 1 and R, (X}, Xy) = 0.

Sp( X X7) R,(X. X))

1 - 1

0 a

P

dp(X’(!X’) _ap 0 a,n dp(Xk:-XD
Figure 2 — Left side: Preference function based on the quasi-criterion; Right side: NRFPR based

on the quasi-criterion, expressed in function of the difference dp (X, X)).

The level-criterion allows discriminating an indifference interval [—a,, a,] and a weak prefer-
ence interval [a,, b,] (and [—b,, —a,]). The pairwise comparisons must satisfy the following
conditions in order to construct a NRFPR coherently with the level-criterion:

o ifd,(Xi, X)) < —bp, then R, (X, X)) = 0and R, (X;, Xy) = 1;

o if —b, < dy(Xi, Xj) < —ap, then R,(Xi, X;) = 0.5 and R, (X}, Xi) = 1;
o if —a, <d,(Xi, X;) <ap,then R,(Xg, X;) =1and R,(X;, Xi) = 1;

o ifa, < dy(Xy, X;) < by, then R, (X, X;) = 1and R, (X}, Xi) =0.5;

o ifd, (X, X)) = by, then R, (X, X;) = 1 and R, (X}, Xi) = 0.
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(X XD R(X. X))

0.5 0.5

0 a, b, d,(X,X) -b, -a, 0 a, b, d,(X.X)

Figure 3 — Left side: Preference function based on the level criterion; Right side: NRFPR based on the
level criterion, expressed in function of the difference dp (Xj, X)).

The preference functions of the linear criterion, the linear criterion with an indifference region,
and the Gaussian criterion present a smooth transition between indifference and strict preference,
which permits a DM to make judgments at different levels of weak preference. The graphical
representations of those preference functions are shown in the Figures 4, 5, and 6, respectively.

In the visualization of the linear criterion (refer to Fig. 4), the slope of the preference function
depend on the value of the preference threshold b,,. Thus, in order to define a NRFPR coherently
with the linear criterion, the pairwise comparisons must be in accordance with the following
conditions:

o ifd,(Xi, X;) < —bp, then R, (X;, X;) = 0and R, (X}, Xp) = 1;
o if —b, < d,(Xy, X;) <0, then R,(Xi, X;) =1 —|dp(Xi, Xp)|/bp and R,(X;, Xi) = 1;
o if 0 < d,(Xy, X;) < —bp, then R, (X, X;) = 1and R, (X;, Xi) = 1 — |dp(Xi, X)|/bp;

o ifd, (X, X;) > by, then R, (X, X;) = 1 and R, (X}, Xy) = 0.

(X X)) R,(X, X))
1 1

0 b

P

dp(Xk,)(]) 'bp 0 bp dp(XI(HX{')

Figure 4 — Left side: Preference function based on the linear criterion; Right side: NRFPR based on the
linear criterion, expressed in function of the difference dp (X, X;).

The Linear criterion with indifference region can be considered an extension of the linear crite-
rion to deal with judgments of indifference when the pair of alternatives have similar evaluations
and their difference lies in an indifference interval [—a, ap]. A NRFPR is coherent with this
definition of linear criterion with indifference region if it is in accordance with the following
conditions (refer to Fig. 5):
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° ifdp(Xk,X]) < —bp,then Rp(Xy, X)) = 0 and Ry(Xy, Xp) =15

o if —b, < dy(Xy, X)) < —ap, then R,(Xi, X)) = 1 — |dy(Xg, X)|/b, and
Ry(Xy, Xi) = 1;

o if —a, < dp(Xi, X)) < ap, then Rp(Xi, X;) = 1 and Rp(X;, X)) = 1;
o ifa, <d,(Xy, X;) < bp,then R,(Xy, X;) =1and R, (X;, Xi) =1 — |dp(Xi, X1 /bp;

o ifd,(Xg, X;) > by, then R, (Xg, X;) = 1 and R,(X;, X) = 0.

85,(Xp X)) Ry(X. X))

1
1

T [ I I ]
0 a b, d,(X.X) -b, =y 0 ap b, d(X,X)

Figure 5 — Left side: Preference function based on the linear criterion with indifference region; Right
side: NRFPR based on the linear criterion with indifference region, expressed in function of the difference
dp(Xk. X)).

Finally, in the case of the Gaussian criterion, o, is the distance between the origin and the inflex-
ion point of the curve s, (X, X;). The Gaussian Criterion allows a transition (without discon-
tinuities) between judgments of indifference and strict preference. In order to define a NRFPR
coherently with the Gaussian criterion, the pairwise comparisons must be in accordance with the
following conditions:

o if d,(Xy, X;) <0, then R, (X, X)) = exp(—|dp (X, X1)|/2C7§) and Rp(X), X)) =1;

o if dy(Xp. X)) = 0, then R, (X, Xp) = 1 and R, (X, Xi) = exp(—|d, Xz, X))|/202),
where o, is the distance between the origin and the inflexion point of the preference function.

Sp(X’;,X’) R;)(Xn'oX!)
1
1

|
L .
T

0 S} d,(X.X) -G, 0 c

P P

d (X X))

Figure 6 — Left side: Preference function based on the Gaussian criterion; Right side: NRFPR based on the
Gaussian criterion, expressed in function of the difference d (X, X7).
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It is not difficult to demonstrate that NRFPRs constructed coherently with those six types of pref-
erence functions always satisfy weak transitivity (refer to expression (9)). For this demonstration,
it is worth noting that R, (X, X;) > R,(X;, Xy) only if 5, (X, X;) > 0 (which the reader can
easily verify for each type of preference function) and that a nondecreasing preference function
satisfies s, (Xi, X;) > 0 only if d,, (X, X;) > 0. In this way, if R, (Xi, X;) > Rp(X;, Xi)
and R,(X;, X;) > Rp(X;, X;), then d), (X, X;) > 0 (which means that f,(Xg) > f,(X;))
and, at the same time, d,,(X;, X;) > 0 (which means that f,(X;) > f,(X})). It is also possible
to infer that f,(Xz) > f,(X;) > f,(X;), which results in d,(X;, X;) = 0, 5,(X;, X;) > 0,
and R, (Xi, X;) > Rp(X;, X).

6 A METHOD FOR MULTICRITERIA DECISION MAKING BASED ON THE
ORLOVSKY CHOICE PROCEDURE

The Orlovsky choice procedure makes use of a fuzzy strict preference relation given by (7) to
carry out the choice of alternatives (Orlovsky, 1978, 1981). Considering the pth criterion, as
Py (X;, Xi) describes the set of all alternatives X} that are strictly dominated by X, its compli-
ment m corresponds to the set of alternatives that are not dominated by X;. Therefore,
in order to meet the set of alternatives from X that are not dominated by any other alternative, it
suffices to obtain for each alternative X belonging to X the intersection of m for all X;
belonging to X. This intersection is the set of nondominated alternatives with the membership
function

ND,(Xy) = inf {1 — Pp(X;, Xp)} =1 — sup P,(X;, Xp), (14)
XjeX XieX

which reflects the level of nondominance of each alternative Xj.

A natural choice for a monocriteria problem based on this model should be the alternatives
providing:
xNP = {X,ﬁVD e XIRNP(x}'P) = ;uerNDp(Xk)} . (15)
k

It is worth emphasizing that the alternatives satisfying
XNP = [X,{VD e XIRNP(x)'P) = 1} (16)

are actually nonfuzzy nondominated and can be considered as the nonfuzzy solution for the
choice problem (Orlovsky, 1978, 1981).

Expressions (7), (14), and (15) may be used to solve choice or ranking problems not only with a
single criterion, but also with multiple criteria. In particular, several procedures that allow one to
include multiple criteria in the analysis of a decision making problem are discussed in Orlovsky
(1981), Ekel & Schuffner Neto (2006). Let us consider one of them.

Having at hand nonstrict preference relations for each criterion, one possible procedure for solv-
ing multicriteria problems consists in obtaining a global relation through the intersection of those
relations as follows:

G=RiN...0OR,. (17)

Pesquisa Operacional, Vol. 33(2), 2013



318 CONSTRUCTION OF NONRECIPROCAL FUZZY PREFERENCE RELATIONS

The use of intersection to aggregate all criteria is suitable, when it is a necessary condition that
a good alternative X must simultaneously satisfy /] and /3 and . .. and F;. Among the -norm
operators, the use of the min operator, as proposed in (Orlovsky, 1981), allows one to construct
the global fuzzy nonstrict preference relation

G (Xi, X1) = min { R (X, X)), ..., Rg(Xi, XD} (18)

under a completely non-compensatory approach for multicriteria decision-making, in the sense
that the high satisfaction of some criteria does not relieve the remaining ones from the require-
ment of being satisfied (there is no compensation among the criteria). Such approach is also
considered pessimistic, since it gives emphasis to the worst evaluations of each alternative.

Having at hand the global fuzzy nonstrict preference relation, equations (7), (14) and (15) can
be subsequently applied directly to G and the result corresponds to a fuzzy set of nondominated
alternatives fulfilling the role of a Pareto set (Orlovsky, 1981).

However, in case of not being possible to distinguish two or more alternatives, the contraction
of (18) is possible by differentiating the importance of R,, p = 1,..., g with the use of the
weighted sum:

q
T(Xi, X1) = Y ApRp(Xp, X0), (19)
p=1
where A,, p = 1,..., g are importance factors of the corresponding criteria, defined as w), €

[0, 1]and 3°7_  wp = 1.

The construction of 7' (Xg, X;), allows one to obtain the membership function NDT (Xj) of
the fuzzy set of nondominated alternatives by subsequently applying (7) and (14) to (19). The

intersection
O(Xy) = min (ND(Xy), NDT (X)), (20)
provides us with a set of alternatives with the highest level of nondominance
XNP = {X,?D|X,1VD € X, 0P) = sup Q(Xk)} : 21
k€

7 APPLICATION EXAMPLE

The multicriteria decision-making problem related to the site selection for constructing a new
hospital is studied in Vahidnia et al. (2009). Here, we consider a simplified version of this
problem, in which six sites are to be ranked, taking into account the following four criteria:

1. Distance from the arterial routes (minimization criterion);
2. Land cost (minimization criterion);
3. Population density (maximization criterion);

4. Average travel time to the nearest existing hospital (maximization criterion).
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Hospitals should be located close to main public transport routes. Here, criterion F allows one to
evaluate the distance from each site to the closest arterial route. Besides, for social convenience,
it is important to guarantee that every person lives in an area with accessible hospital service.
Criterion Fy evaluates the average time one would take to travel between the site and the nearest
existing hospital. The fifth criterion which could be considered is associated with the pollution
level present at each site. However, as the sites considered here do not significantly differ with
respect to this criterion, the DM decided to eliminate it from the subsequent multicriteria anal-
ysis. Figure 7 presents the fuzzy scores utilized for evaluating the third criterion, F3-population
density. Table 2 shows the evaluation matrix of the alternatives.

S(F3)

very low  low middle high very high

0 0.25 0.5 0.75 1 R

Figure 7 — Valuation of criterion F3 (population density).

Table 2 — Evaluation matrix of the alternatives.

Fi(Xp) | F2(Xp) Fy(Xg)
(m) ($/m?%) F3 (X (minutes)
X 0 28 middle 22
X, | 350 24 high 17
X3 | 150 18 high 12
Xy 500 15 middle 10
Xs | 50 8 low 7
Xe 300 10 very high 5

When the criterion F; was considered by the DM, he decided not to infer the degrees of his
preferences directly from those distances listed in Table 2. The DM felt more comfortable with
utilizing the multiplicative preference relation to articulate his preferences as follows:

1 4 4 4 3 47
/4 1 1/3 3 4 1
[P VL I R VE RV @)
14 13 1/4 1 1/4 1)2
1/3 14 3 4 1 4
(14 1 2 2 1/4 1 ]

Indeed, it is worth noting in (22) that the degrees of preference of the DM can not be directly
inferred from the distances from arterial streets. For instance, although the distance of X4 is ten
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times larger than the distance of X5, X5 is not considered ten times better than X4. At the same
time, the distance of X is higher than the distance of X¢. However, the DM judged X; and X
as being indifferent to each other. Besides, it is important to indicate that although (22) does not

satisfy the multiplicative transitivity, the NRFPR

1

0.333

1

1
1

1 1
0.226 1
R = 0.226 1
0.226 0.333 0.226
0.333 0.226
| 0.226 1

1
1
1
1
1
1

1 1
1 1

0.333 0.52 3
0.226 0.52

1 1

0307 1

constructed with the use of H3 (refer to Table 1) satisfies the weak transitivity and this is a

satisfactory level of consistency for the application of the decision-making method to be used.

In the case of criterion F>, the DM decided to use a preference function corresponding to a Linear
criterion with b, = 5($/m?). The obtained NRFPR is as follows:

Ry =

e g e Y

0.

2

— = e e e

0.4

1
1

1
1
1

24)

— = e e e

The population density of each alternative, which is related to criterion F3, was estimated by him,

by the linguistic terms shown in Table 2. By applying the expressions (11) and (12) to construct

a NRFPR from the comparison of fuzzy estimates, the following NRFPR is obtained:

R3

1
1
1
1
0.5
1

0.5 0.5
1 1
1 1

0.5 05
0 0
1 1

1
1
1
1

0.5

— e e e

0
0.5
0.5

0

0

1

(25)

Finally, in the case of criterion Fy, a preference relation corresponding to a Quasi-criterion, with
a4 = 3 min. The obtained NRFPR is as follows:

Ry

S O O O O

S OO O = =

O O = = =

O = = e e

— e e e e

S G g S —y

(26)
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Having at hand the NRFPRs (23)-(26), the multicriteria analysis begins by applying (18) to obtain
a global relation under a pessimistic approach through the intersection:

1 0.2 0 1 0 0
0 1 0 1 0 0
0 0 1 0.4 0 0
G = 27
0 0 0226 1 0 0 @7
0 0 0 0.5 0 0
10 0 0 0 0.307 0]
Afterward, expression (7) provides the strict preference relation
[0 02 0 1 0 0]
0 0 0 1 0 0
174
p— 0 0 0 0.17 0 0 (28)
0 0 0 0 0 0
0 0 0 05 0 0
(10 0 O 0 0.307 0]
Finally, with the use of (14), we obtain the nondominance degrees of each alternative
ND = [1 0.8 1 0 0.693 1]. (29)

We can order them from best to worst as (X] =~ X3 =~ Xg) > X = Xs = X4. In order to
distinguish alternatives X7, X3, and X, a subsequent analysis is performed by applying (19)
and (20). Considering that the DM defined the weights of the criteria as A; = A, = 0.2 and
A3 = Ag = 0.3, the convolution (19) provides the following matrix of pairwise comparisons:

1 00.69 0.65 0.8 0.8  0.557
0.545 1 0.667 0.8 0.8  0.65
T = 0.545 0.7 1 0.88 0.667 0.554 ' (30)
0.545 0.417 0.695 1 0.645 0.404
0.417 0245 04 0.85 1 0.7

10.545 0.7 0.7 0.7 0.781 1

In this way, by processing (30) with the use of (7) and (14), it is possible to obtain the following
fuzzy set of nondominated alternatives:

NDT =[0.95 0.855 0.854 0.617 0.445 1]. (31)

Finally, the intersection of (29) and (30), obtained in accordance with (20), makes it possible to
contract the fuzzy set of nondominated alternatives as follows:

ND =1[0.95 0.8 0.854 0 0.445 1]. (32)

The final ranking of the alternatives can be defined on the basis of (32) as

Xo > X1 > X3 > X2 > X5 > Xa.
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CONCLUSIONS

In this paper we showed how the preference functions can be utilized to construct NRFPRs.
The preference functions correspond to a well established preference format which has been
utilized to model the preferences of a DM in the methods PROMETHEE I and PROMETHEE
II. The results of this paper allow a more flexible input of preferences in the decision-making
process based on the analysis of (X, R) models (now, it is possible to offer to a DM the following
formats: the ordering of the alternatives, the utility values, the multiplicative preference relations,
the fuzzy estimates, the reciprocal as well as the nonreciprocal fuzzy preference relations and the
preference functions). The applicability of the proposed procedure is demonstrated through the
solution of a multicriteria decision-making problem related to the site selection for constructing
a new hospital.
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