
“main” — 2013/8/2 — 16:17 — page 163 — #1

Pesquisa Operacional (2013) 33(2): 163-184
© 2013 Brazilian Operations Research Society
Printed version ISSN 0101-7438 / Online version ISSN 1678-5142
www.scielo.br/pope

QAPV: A POLYNOMIAL INVARIANT FOR GRAPH ISOMORPHISM TESTING

Valdir Agustinho de Melo1, Paulo Oswaldo Boaventura-Netto2*

and Laura Bahiense3

Received September 21, 2011 / Accepted October 8, 2012

ABSTRACT. To each instance of the Quadratic Assignment Problem (QAP) a relaxed instance can be

associated. Both variances of their solution values can be calculated in polynomial time. The graph isomor-

phism problem (GIP) can be modeled as a QAP, associating its pair of data matrices with a pair of graphs

of the same order and size. We look for invariant edge weight functions for the graphs composing the in-

stances in order to try to find quantitative differences between variances that could be associated with the

absence of isomorphism. This technique is sensitive enough to show the effect of a single edge exchange

between two regular graphs of up to 3,000 vertices and 300,000 edges with degrees up to 200. Planar graph

pairs from a dense family up to 300,000 vertices were also discriminated. We conjecture the existence of

functions able to discriminate non-isomorphic pairs for every instance of the problem.

Keywords: graph isomorphism, quadratic assignment problem, variance.

1 INTRODUCTION

For each discussion presented in this work, the fundamental graph-theoretical concepts can be
found in Harary [19] and Gross & Yellen [18]. A preliminary paper on the same subject, with
abridged tests, is Melo et al. [26].

The graph isomorphism problem has been studied by many researchers, owing to its theoretical
interest and from its possible applications, such as pattern recognition, De Piero & Krout [10].
Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs with independent labelings of their
vertex sets. Then G1 and G2 are isomorphic if and only if there is a bijection ϕ : V1 ↔ V2 that
preserves their adjacency relations. The general problem arises when G1 is a graph and G2 is a
subgraph of another graph with at least the same order n and size m of G1. A particular case,
which the present work addresses, is the restricted problem, which we will abbreviate as GIP.

*Corresponding author
1Program of Production Engineering, COPPE/UFRJ, Brazil. Post-doctoral researcher. E-mail: vmelo@pep.ufrj.br
2Universidade Federal do Rio de Janeiro/COPPE, Brazil. Full Professor, retired; Program of Production Engineering,
COPPE/UFRJ. E-mail: boaventu@pep.ufrj.br
3Program of Production Engineering, COPPE/UFRJ, Brazil. Associate Professor. E-mail: laura.bahiense@gmail.com

“main” — 2013/8/2 — 16:17 — page 164 — #2

164 QAPV: A POLYNOMIAL INVARIANT FOR GRAPH ISOMORPHISM TESTING

It is the problem of matching two graphs of the same order and size. It is is NP, but to date
no one has been able to say if it is polynomial or NP-complete for every graph pair, Garey &
Johnson [15], Arvind & Thoran [2].

The study of graph isomorphism has been done with the aid of two general classes of resources:

• matching algorithms, which look for building a graph in a way that matches an isomor-
phism bijection, if it exists: McKay [27] proposed a specific one; Cross et al. [8] and
Porumbel [29] use metaheuristics. DePiero & Krout [10] uses path counts to approximate
subgraph isomorphism. Foggia et al. [14] is a comparison among five commonly used al-
gorithms. Gori et al. [16] use random walks. Jain & Wyzotski [22] uses neural nets; Ding
& Huang [11] reorganize the graph in searching for a perimeter and a canonical adjacency
matrix. Dharwadter & Tevet [13] presents a polynomial algorithm for the GIP, but Santos
[31] found a counterexample for it. Presa [PR09] is a thesis on GIP algorithms. Czerwin-
ski [9] is a theoretical paper which proposes a polynomial algorithm. Voss & Subhlock
[34] is a performance comparison based on some graph classes, from 8 to 16,000 nodes.
Douglas [12] discusses the possibility of applying the Weisfeiler-Lehman algorithm to the
GIP, raising some open questions.

• efficient invariants. A graph parameter is (an) invariant if it has the same value for every
isomorph of a given graph. The most readily available invariants are naturally the order n
and the size m, but one would like to have an invariant where preserving value would be
a necessary and sufficient condition for isomorphism – which is not, precisely, the case of
order and size. An important invariant to consider is the ordered degree set (ODS) associ-
ated with a graph but, once again, two graphs with the same ODS can be non-isomorphic.
On the other hand, two graphs with different ODS are non-isomorphic – and ODS is
easy to calculate through a polynomial ordering algorithm. The graph spectrum (its set
of adjacency matrix eigenvalues) is also an invariant but, again, there are non-isomorphic
cospectral graph pairs, Cvetkovic et al. [7]. Until now, necessary and sufficient invariance
is an open research field, no invariant having been found which fulfills it. Most well-
known invariants (such as the chromatic number and the independence number) are not
polynomial, thus they are of no interest here.

This work proposes an invariant (the QAPV invariant) to be calculated using the Quadratic
Assignment Problem (QAP) structure (Loiola et al. [24]). Our aim is to translate into a non-zero
deviation value any structural difference between two graphs of the same order and size. If we
obtain different values of this invariant for the two graphs, they will certainly be non-isomorphic:
we say that we have been able to discriminate between the two graphs. We present the results by
giving a gap between two values associated with the graphs.

The database for a QAP instance is a pair of (symmetric) matrices F and D, which are frequently
associated with work flows between pairs of machines and distances between machine locations.
For given F and D, the pair (F,D) is a QAP instance, QAP(F,D). Among a number of possible

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 165 — #3

VALDIR AGUSTINHO DE MELO, PAULO OSWALDO BOAVENTURA-NETTO and LAURA BAHIENSE 165

meanings, a QAP instance can be constructed with the adjacency matrices of two simple graphs
of equal order and size, which can be used to investigate isomorphism.

Despite the QAP’s NP-hardness, the calculation of the variance of a QAP instance’s solution set
is polynomial, Boaventura-Netto & Abreu [4], Abreu et al. [1]. Given a graph pair (G,H), we
can define two more instances, (G,G) and (H,H), and calculate these three variances. If G and H
are isomorphic, they have to be equal, but this is not sufficient for the graphs to be isomorphic: a
counterexample is the pair (Petersen graph, pentagonal prism) in Figure 1.1.

Figure 1.1 – Petersen graph and pentagonal prism.

To deal with this difficulty, we use invariant edge weight functions: functions on the edge set
whose values depend only on the graph structure and so are independent of the vertex numbering,
thus reinforcing eventual differences between the graph structures. In this work, we present some
such functions, discuss their complexity and apply them to sets of examples of regular and planar
graphs and also to pairs obtained from public databases. The use of regular graphs has to do with
the difficulty to be foreseen in discriminating between a given graph and another with closely
similar structure: one could expect to find general non-regular graphs an easier problem to work
with. Among the planar graphs, we chose the triangulated-grid family (6-point stencils, Voss &
Subhlok [34], given by their order and rectangular (p, q) dimensions). Their square diagonals
are built in the northeast-southwest direction, as in [34]. These graphs are near the maximum
density for planar graphs; they have n = pq vertices and m = 3n − 2(p + q) + 1 edges. Thus,
a (600,500) graph of this type has almost 900,000 edges.

2 THEORETICAL BASIS

2.1 Quadratic Assignment Problem (QAP)

The QAP can be seen as the problem of how to assign n activities to n positions in such a way
as to optimize the transportation cost between activity pairs over the distances associated with
position pairs,

z∗ = opt
ϕ∈5n

∑

1≤i< j≤n

fi j dϕ(i)ϕ(j) (2.1)

Minimization is the most frequent application, but when dealing with graph isomorphism we
will be interested in maximization. Matrix F = [fi j] is the flow matrix (quantities transported
between i and j) and matrix D = [dkl] is the distance matrix, where dkl is the distance between
positions k and l). In this work we consider F and D as symmetric matrices.

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 166 — #4

166 QAPV: A POLYNOMIAL INVARIANT FOR GRAPH ISOMORPHISM TESTING

The parcels of (2.1) are related to the set 5n of all n-element permutations, with every QAP
solution being associated with a permutation ϕ ∈ 5n , in this case, based on positions with
respect to activities. Thus, QAP structure is evidently attractive when examining the restricted
GIP: if G1 and G2 are isomorphic with adjacency matrices A1 and A2, we will find in the solution
set of QAP(A1, A2) a permutation corresponding to their isomorphism relation. We give further
attention to this point in Item 2.3.

Since graph isomorphism preserves the adjacency relations, if we look for a maximum value z∗

of a solution for such an instance we will find either z∗ = m, if the graphs are isomorphic, or
z∗ < m, if they are not. The first result is a necessary and sufficient condition for isomorphism,
but we immediately run into a complexity problem: the QAP is NP-hard and experience shows
its exact resolution is presently limited, with some exceptions, to instances with order below
40. Specially designed heuristics, as well as metaheuristics, have been applied to it. With these
resources, graph pairs of higher order have been successfully tested for isomorphism by treating
them as QAP instances, Lee et al. [25], the results being subjected to the error margin of the
heuristics.

2.2 Statistic moments of QAP instances

Average solution value and variance of solution values have been used to compare the computa-
tional difficulty of QAP instances with respect to heuristic algorithms. We will be concerned with
the results of Graves & Whinston, [17] and Abreu et al. [1]. Let us discuss briefly the calculation
presented there.

We can store the data of a symmetric QAP instance with the aid of two vectors, F and D, with
order N = n(n−1)/2, respectively associated with the matrices F and D, where a vector position
k can be associated with a matrix position (i, j) by the expression

k = (i − 1)n − i(i + 1)/2 + j. (2.2)

We can then define a N -order matrix, Q = FDT , which contains every parcel composing every
QAP solution ϕ (n-order permutation). Since (2.1) shows us both i and j (i < j) with values
between 1 and n, every QAP solution has N parcels, which correspond to a set of independent
positions in Q. All n! solutions of a given instance can be found there among the whole N ! sets
of this type. A problem based on Q is therefore a relaxation of the original QAP, where not
every set of independent positions corresponds to a feasible QAP solution. We will denote such
relaxation as Q AP(Q). We have also use for ordered vectors F− and D+ obtained from F and
D through non-decreasing and non-increasing orderings respectively, from which we define a
matrix Q′ = (F−)(D+)T .

Let S be the sum of all Q elements. Then the average cost of an instance Q AP(F,D), [1], [3],
[4], [17], is

μ = S/N . (2.3)

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 167 — #5

VALDIR AGUSTINHO DE MELO, PAULO OSWALDO BOAVENTURA-NETTO and LAURA BAHIENSE 167

The variance of the relaxed instance, Q AP(Q), is, [1], [17],

σ 2
Q =

1

N

(N∑

i=1

f 2
1

)(N∑

i=1

d2
j

)
+

1

N (N − 1)

[
σ 2(fi)

][
σ 2(d j)

]
− μ2(i, j = 1, . . . , n) (2.4)

The variance of the (original) instance Q AP(F,D) is, [1], [4],

σ 2
F,D =

(
S0 + S1 + S2

)/
n! − μ2 , (2.5)

where

S0 = 4(n − 4)!
∑

∩0

fi j frs

∑

∩0

di j drs (2.6)

S1 = (n − 3)!
∑

∩1

fi j frs

∑

∩1

di j drs (2.7)

S2 = 2(n − 2)!
∑

1≤i< j≤n

f 2
i j

∑

1≤i< j≤n

d2
i j (2.8)

and
| ∩0 | = Cn−2,2, | ∩1 | = 2(n − 2) (2.9)

where ∩k(k ∈ {0, 1}) is the set of pairs ((i, j), (r, s)) such that |{i, j} ∩ {r, s}| = k.

The computational complexity of the first variance is thus O(n2), and that of the second is O(n4),
in both cases, considering F and D as full matrices. By using adjacency lists, they become O(m)

and O(m2) respectively. The reuse of several terms gives way to a significant time economy,
as shown by the pseudocode below, which includes the three-instance calculation referred to in
Item 1 (Figure 2.1):

2.3 Instance classes related to isomorphism

We can define a Q AP(F−, D+) with coefficient matrix Q′ and then define a related instance
class where the ordering of every pair (F,D) will result in the same Q′, [1],

Relclass(F−, D+) =
{

Q AP(F, D)/(F−)(D+)T = Q′} (2.10)

By going into graph language, a QAP instance can be represented by two complete graphs KF

and KD , respectively edge-valued by the weight functions w(KF) = F and w(KD) = D.

We will then say that two edge-valued complete graphs Kn(V1, E1, F) and Kn(V2, E2, D) are
w-isomorphic if there is a permutation α ∈ 5n such that (i, j) ∈ E1 ⇔ (α(i), α(j)) ∈ E2

and F(i, j) = D(α(i), α(j)). We will then denote this isomorphism as w(KF) ≈ w(KD).
Q AP(F1, D1) and Q AP(F2, D2) will thus be isomorphic (Q AP(F1, D1) ≈ Q AP(F2, D2))

if and only if w(KF1) ≈ w(KF2) and w(KD1) ≈ w(KD2).

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 168 — #6

168 QAPV: A POLYNOMIAL INVARIANT FOR GRAPH ISOMORPHISM TESTING

 < (= [fij], = [drs]); order n; size m; sn = n(n – 1)/2; mf(k,1) = i, mf(k,2) = j |
 fij ≠ 0, md(k,1) = r, md(k,2) = s | drs ≠ 0, vf(k) = fij, vd(k) = drs, k = (n -1)i – i(i + 1)/2 + j, >
< cint0 = (n – 2)(n – 3)/2; cint1 = 2(n – 2); >

 xmed(3), squmed(3), varzrel(3), varzorig(3); >

(vec); < sum of vector elements >

(a,b,c,h,smed,sn) = a.b/sn + c.h/sn(sn – 1) – smed2;

(a,b,c,sq(i),sn,cint0,cint1) = (c + a/cint0 + b/cint1)/sn – sq(i)2;

(mf,md,vf,vd,x,y,z,t,m)

 indices i,j,r,s
 x ← (vf pairs, ij, rs) | (i,j) ∩ (r,s) | = 0) ;
 y ← (vf pairs, ij, rs) | (i,j) ∩ (r,s) | = 1) ;
 z ← (vd pairs, ij, rs) | (i,j) ∩ (r,s) | = 0) ;
 t ← (vd pairs, ij, rs) | (i,j) ∩ (r,s) | = 1) ;

 < calculation of the relaxed instance variances >

 sd1 ← (vd(•)); sd2 = (vd(•)2); sf1 ← (vf(•)); sf2 = (vf(•)2);
 xmed(1) ← sf1.sd1/sn; xmed(2) = (sf1)2; xmed(3) = (sd1)2;

squmed(i) = (xmed(i))2, i = 1,2,3; xf = (sf1)2 – sf2; xd = (sd1)2 – sd2;
varzrel(1) = (sf2,sd2,xf,xd,squmed(1),sn);
varzrel(2) = (sf2,sf2,xf,xf,squmed(2),sn);
varzrel(3) = (sd2,sd2,xd,xd,squmed(3),sn);

 < calculation of the original instance variances >

(mf,md,vf,vd,x,y,z,t,m)
 varzorig(1) = (sf2,sd2,4x.y,4z.t,squmed(1),cint0,cint1);
 varzorig(2) = (sf2,sf2,4x.y,4x.y,squmed(2),cint0,cint1);
 varzorig(3) = (sd2,sd2,4z.t,4z.t,squmed(3),cint0,cint1);

Figure 2.1 – Pseudocode for calculating the QAPV invariant.

On the other hand, we say that G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if and only if
there exists a function f which preserves the adjacency relations over a permutation α of one of
their vertex sets with respect to the other, that is, for every (i, j) ∈ E1 we have f (α(i), α(j)) ∈
E2.

This isomorphism appears then as a particular case of the w-isomorphism defined in the context
of QAP, where the weight function is given by the adjacency matrix for a graph G = (V, E),
A = [ai j], ai j = 1 if (i, j) ∈ E and ai j = 0 if (i, j) /∈ E.

The theorem and corollary below constitute the basis for the application of QAP variance on GIP.

Theorem 2.1 [1]: Two isomorphic instances Q AP(F1, D1) and Q AP(F2, D2) have the same
set of feasible solutions.

This isomorphism implies that there is isomorphism between the corresponding relaxed in-
stances, which may differ in Q, but have the same Q′. However, not every pair of relaxed in-
stances satisfying this condition is isomorphic.

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 169 — #7

VALDIR AGUSTINHO DE MELO, PAULO OSWALDO BOAVENTURA-NETTO and LAURA BAHIENSE 169

Corollary 2.2. Two isomorphic instances have the same variance.

Proof. Immediate from Theorem 2.1, since they share the same set of feasible solutions. �

The variance of QAP solutions is then an invariant with respect to instance isomorphism. In
Section 1, we had an initial look at the practical use of this property, but it requires a more
detailed discussion.

Trying to avoid variance equality when using the comparison sketched in Section 1 with non-
isomorphic graphs (such as those in Figure 1.1), we propose to give weights to the edges, thus
obtaining matrices which could be tested for w-isomorphism. For this to have a meaning, these
values have to be given by an invariant function – that is, a function whose values correspond
to a property of the graph structure – which is given by its adjacency relations, preserved by
isomorphism and not related to vertex labeling.

3 METHODOLOGY

3.1 A comparison standard and the use of weight functions

Let us call Q AP(G1, G2) the instance built with the adjacency matrices of two graphs. We then
associate two other instances with it, Q AP(G1, G1) and Q AP(G2, G2) with two copies of the
same matrix for each graph. We will call these last two instances associated instances, and their
variances, associated variances. Both for the original and the relaxed instances, Corollary 2.2 is
only a necessary condition: to have the same variance is not sufficient for two instances to be
isomorphic. A consequence of this is that a number of graph pairs with approximately similar
structures show equal variances for the three instances presented above.

We try to overcome this difficulty by applying edge invariant weight functions, going into w-
isomorphism to look for discrimination between the graphs of such pairs. In this work, we use
the following functions, whose complexity is presented considering the use of adjacency lists.
We will represent them as f (G), where it is understood that the function concerns the edge set
E, for G = (V, E).

• Function w3(G): number of 3-edge closed walks using the concerned edge: this function
can be calculated in O(nd).

• Function w4(G): number of 4-edge closed walks using the concerned edge: it is more
costly since it deals with a larger neighborhood. The worst complexity case is O(n2d).

These two functions can be calculated with the aid of the following theorem, the second one
being obtained from the first one by induction:

Theorem 3.1 (Festinger, apud Boaventura-Netto [5]). Let G = (V, E) be a graph, A = [ai j]

its adjacency matrix and Ak =
[
a(k)

i j

]
the kth potency of A. Then a(k)

i j is equal to the number of
k-walks between i and j ∈ V .

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 170 — #8

170 QAPV: A POLYNOMIAL INVARIANT FOR GRAPH ISOMORPHISM TESTING

Since we are interested in valuating pairs i, j which define edges, the exponent to be used will
be the length of the walks minus one (k = 2 or 3 respectively to calculate w3(G) and w4(G)).
Other similar functions can be used, according to the girth of the graphs examined, but the
complexity grows rapidly. We can also define new functions by summing the obtained values into
the adjacency matrix, which can be beneficial with sparse graphs, thus making graph extensions
in the sense of Porumbel [29].

• Function dc(G): dc stands for distance to centers: it can be calculated with all-distances
techniques such as Floyd or n-times applied Dijkstra algorithms. We use the distance
matrix to find the graph center set C and then, for every v ∈ V, we calculate dc(v) =
∑

c̄∈C d(v, c). The function value for the edge (i, j) is given by the sum of the values
obtained for i and j . The initial “infinite” values of non-existing edges will be greater than
n. The complexity depends on the implementation, going from O(n2 log n) to O(n3).

• Function es(G): es stands for edge sum: for each vertex, it is the sum of its adjacent edge
values. The edge function value is then the value sum of its adjacent vertices. es(G) should
not be directly applied to regular graphs (it would give equal values for all edges) but it can
be applied to a regular graph already valued with the aid of another function, for example,
es(w3(G)). The complexity is O(m).

Other functions can be devised as discriminating tools, provided they are invariant and poly-
nomial, as in Bessa et al. [6].

3.2 Graph families used in the tests

We used a regular graph generator where the vertex pair selection for edge introduction was
randomly done with the aid of two random number generators, a conventional product-overflow
generator and, for larger graphs, a (5,17) lagged-Fibonacci generator, Marsaglia [28], Knuth [23].
The program contains an edge reallocation routine designed to correct regularity failures which
are intrinsic to direct generation. Ten graphs of each order and degree were created this way.

We also generated what we call almost-isomorphic graphs by making random 2-exchanges in
each original graph in order to create structural differences. We define a 2-exchange as an edge
exchange in G = (V, E) where we take off two edges (a,b), (c,d) ∈ E and replace them with
either (a,c), (b,d) /∈ E, or (a,d), (b,c) /∈ E, thus preserving ODS. For each chosen (n, d) pair, we
constructed ten sets composed of an original graph and two almost isomorphs of it, comprising
one graph with one 2-exchange and another with four 2-exchanges. We applied the weight func-
tions to all these graphs. The data set has regular graphs with orders 50, 100, 200, 500, 1000,
1500, 2000, 2500 and 3000, with d ≤ n/2 and d ∈ {3, 5, 10, 25, 50, 100, 200}. Higher degree
values were not used to generate the bigger graphs, in order to limit to acceptable values the
processing times required by the weight functions.

The tests with planar graphs used five triangulated grids (TGG) for each order. In order to gen-
erate almost-isomorphs, we took each TGG and randomly selected four vertices from which

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 171 — #9

VALDIR AGUSTINHO DE MELO, PAULO OSWALDO BOAVENTURA-NETTO and LAURA BAHIENSE 171

we eliminated the northeast upper diagonal. The corresponding squares formed what we called
windows in the graph, creating localized structure differences among them. To the graphs thus
obtained we applied the function es2(G) and we took them two by two to build ten QAP instances.
Order values and rectangle dimensions were 4,000 (50,80), 5,000 (50,100), 7,000 (70,100),
10,000 (100,100), 15,000 (150,100), 20,000 (200,100), 30,000 (200,150), 40,000 (200,200),
50,000 (250,200), 60,000 (300,200), 80,000 (400,200), 100,000 (400,250), 150,000 (500,300),
200,000 (500,400), 250,000 (500,500) and 300,000 (600,500). All used databases can be found
in [5].

3.3 Discrimination measure

The discrimination instrument was the total percentage gap between the variance relation of the
associated instances, σ 2[Q AP(f (G1), f (G1))] and σ 2[Q AP(f (G2), f (G2))], and that of the
instance built with the graph pair, σ 2(Q AP(f (G1), f (G2)), calculated up to 10−12,

R%G1 = 100
{
σ 2[Q AP(f (G1), f (G1))]

/
σ 2[Q AP(f (G1), f (G2))]

}
(3.1)

R%G2 = 100
{
σ 2[Q AP(f (G2), f (G2))]

/
σ 2[Q AP(f (G1), f (G2))]

}
(3.2)

Gap(G1, G2) = |R%G1| + |R%G2|. (3.3)

From the previous discussion, a positive gap indicates absence of isomorphism while a null
gap fails to discriminate between the pair of graphs. The results involve both the original and
the relaxed instances. We know that Relclass(F−, D+) includes non-isomorphic graphs, then it
can happen that the relaxed instances calculation do not show discrimination. However, if we
obtain this discrimination, it would be sufficient to guarantee the absence of isomorphism with a
much lower computational cost. Most of our examples show this behavior, which can be seen in
Tables 4.1 (a) and (b), where we list the number of discriminations out of each set of ten graphs.

4 COMPUTATIONAL RESULTS

4.1 Discrimination results for regular graphs

Tables 4.1 (a) and (b) show the results obtained with functions w3, w4 and dc for the regular
10-graph sets with given (n, d) values. Columns ndiscr show the number of instances (out of
10) where discrimination was obtained. Results are given for relaxed (RI) and original (OI)
instances, with 1 and 4 random 2-exchanges.

These tables show dc(G) as more discriminating than w4(G), and w4(G) as more discriminating
than w3(G), chiefly with lower degree values, which clearly lead to greater difficulties. Within
the tests, w3(G) was unable to discriminate between pairs of both 3- and 5-regular graphs, with
the exception of the lesser order ones. We think this problem has to do with the absence of closed
3-walks in the graphs. With d > 25, or d > 50 for greater order graphs, it produced 80% or
more efficiency, while w4(G) goes to 100% with d > 25 for all cases and also for d = 10 with
lesser order graphs.

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 172 — #10

172 QAPV: A POLYNOMIAL INVARIANT FOR GRAPH ISOMORPHISM TESTING

Table 4.1(a) – Discrimination results of QAPV invariant on almost-isomorphic regular graph pairs.

Instances One exchange Four exchanges One exchange Four exchanges One exchange Four exchanges

n d
RI OI RI OI RI OI RI OI RI OI RI OI

ndiscr, Function w3 ndiscr, Function w4 ndiscr, Function dc

50

3 2 2 2 2 3 3 8 8 10 10 10 10

5 5 5 9 10 9 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10 10 10 10 10 10

25 9 10 10 10 10 10 10 10 9 9 9 9

3 1 1 1 1 1 1 3 3 10 10 10 10

5 4 4 9 9 8 8 10 10 10 10 10 10

100 10 9 9 10 10 10 10 10 10 10 10 10 10

25 9 10 10 10 10 10 10 10 10 10 10 10

50 10 10 10 10 10 10 10 10 9 9 9 9

200

3 1 1 1 1 1 1 3 3 10 10 10 10

5 1 1 2 2 6 7 10 10 10 10 10 10

10 7 9 9 10 10 10 10 10 10 10 10 10

25 10 10 10 10 10 10 10 10 10 10 10 10

50 10 10 10 10 10 10 10 10 9 9 9 9

100 10 10 10 10 10 10 10 10 9 9 9 9

3 0 0 0 0 0 0 1 1 10 10 10 10

5 0 0 4 4 6 6 5 6 10 10 10 10

10 7 9 9 10 10 10 10 10 10 10 10 10

500 25 10 10 10 10 10 10 10 10 10 10 10 10

50 10 10 10 10 10 10 10 10 10 10 10 10

100 10 10 10 10 10 10 10 10 9 9 9 9

200 10 10 10 10 9 10 10 10 8 8 9 9

1000

3 0 0 0 0 0 0 1 1 10 10 10 10

5 1 1 3 3 1 1 6 6 10 10 10 10

10 2 3 3 4 9 9 10 10 10 10 10 10

25 9 9 10 10 10 10 10 10 10 10 10 10

50 10 10 10 10 10 10 10 10 10 10 10 10

100 10 10 10 10 10 10 10 10 2 3 2 7

200 10 10 10 10 10 10 10 10 1 9 1 9

500 10 10 10 10 10 10 10 10 – – – –

Function dc(G) was 100% efficient with all instance sets of lower degree, thus complementing
the range of the other two functions. We can see that it does not perform as well with the denser
graphs, owing probably to the equalization of the number of centers and to lesser distance ranges.
The results from the (1000,100) and (1000,200) pairs, for instance, were not good and that led
us to abandon the idea of testing higher degrees.

We can also observe that, in most cases, a single 2-exchange was enough for the invariant to
show a structural difference, specially with function dc(G).

Finally, we exemplify the application of es(w3(G)) and es(w4(G)) by using it with lesser-degree
instances, where w3(G), and even w4(G), encountered difficulties in discriminating between
pairs of almost isomorphs. Table 4.2 shows these results, which can be compared with those
from Tables 4.1 (a) and (b) for the same instance collections.

We put in bold type the ndiscr values that were enhanced by the use of es(f (G)) when com-
pared with the original values of w3(G) and w4(G) (Tables 4.1 (a) and (b)). We can see that they

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 173 — #11

VALDIR AGUSTINHO DE MELO, PAULO OSWALDO BOAVENTURA-NETTO and LAURA BAHIENSE 173

Table 4.1(b) – Discrimination results of QAPV invariant on almost-isomorphic regular graph pairs.

Instances One exchange Four exchanges One exchange Four exchanges One exchange Four exchanges

n d
RI OI RI OI RI OI RI OI RI OI RI OI

ndiscr, Function w3 ndiscr, Function w4 ndiscr, Function dc

3 0 0 0 0 0 0 0 0 10 10 10 10

5 0 0 2 2 0 0 3 4 10 10 10 10

10 3 3 5 5 9 9 8 8 10 10 10 10

1500 25 7 8 9 9 10 10 10 10 10 10 10 10

50 10 10 10 10 10 10 10 10 10 10 10 10

100 10 10 10 10 10 10 10 10 2 9 10 10

200 10 10 10 10 10 10 10 10 – – – –

3 0 0 0 0 0 0 0 0 10 10 10 10

5 0 0 5 5 0 0 3 3 10 10 10 10

10 3 3 5 5 6 6 10 10 10 10 10 10

2000 25 6 6 9 10 10 10 10 10 10 10 10 10

50 10 10 10 10 10 10 10 10 – – – –

100 10 10 10 10 10 10 10 10 – – – –

200 10 10 10 10 – – – – – – – –

3 0 0 0 0 0 0 0 0 10 10 10 10

5 0 0 0 0 0 0 2 2 10 10 10 10

10 2 2 4 4 6 6 9 9 10 10 10 10

2500 25 5 5 10 10 10 10 10 10 10 10 10 10

50 10 10 10 10 10 10 10 10 – – – –

100 10 10 10 10 10 10 10 10 – – – –

200 10 10 10 10 – – – – – – – –

3 0 0 0 0 0 0 0 0 10 10 10 10

5 0 0 1 1 1 1 2 2 10 10 10 10

10 0 0 3 3 7 7 9 9 10 10 10 10

3000 25 6 7 9 9 10 10 10 10 10 10 10 10

50 9 9 10 10 10 10 10 10 – – – –

100 10 10 10 10 – – – – – – – –

200 10 10 10 10 – – – – – – – –

constitute a significant majority of those values that can be enhanced (discr < 10), (see, for
instance, the 25-regular graphs with w4(G), n ≥ 1500, compared with those of Table 4.1(b)).
In the whole, this experiment shows about 78% of enhanced values, which is interesting because
of the very low cost of this function. For some instances, this application is fruitless; some ex-
amples are the 3-regular graphs with 1000 or more vertices. We think that, in these cases, the
structures associated with w3(G) and w4(G) (3- and 4-closed walks) do not easily exist in the
graphs, a situation which can be found in large, low-degree regular graphs, where larger girths
are to be expected.

4.2 Processing times for regular graphs

Processing times are based on the use of a computer with an Intel Core i7 / 975 3.33 Ghz pro-
cessor, with 8 Gb of RAM, operating with Linux OpenSUSE 11.2 and a 64-bit Intel Fortran
compiler. Figure 4.1 shows the weight functions’ processing times for the instances presented in
the preceding tables.

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 174 — #12

174 QAPV: A POLYNOMIAL INVARIANT FOR GRAPH ISOMORPHISM TESTING

Table 4.2 – Application of es(f (G)) to some instance collections affected by w3(G) and w4(G).

Graph One exchange Four exchanges One exchange Four exchanges

n d
RI OI RI OI RI OI RI OI

ndiscr, Function w3 ndiscr, Function w4

50
3 3 6 4 5 4 8 10 10

5 7 7 10 10 10 10 10 10

100
3 1 1 1 1 4 8 4 10

5 6 6 9 9 10 10 10 10

3 2 2 1 1 2 4 6 9

200 5 1 1 5 7 7 10 10 10

10 9 10 10 10 10 10 10 10

3 0 0 0 1 3 5 6 8

500 5 1 1 5 7 8 9 10 10

10 8 8 9 10 10 10 10 10

3 0 0 1 1 4 5 4 9

1000 5 2 4 7 8 5 7 10 10

10 4 7 4 8 9 9 10 10

1500

3 0 0 0 0 1 5 7 8

5 1 1 3 4 1 5 8 10

10 4 5 7 9 9 9 10 10

25 7 9 10 10 10 10 10 10

2000

3 0 0 0 0 3 4 3 7

5 1 1 6 8 2 5 7 9

10 4 5 5 6 9 9 10 10

25 7 10 10 10 10 10 10 10

2500

3 0 1 1 1 4 4 5 8

5 1 2 0 2 5 7 7 10

10 3 3 6 8 8 8 10 10

25 5 6 10 10 10 10 10 10

3000

3 0 0 0 0 2 6 3 9

5 0 2 2 4 3 5 8 9

10 1 1 5 5 8 8 10 10

25 6 8 9 10 10 10 10 10

We can see that the processing time for es(.) is negligible when compared with the other
functions.

By examining Figures 4.1 and 4.2, we see that the graphs show comparable times between w3(G)
and variance calculation, with w4(G) taking more time. The times depend on the graph degree
with the exception of dc(G), whose time requirements are almost constant for a given order.

4.3 Going to practical application

The following conjecture, which we did not attempt to prove, is supported by our tests:

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 175 — #13

VALDIR AGUSTINHO DE MELO, PAULO OSWALDO BOAVENTURA-NETTO and LAURA BAHIENSE 175

Figure 4.1 – Processing times for weight functions applied to regular graphs.

Figure 4.2 – Processing times of QAPV invariant for regular QAP-GIP instances.

Conjecture 4.1. For every graph pair (G1, G2) of the same order and size, there exists a
polynomial invariant weight function such that, for non-isomorphic G1 and G2, the instances
Q AP(G1, G2), Q AP(G1, G1) and Q AP(G2, G2) will have different variances.

We summarize some tests done with the three functions w3(G), w4(G) and dc(G) for some order-
degree pairs and one 2-exchange in order to show that, for every pair (n, d), we always have
a function providing 100% discrimination among the almost-isomorphic pairs. We outline the
computing time requirements as shown by Table 4.3, where they are expressed in seconds.

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 176 — #14

176 QAPV: A POLYNOMIAL INVARIANT FOR GRAPH ISOMORPHISM TESTING

Table 4.3 – Discrimination and total QAPV processing time for some regular graph instances.

Function time

Discr.%
Order Degree w3(G) Variance Total

n d w4(G) time time

dc(G)

50

0.0002 0,0005 0.0007 20

3 0.0004 0,0005 0.0009 30-80

0.0016 0.0005 0.0021 100

0.0048 0.0024 0.0072 90-100

25 0.0110 0.0024 0.0134 100

0.0036 0.0024 0.0060 90

200

0.0042 0.0016 0.0058 10-20

5 0.0128 0.0016 0.0144 60-100

0.0780 0.0016 0.0796 100

0.1410 0.1025 0.2435 100

50 0.7980 0.1025 0.9005 100

0.1270 0.1025 0.2295 90

500

0.039 0.027 0.066 80

10 0.440 0.027 0.467 100

1.140 0.027 1.167 100

3.97 2.34 6.31 100

100 16.31 2.341 8.65 100

1.73 2.34 4.07 90

1000

0.08 0.96 1.04 20-40

10 0.67 0.96 1.63 90-100

5.13 0.96 6.09 100

8.03 93.76 101.79 100

100 59.00 93.76 152.76 100

5.97 93.76 99.73 20-70

1500

0.19 2.15 2.34 30-50

10 1.52 2.15 3.67 80-90

18.83 2.15 20.98 100

1.08 13.32 14.40 70-90

25 18.51 13.32 29.83 100

19.75 13.32 33.07 100

18.37 21.04 39.41 100

100 191.83 21.04 212.87 100

16.54 21.04 37.94 20-100

2000

0.66 0.38 1.04 30-50

10 5.39 0.38 5.77 60-100

90.78 0.38 91.16 100

3.80 2.35 6.15 60-100

25 68.76 2.35 71.11 100

93.94 2.35 96.29 100

8.50 5.27 13.77 60-90

3000 25 161.66 5.27 166.93 100

330.30 5.27 335.57 100

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 177 — #15

VALDIR AGUSTINHO DE MELO, PAULO OSWALDO BOAVENTURA-NETTO and LAURA BAHIENSE 177

5 TESTS WITH TRIANGULATED-GRID GRAPHS

The almost-isomorphs used in the tests allowed 100% discrimination with the (50,80), (50,100),
(70,100), (100,100), (150,100), (200,100), (200,200) and (500,500) instances. The (200,150),
(250,200), (300,200), (400,200), (400,250), (500,300) and (500,400) instances had 90% discrim-
ination. The (600,500) instance testes showed 70% discrimination. Discrimination was always
the same with relaxed and original instances. For each of these tests, five almost-isomorphs were
randomly generated and compared two by two, thus allowing ten comparisons.

The processing time of all relaxed instances was negligible (≤ 0.002 sec). Figure 5.1 shows the
processing time for the original instances.

Figure 5.1 – Processing times of QAPV for TGG.

As an example, Figure 5.2 shows a (15,11)-TGG with four windows (indicated by the circles).

Figure 5.2 – A (15,11)-TGG with four windows.

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 178 — #16

178 QAPV: A POLYNOMIAL INVARIANT FOR GRAPH ISOMORPHISM TESTING

6 AN EXAMPLE OF ISOMORPHISM

As a case of isomorphism, we present a (30,8) graph and an isomorph of it characterized by
a given permutation, applying w3(G) to both of them. The graphs are described by their non-
symmetric valued adjacency lists, firstly vi ∈ V , then v j |∃(vi , v j), j > i and finally, the corre-
sponding w3(G) edge values. The main instance and its associates produced the same variance
values (R% null), both with the relaxed and with the original instances (Fig. 6.1):

Reg30_8_1_w3: 30

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5
5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 10 10

10 10 11 11 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 16 17 17 18 18
18 19 19 19 20 20 20 20 21 21 22 22 22 22 24 26 26 27

3 9 11 14 16 23 28 5 10 12 17 20 21 24 30 4 10 11 20 28 13 14 17 20 23 28
29 8 16 24 25 30 9 14 18 21 26 27 30 12 18 21 23 24 25 16 20 25 26 29 30 10
16 21 24 30 11 16 17 28 17 22 25 13 15 16 23 30 17 18 19 23 25 27 18 19 27 28
29 23 26 29 23 19 23 22 25 27 21 22 28 22 24 26 27 24 28 24 25 27 28 26 29 30 29

2 1 1 1 2 1 2 2 1 1 1 1 1 3 2 2 2 2 1 3 2 2 2 1 2 2 1 3 1 1
1 2 2 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 3 1 2 1 2 2 1 1 2 1 2 1
1 1 1 1 1 1 4 1 3 2 1 3 1 1 2 1 3 3 2 1 1 1 2 1 2 2 3 4 1 1
3 2 3 2 1 3 1 1 2 2 1 1 2 2 1

Permutation for the isomorph:
(13 2 7 19 1 17 29 18 24 27 26 3 21 15 12 14 9 22 28 20 8 16 25 23 4 6 5 10 11 30)

Reg30_8_1iso1_w3: 30
1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5
5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10

10 10 10 11 11 11 11 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 16
17 17 17 18 18 19 19 19 20 21 21 21 22 23 23 24 24 25 26

2 4 14 18 23 30 3 8 9 20 23 27 30 12 14 21 25 29 30 16 18 21 22 26 29 11 15
16 17 20 21 22 11 12 17 18 20 23 30 10 13 19 20 26 27 10 17 23 24 28 29 19 21 25
26 27 28 13 15 16 19 27 28 12 15 18 19 25 14 15 24 25 26 18 24 25 27 17 19 22 28
20 22 23 26 28 22 24 30 20 30 20 21 25 23 22 25 28 29 24 29 27 30 29 27

2 1 1 3 1 2 1 1 1 1 3 1 2 1 1 1 4 1 1 2 1 1 3 1 1 1 3 2 2 1
1 4 2 1 1 3 2 1 2 3 2 2 1 2 2 1 1 3 2 1 1 2 3 2 1 2 1 2 3 1
2 1 3 1 2 1 1 1 2 1 1 1 1 1 2 2 1 2 2 2 1 2 2 1 1 1 2 2 2 1
2 1 2 2 3 2 3 1 1 1 1 1 1 1 2

Variances for the three test instances: relaxed 170.1935335, originals 173.3623220.
Gaps null.

Reg30_8_1_w3: 30

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5
5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 10 10

10 10 11 11 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 16 17 17 18 18
18 19 19 19 20 20 20 20 21 21 22 22 22 22 24 26 26 27

3 9 11 14 16 23 28 5 10 12 17 20 21 24 30 4 10 11 20 28 13 14 17 20 23 28
29 8 16 24 25 30 9 14 18 21 26 27 30 12 18 21 23 24 25 16 20 25 26 29 30 10
16 21 24 30 11 16 17 28 17 22 25 13 15 16 23 30 17 18 19 23 25 27 18 19 27 28
29 23 26 29 23 19 23 22 25 27 21 22 28 22 24 26 27 24 28 24 25 27 28 26 29 30 29

2 1 1 1 2 1 2 2 1 1 1 1 1 3 2 2 2 2 1 3 2 2 2 1 2 2 1 3 1 1
1 2 2 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 3 1 2 1 2 2 1 1 2 1 2 1
1 1 1 1 1 1 4 1 3 2 1 3 1 1 2 1 3 3 2 1 1 1 2 1 2 2 3 4 1 1
3 2 3 2 1 3 1 1 2 2 1 1 2 2 1

Permutation for the isomorph:
(13 2 7 19 1 17 29 18 24 27 26 3 21 15 12 14 9 22 28 20 8 16 25 23 4 6 5 10 11 30)

Reg30_8_1iso1_w3: 30
1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5
5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10

10 10 10 11 11 11 11 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 16
17 17 17 18 18 19 19 19 20 21 21 21 22 23 23 24 24 25 26

2 4 14 18 23 30 3 8 9 20 23 27 30 12 14 21 25 29 30 16 18 21 22 26 29 11 15
16 17 20 21 22 11 12 17 18 20 23 30 10 13 19 20 26 27 10 17 23 24 28 29 19 21 25
26 27 28 13 15 16 19 27 28 12 15 18 19 25 14 15 24 25 26 18 24 25 27 17 19 22 28
20 22 23 26 28 22 24 30 20 30 20 21 25 23 22 25 28 29 24 29 27 30 29 27

2 1 1 3 1 2 1 1 1 1 3 1 2 1 1 1 4 1 1 2 1 1 3 1 1 1 3 2 2 1
1 4 2 1 1 3 2 1 2 3 2 2 1 2 2 1 1 3 2 1 1 2 3 2 1 2 1 2 3 1
2 1 3 1 2 1 1 1 2 1 1 1 1 1 2 2 1 2 2 2 1 2 2 1 1 1 2 2 2 1
2 1 2 2 3 2 3 1 1 1 1 1 1 1 2

Variances for the three test instances: relaxed 170.1935335, originals 173.3623220.
Gaps null.

Reg30_8_1_w3: 30

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5
5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 10 10

10 10 11 11 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 16 17 17 18 18
18 19 19 19 20 20 20 20 21 21 22 22 22 22 24 26 26 27

3 9 11 14 16 23 28 5 10 12 17 20 21 24 30 4 10 11 20 28 13 14 17 20 23 28
29 8 16 24 25 30 9 14 18 21 26 27 30 12 18 21 23 24 25 16 20 25 26 29 30 10
16 21 24 30 11 16 17 28 17 22 25 13 15 16 23 30 17 18 19 23 25 27 18 19 27 28
29 23 26 29 23 19 23 22 25 27 21 22 28 22 24 26 27 24 28 24 25 27 28 26 29 30 29

2 1 1 1 2 1 2 2 1 1 1 1 1 3 2 2 2 2 1 3 2 2 2 1 2 2 1 3 1 1
1 2 2 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 3 1 2 1 2 2 1 1 2 1 2 1
1 1 1 1 1 1 4 1 3 2 1 3 1 1 2 1 3 3 2 1 1 1 2 1 2 2 3 4 1 1
3 2 3 2 1 3 1 1 2 2 1 1 2 2 1

Permutation for the isomorph:
(13 2 7 19 1 17 29 18 24 27 26 3 21 15 12 14 9 22 28 20 8 16 25 23 4 6 5 10 11 30)

Reg30_8_1iso1_w3: 30
1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5
5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10

10 10 10 11 11 11 11 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 16
17 17 17 18 18 19 19 19 20 21 21 21 22 23 23 24 24 25 26

2 4 14 18 23 30 3 8 9 20 23 27 30 12 14 21 25 29 30 16 18 21 22 26 29 11 15
16 17 20 21 22 11 12 17 18 20 23 30 10 13 19 20 26 27 10 17 23 24 28 29 19 21 25
26 27 28 13 15 16 19 27 28 12 15 18 19 25 14 15 24 25 26 18 24 25 27 17 19 22 28
20 22 23 26 28 22 24 30 20 30 20 21 25 23 22 25 28 29 24 29 27 30 29 27

2 1 1 3 1 2 1 1 1 1 3 1 2 1 1 1 4 1 1 2 1 1 3 1 1 1 3 2 2 1
1 4 2 1 1 3 2 1 2 3 2 2 1 2 2 1 1 3 2 1 1 2 3 2 1 2 1 2 3 1
2 1 3 1 2 1 1 1 2 1 1 1 1 1 2 2 1 2 2 2 1 2 2 1 1 1 2 2 2 1
2 1 2 2 3 2 3 1 1 1 1 1 1 1 2

Variances for the three test instances: relaxed 170.1935335, originals 173.3623220.
Gaps null.

Reg30_8_1_w3: 30

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5
5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 10 10

10 10 11 11 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 16 17 17 18 18
18 19 19 19 20 20 20 20 21 21 22 22 22 22 24 26 26 27

3 9 11 14 16 23 28 5 10 12 17 20 21 24 30 4 10 11 20 28 13 14 17 20 23 28
29 8 16 24 25 30 9 14 18 21 26 27 30 12 18 21 23 24 25 16 20 25 26 29 30 10
16 21 24 30 11 16 17 28 17 22 25 13 15 16 23 30 17 18 19 23 25 27 18 19 27 28
29 23 26 29 23 19 23 22 25 27 21 22 28 22 24 26 27 24 28 24 25 27 28 26 29 30 29

2 1 1 1 2 1 2 2 1 1 1 1 1 3 2 2 2 2 1 3 2 2 2 1 2 2 1 3 1 1
1 2 2 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 3 1 2 1 2 2 1 1 2 1 2 1
1 1 1 1 1 1 4 1 3 2 1 3 1 1 2 1 3 3 2 1 1 1 2 1 2 2 3 4 1 1
3 2 3 2 1 3 1 1 2 2 1 1 2 2 1

Permutation for the isomorph:
(13 2 7 19 1 17 29 18 24 27 26 3 21 15 12 14 9 22 28 20 8 16 25 23 4 6 5 10 11 30)

Reg30_8_1iso1_w3: 30
1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5
5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10

10 10 10 11 11 11 11 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 16
17 17 17 18 18 19 19 19 20 21 21 21 22 23 23 24 24 25 26

2 4 14 18 23 30 3 8 9 20 23 27 30 12 14 21 25 29 30 16 18 21 22 26 29 11 15
16 17 20 21 22 11 12 17 18 20 23 30 10 13 19 20 26 27 10 17 23 24 28 29 19 21 25
26 27 28 13 15 16 19 27 28 12 15 18 19 25 14 15 24 25 26 18 24 25 27 17 19 22 28
20 22 23 26 28 22 24 30 20 30 20 21 25 23 22 25 28 29 24 29 27 30 29 27

2 1 1 3 1 2 1 1 1 1 3 1 2 1 1 1 4 1 1 2 1 1 3 1 1 1 3 2 2 1
1 4 2 1 1 3 2 1 2 3 2 2 1 2 2 1 1 3 2 1 1 2 3 2 1 2 1 2 3 1
2 1 3 1 2 1 1 1 2 1 1 1 1 1 2 2 1 2 2 2 1 2 2 1 1 1 2 2 2 1
2 1 2 2 3 2 3 1 1 1 1 1 1 1 2

Variances for the three test instances: relaxed 170.1935335, originals 173.3623220.
Gaps null.

Figure 6.1 – A regular graph and one isomorph.

7 LOOKING FOR A COMPARISON

7.1 The most recent results on graph isomorphism refer to progressive assembly of structures,
either using exact algorithms or with the aid of heuristics The exact algorithms are often highly
complex: its elaborate construction allows their use with pairs of graphs of order relatively high
(e.g., 500 vertices) but the processing time varies greatly according to the permutation found.
Heuristics have higher possibilities of approach and can be useful, for example, in applications
of pattern recognition, but their result is prone to error. All these techniques are iterative, unlike
the invariant calculations, which do not involve alternate returns as seen in Figure 2.1.

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 179 — #17

VALDIR AGUSTINHO DE MELO, PAULO OSWALDO BOAVENTURA-NETTO and LAURA BAHIENSE 179

Anyway, we try to present some comparisons, involving two aspects:

7.1.1 The calculation of QAPV invariant for public access graphs collections on the Internet.

1. We used the first ten graph pairs of the sets r001, r005 and r01, with orders 20 ≤ n ≤
600, indicated as isomorphs in the category randomly connected graphs, from Santo et
al. [32] database. We also processed pairs indicated as xxA/xxB1ex and xxA1ex/xxB
(where the suffix 1ex indicates almost-isomorphic with one 2-exchange), obtained from
the corresponding xxA and xxB original graphs.

2. We generated almost-isomorphs with one 2-exchange for two sets of 19 strongly regular
graphs [20] of 45 and 64 vertices (numbered 001-019), each graph being tested along with
its almost-isomorph. The invariant obtained discrimination in all cases, using the functions
w3(G) and w4(G), the dc(G) function was not efficient in these cases.

Table 7.1 indicates the number of pairs (out of 10) from Test 1, for which there was discrimi-
nation, both for the relaxed instances (RI) and the original ones (OI). The pairs (A, B) are the
original graph pairs, while the suffix “1ex.” indicates one 2-exchange in A or B file. There was
no discrimination between the original pairs.

Table 7.1 – Results obtained with Santo et al. database.

Instance
Function: es(G) Function: w3(G) Function: w4(G) Function: dc(G)

collection
(A,B) A1ex. B1ex. (A,B) A1ex. B1ex. (A,B) A1ex. B1ex. (A,B) A1ex. B1ex.

RI OI RI OI RI OI RI OI RI OI RI OI RI OI RI OI RI OI RI OI RI OI RI OI

r001 0020 0 0 2 2 0 0 0 0 10 10 10 10 0 0 1 1 3 4 0 0 10 10 10 10

0040 0 0 0 0 0 0 0 0 10 10 10 10 0 0 3 3 2 2 0 0 8 8 8 8

0060 0 0 6 9 7 7 0 0 10 10 10 10 0 0 6 9 7 7 0 0 7 7 7 7

0080 0 0 6 10 10 10 0 0 10 10 10 10 0 0 7 10 10 10 0 0 10 10 10 10

0100 0 0 4 9 5 9 0 0 10 10 10 10 0 0 8 10 6 9 0 0 10 10 9 9

0200 0 0 7 10 9 10 0 0 10 10 10 10 0 0 9 10 9 10 0 0 10 10 10 10

0400 0 0 7 10 4 9 0 0 10 10 10 10 0 0 10 10 10 10 0 0 10 10 10 10

0600 0 0 9 10 10 10 0 0 10 10 10 10 0 0 10 10 10 10 0 0 10 10 9 10

r005 0020 0 0 5 8 7 10 0 0 4 4 3 3 0 0 6 8 9 10 0 0 8 9 10 10

0040 0 0 9 10 7 10 0 0 4 6 5 5 0 0 10 10 10 10 0 0 7 10 9 10

0060 0 0 9 10 7 10 0 0 8 9 7 8 0 0 10 10 10 10 0 0 10 10 10 10

0080 0 0 8 9 9 10 0 0 8 9 7 8 0 0 10 10 10 10 0 0 10 10 10 10

0100 0 0 7 9 7 10 0 0 9 9 9 10 0 0 10 10 10 10 0 0 10 10 10 10

0200 0 0 10 10 7 10 0 0 10 10 10 10 0 0 10 10 10 10 0 0 10 10 10 10

0400 0 0 9 10 8 10 0 0 10 10 10 10 0 0 10 10 10 10 0 0 6 8 10 8

0600 0 0 10 10 10 10 0 0 10 10 10 10 0 0 10 10 10 10 0 0 10 10 10 10

r01 0020 0 0 5 7 6 8 0 0 10 10 10 10 0 0 9 9 10 10 0 0 10 10 10 10

0040 0 0 8 10 6 10 0 0 10 10 10 10 0 0 10 10 10 10 0 0 6 8 6 9

0060 0 0 9 10 8 9 0 0 10 10 9 10 0 0 10 10 10 10 0 0 5 7 5 6

0080 0 0 9 10 9 10 0 0 9 10 9 10 0 0 10 10 10 10 0 0 10 10 6 9

0100 0 0 10 10 8 10 0 0 10 10 10 10 0 0 10 10 10 10 0 0 10 10 6 9

0200 0 0 10 10 10 10 0 0 10 10 10 10 0 0 10 10 10 10 0 0 7 10 9 10

0400 0 0 9 10 9 9 0 0 10 10 10 10 0 0 10 10 10 10 0 0 9 9 9 9

0600 0 0 9 10 9 10 0 0 10 10 10 10 0 0 10 10 10 10 0 0 9 9 9 9

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 180 — #18

180 QAPV: A POLYNOMIAL INVARIANT FOR GRAPH ISOMORPHISM TESTING

The results from Test 2, with strongly regular graphs and their almost-isomorphs, are indicated
in Table 7.2:

Table 7.2 – Results for strongly regular graphs.

Instance
w3(G) w4(G) dc(G)

RI OI RI OI RI OI

(45,12,3,3) 19 19 19 19 0 0

(64,18,2,6) 19 19 19 19 0 0

7.1.2 We applied the algorithm VF2 [33] to regular graphs of order 100, 200 and 500 from the
database already used in this work. We created isomorphs for these graphs and formed
pairs (graph, isomorph). We also used the same one 2-exchange (graph, almost-iso-
morph) pairs referred to in Table 4.1 (a).

For the application of VF2 to our instances we used the IGRAPH library [21], version 0.5.4,
a free software package for creating and manipulating undirected and directed graphs which
contains the VF2 algorithm. All instances were put in Dimacs format and submitted to VF2.

In order to compare the runtime of our algorithm with the library VF2, we needed a maximum
time limit for large instances. However, IGRAPH is a closed pack which only stops when it
finishes processing. To guarantee a time limit, we created two jobs (shell) using Linux OS. The
first shell (JOB1.sh), controls the time limit and the second shell (JOB2.sh) uses the VF2 library
in order to check all instances for isomorphism.

If JOB1.sh finishes first, then JOB2.sh execution time is equal or greater than the time limit and
JOB1.sh interrupts both child processes. If, on the contrary, JOB2.sh finishes within the time
limit, it interrupts JOB1.sh execution before stopping. See Figure 7.1.

all instances
the existence of the instance in the current directory
JOB2 control file

VF2 library
the existence of the control files

they exist then
control files

child process of JOB1.sh
for

for all instances
the existence of the instance in the current directory
JOB1 control file
the maximum processing time

the existence of the control files
if they exist then

control files
both child processes

for

all instances
the existence of the instance in the current directory
JOB2 control file

VF2 library
the existence of the control files

they exist then
control files

child process of JOB1.sh
for

all instances
the existence of the instance in the current directory
JOB2 control file

VF2 library
the existence of the control files

they exist then
control files

child process of JOB1.sh
for

for all instances
the existence of the instance in the current directory
JOB1 control file
the maximum processing time

the existence of the control files
if they exist then

control files
both child processes

for

for all instances
the existence of the instance in the current directory
JOB1 control file
the maximum processing time

the existence of the control files
if they exist then

control files
both child processes

for

Figure 7.1 – Pseudocodes of JOB1 and JOB2 (shells).

Tables 7.3 and 7.4 show the results for each (n, d) ten-graph collection, both for QAPV and
VF2, respectively with isomorphic and almost-isomorphic pairs. The maximum processing time
allowed for VF2 was 3,600 seconds. All times are expressed in seconds.

The function dc(G) was utilized in these tests, with the exception of (500,100) and (500,200),
since it is not very efficient in these cases (see Table 4.1(a)). We replaced it by w3(G), its cor-
responding time values being written in italic. The second column shows the time average for

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 181 — #19

VALDIR AGUSTINHO DE MELO, PAULO OSWALDO BOAVENTURA-NETTO and LAURA BAHIENSE 181

Table 7.3 – QAPV-VF2 comparison of processing time with isomorphic pairs.

Instance QAPV VF2

n,d avg, dc avg 6 avg max min avg max min

100,3 0.011 0.001 0.012 0.020 0.008 0.158 0.484 0.001

100,10 0.014 0.002 0.016 0.026 0.011 0.075 0.246 0.003

100,25 0.017 0.008 0.025 0.036 0.021 0.123 0.448 0.001

100,50 0.021 0.029 0.050 0.066 0.046 0.303 0.839 0.016

200,3 0.039 0.001 0.040 0.050 0.036 98.903 472.88 0.002

200,10 0.039 0.005 0.044 0.060 0.040 10.017 85,347 0.004

200,25 0.054 0.029 0.083 0.118 0.058 3.086 25.887 0.011

200,50 0.090 0.104 0.194 0.207 0.187 4.734 37.423 0.003

200,100 0.121 0.401 0.522 0.548 0.518 7.636 26.424 0.038

500,3 0.827 0.004 0.831 0.849 0.813 – >3600 548.87

500,10 0.973 0.029 1.002 1.016 0.992 – >3600 41.68

500,25 1.076 0.150 1.226 1.248 1.214 – >3600 61.79

500,50 0.818 0.610 1.428 1.459 1.401 220.83 997.65 3.82

500,100 4.536 2.369 6.905 6.994 6.870 497.49 2294.8 0.165

500,200 17.735 9.440 27.175 27.437 26.719 598.26 2122.8 26.44

Table 7.4 – QAPV-VF2 comparison of processing time with almost-isomorphic pairs.

Instance QAPV VF2

n,d avg dc* avg qapv 6 avg max min avg max min

100,3 0.010 0.000 0.010 0.021 0.006 0.454 2.372 0.000

100,10 0.013 0.002 0.015 0.026 0.011 0.137 0.485 0.015

100,25 0.016 0.007 0.023 0.032 0.021 0.442 1.596 0.010

100,50 0.021 0.027 0.048 0.063 0.044 1.730 2.916 0.344

200,3 0.038 0.001 0.039 0.049 0.034 68.863 368.28 0.446

200,10 0.039 0.005 0.044 0.061 0.040 6.605 26.078 0.156

200,25 0.053 0.003 0.056 0.084 0.033 4.409 18.404 0.434

200,50 0.091 0.100 0;191 0.204 0.185 3.149 12.725 0.240

200,100 0.120 0.392 0.512 0.530 0.506 18.533 39.091 3.281

500,3 0.819 0.003 0.822 0.848 0.772 – >3,600 45,573

500,10 0.975 0.026 1.001 1.018 0.991 – >3,600 10,617

500,25 1.072 0.153 1.225 1.240 1.218 – >3,600 8,836

500,50 0.822 0.603 1.426 1.453 1.405 – >3,600 20,519

500,100 4.527 2.346 6.873 6.891 6.869 1215,46 1776,56 6,921

500,200 17.787 9.370 27.157 27.215 27.029 – >3,600 117,87

applying the function to a graph pair. Column 3 shows QAPV processing time of this pair and
Column 4 shows the total average time for the pair (sum of Columns 2 and 3). Columns 5 (6)
presents the sum of the corresponding maximum (minimum) values. These values do not neces-
sarily correspond to the same pair; their sum indicates extremes for the processing time.

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 182 — #20

182 QAPV: A POLYNOMIAL INVARIANT FOR GRAPH ISOMORPHISM TESTING

The last three columns indicate the average, minimum and maximum processing times obtained
by the algorithm VF2. Where an instance exceeded the time limit, the average time for its col-
lection was not calculated.

8 CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

Within the orders and degrees studied, the results obtained are in accordance with Conjecture
4.1, the set of functions here proposed allowing us to discriminate between every graph pair used
in the tests. We can see that dc(G) had a complementary performance with respect to w3(G) and
w4(G). On the other hand, es(f(G)) enhanced w3(G) and w4(G) performances in most cases at a
very low additional cost.

We used regular graphs in the majority of the tests because they seem to present a more difficult
problem than general graphs, owing to their structure restrictions. Nevertheless, general graphs
could also be examined, the technique presenting no restriction concerning degree sequences, as
it can be seen with the public instances we tested. For general graphs, es(G) could be applied
directly, which would mean much lower computing times.

The study shown here can be extended through the use of new weight function criteria and more
efficient programming, especially for the walk-counting techniques. Interesting possibilities are
brought by the matrices shown in [6]. It can be applied to other graph families, such as gen-
eral planar graphs and trees. We also think that QAPV can be advantageously applied as a first
resource to detect non-isomorphic pairs when generating given graph families, VF2 or another
exact algorithm taking over the doubtful cases.

The relation between degree and number of centers for regular graphs (in dc(G) calculation) is a
subject that could lead to interesting theoretical studies. However, they are not within the scope
of this paper.

The es(G) function, even when applied twice as in the planar examples, is very quick when
compared with the QAP instance processing for the instances examined above 30,000 vertices.

The variance calculation times from Figure 4.2 are those of the original variance, the relaxed one
being much less time-consuming. By starting with the relaxed instance, one can then expect to
work with bigger graphs much more quickly.

Working with big planar graphs opens possibilities to apply the technique to pattern recognition
problems, allowing for quantification of the differences between pairs of images.

It is interesting to observe that, if Conjecture 4.1 could be proven, this would be equivalent to
establishing the complexity of the restricted graph isomorphism problem as being polynomial
for all graphs.

The comparison with VF2 algorithm shows QAPV values as being much more rapid to calculate
than VF2 results. Since VF2 is an exact constructive algorithm, this is not unexpected. On the
other hand, QAPV can be applied to graph pairs of higher order than VF2.

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 183 — #21

VALDIR AGUSTINHO DE MELO, PAULO OSWALDO BOAVENTURA-NETTO and LAURA BAHIENSE 183

REFERENCES

[1] ABREU NMM, BOAVENTURA-NETTO PO, QUERIDO TM & GOUVÊA EF. 2002. Classes of

quadratic assignment problem instances: isomorphism and difficulty measures using a statistical

approach. Discrete Applied Mathematics, 124: 103–116.

[2] ARVIND V & THORÁN J. 1985. Isomorphism testing: perspective and open problems. The Compu-

tational Complexity Column. Bulletin of the European Association for Theoretical Computer Science,

86: 66–84. In: http://theorie.informatik.uni-ulm.de/Personen/jt.html. Consulted June 2010.

[3] ANGEL R & ZISSIMOPOULOS V. 1998. On the quality of the local search for the quadratic assign-

ment problem. Discrete Applied Mathematics, 82: 15–25.

[4] BOAVENTURA-NETTO PO & ABREU NMM. 1997. Cost solution average and variance for the

quadratic assignment problem: a polynomial expression for the variance of solutions. Actas de

Resumenes Extendidos, 408–413, I ELIO/Optima 97, Concepción, Chile.

[5] BOAVENTURA-NETTO PO. 2012. Grafos: Teoria, Modelos, Algoritmos (in Portuguese). 5th ed.,

Edgard Blücher, São Paulo. http://www.po.coppe.ufrj.br/docentes/boaventura/home.html.

[6] BESSA AD, ROCHA-NETO IC, PINHO STR, ANDRADE RFS & PETIT LOBÃO TC. 2012. Graph

cospectrality using neighborhood matrices. Electronic Journal of Combinatorics, 19(3): 23.

[7] CVETKOVIC D, ROWLINSON P & SIMIC S. 1997. Eigenspaces of graphs, Cambridge University

Press, Cambridge.

[8] CROSS ADJ, WILSON RC & HANCOCK ER. 1997. Inexact graph matching using genetic search.

Pattern Recognition, 30(6), 953–970.

[9] CZERWINSKI R. 2010. A polynomial time algorithm for graph isomorphism.

http://arxiv.org/pdf/0711.2010v4. Consulted August 2011.

[10] DEPIERO F & KROUT D. 2003. An algorithm using length-r paths to approximate subgraph iso-

morphism. Pattern Recognition Letters, 24: 33–46.

[11] DING H & HUANG Z. 2009. Isomorphism identification of graphs: especially for the graphs of kine-

matic chains. Mechanism and Machine Theory, 44: 122–139.

[12] DOUGLAS B. 2011. The Weisfeiler-Lehman method and graph isomorphism testing.

http://arxiv.org/pdf/1101.5211v1. Consulted August 2011.

[13] DHARWADKER A & TEVET J. 2009. The graph isomorphism algorithm. In Proceedings of the

Structure Semiotics Research Group. Eurouniversity Tallinn. Also in

http://www.dharwadker.org/tevet/isomorphism/. Consulted June 2010.

[14] FOGGIA P, SANSONE C & VENTO M. 2001. A performance comparison of five algorithms for

graph isomorphism. Proc. of the 3rd. IAPR-TC-15 International Workshop on Graph-based Repre-

sentations, Venice, Italy.

[15] GAREY MR & JOHNSON DS. 1979. Computers and intractability: a guide to NP-completedness.

W.H. Freeman.

[16] GORI M, MAGGINI M & SARTI L. 2001. Graph matching using random walks. Proc. of the 3rd.

IAPR-TC-15 International Workshop on Graph-based Representations, Venice, Italy.

[17] GRAVES GW & WHINSTON AB. 1970. An algorithm for the quadratic assignment problem.

Management Science, 17: 453–471.

Pesquisa Operacional, Vol. 33(2), 2013

“main” — 2013/8/2 — 16:17 — page 184 — #22

184 QAPV: A POLYNOMIAL INVARIANT FOR GRAPH ISOMORPHISM TESTING

[18] GROSS JL & YELLEN J. (eds.) 2005. Handbook of graph theory, CRC Press LLC, Boca Raton.

[19] HARARY F. 1971. Graph theory, Addison-Wesley, Reading, Massachussetts.

[20] HAEMERS WH & SPENCE E. 2001. The pseudo-geometric graphs for generalized quadrangles of

order .3. European J. Combin., 22(6): 839–845.

[21] IGRAPH LIBRARY. http://igraph.sourceforge.net/ Consulted June 2012.

[22] JAIN BJ & WYSOTSKI F. 2005. Solving inexact graph isomorphism problems using neural networks.

Neurocomputing, 63: 45–67.

[23] KNUTH D. 1997. The art of computer programming, vol. 2, Seminumerical algorithms. 3rd ed.,

Addison-Wesley, Reading, Massachussetts.

[24] LOIOLA EM, ABREU NMM, BOAVENTURA-NETTO PO, HAHN P & QUERIDO TM. 2007. A sur-

vey for the quadratic assignment problem. European J. of Operational Research, 176: 657–690.

[25] LEE L, RANGEL MC & BOERES MCS. 2007. Reformulação do problema de isomorfismo de grafos

como o problema quadrático de alocação (in Portuguese), Anais do XXXIX SBPO, 1601–1612,

Fortaleza.

[26] MELO VA, BOAVENTURA-NETTO PO, HAHN P & BAHIENSE L. 2010. Graph isomorphism and

QAP variances. Combinatorial optimization in practice, 8(2): 209–234.

[27] MCKAY B. 1981. Practical graph isomorphism. Congressus Numerantium, 30(1): 45–87.

[28] MARSAGLIA G. 1984. A current view of random number generators. Keynote address, Proc. 16th

Symposium on the Interface, Atlanta. Elsevier.

[29] PORUMBEL DC. 2011. Isomorphism testing via polynomial-time graph extensions. Journal of

Mathematical Modelling and Algorithms, 10(2): 119–143.

[30] PRESA JLL. 2009. Efficient algorithms for graph isomorphism testing. D.Sc. Thesis, Universidad

Rey Juan Carlos, Madrid.

[31] SANTOS PLF. 2010. Teoria espectral de grafos aplicada ao problema de isomorfismo de grafos (in

Portuguese). M.Sc. Dissertation, Department of Informatics, Federal University of Espı́rito Santo,

Brazil.

[32] SANTO M DE, FOGGIA P, SANSONE C & VENTO M. 2003. A large database of graphs and its use

for benchmarking graph isomorphism algorithms. Pattern Recognition Letters, 24: 1067–1079.

[33] http://www.cs.sunysb.edu/∼algorith/implement/vflib/implement.shtml. Consulted May 2012.

[34] VOSS S & SUBHLOK J. 2010. Performance of general graph isomorphism algorithms. Technical

Report Number UH-CS-09-07, Department of Computer Science, University of Houston, Houston,

TX, 77204, USA. http://www.cs.uh.edu/docs/cosc/technical-reports/2010/09 07.pdf.

Pesquisa Operacional, Vol. 33(2), 2013

