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ABSTRACT. To each instance of the Quadratic Assignment Problem (QAP) a relaxed instance can be
associated. Both variances of their solution values can be calculated in polynomial time. The graph isomor-
phism problem (GIP) can be modeled as a QAP, associating its pair of data matrices with a pair of graphs
of the same order and size. We look for invariant edge weight functions for the graphs composing the in-
stances in order to try to find quantitative differences between variances that could be associated with the
absence of isomorphism. This technique is sensitive enough to show the effect of a single edge exchange
between two regular graphs of up to 3,000 vertices and 300,000 edges with degrees up to 200. Planar graph
pairs from a dense family up to 300,000 vertices were also discriminated. We conjecture the existence of
functions able to discriminate non-isomorphic pairs for every instance of the problem.

Keywords: graph isomorphism, quadratic assignment problem, variance.

1 INTRODUCTION

For each discussion presented in this work, the fundamental graph-theoretical concepts can be
found in Harary [19] and Gross & Yellen [18]. A preliminary paper on the same subject, with
abridged tests, is Melo ef al. [26].

The graph isomorphism problem has been studied by many researchers, owing to its theoretical
interest and from its possible applications, such as pattern recognition, De Piero & Krout [10].
Let G1 = (V1, E1) and G2 = (V>, E») be two simple graphs with independent labelings of their
vertex sets. Then G| and G are isomorphic if and only if there is a bijection ¢ : V] <> V> that
preserves their adjacency relations. The general problem arises when G is a graph and G, is a
subgraph of another graph with at least the same order n and size m of G. A particular case,
which the present work addresses, is the restricted problem, which we will abbreviate as GIP.
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It is the problem of matching two graphs of the same order and size. It is is NP, but to date
no one has been able to say if it is polynomial or NP-complete for every graph pair, Garey &
Johnson [15], Arvind & Thoran [2].

The study of graph isomorphism has been done with the aid of two general classes of resources:

e matching algorithms, which look for building a graph in a way that matches an isomor-
phism bijection, if it exists: McKay [27] proposed a specific one; Cross et al. [8] and
Porumbel [29] use metaheuristics. DePiero & Krout [10] uses path counts to approximate
subgraph isomorphism. Foggia ef al. [14] is a comparison among five commonly used al-
gorithms. Gori ef al. [16] use random walks. Jain & Wyzotski [22] uses neural nets; Ding
& Huang [11] reorganize the graph in searching for a perimeter and a canonical adjacency
matrix. Dharwadter & Tevet [13] presents a polynomial algorithm for the GIP, but Santos
[31] found a counterexample for it. Presa [PR09] is a thesis on GIP algorithms. Czerwin-
ski [9] is a theoretical paper which proposes a polynomial algorithm. Voss & Subhlock
[34] is a performance comparison based on some graph classes, from 8 to 16,000 nodes.
Douglas [12] discusses the possibility of applying the Weisfeiler-Lehman algorithm to the
GIP, raising some open questions.

o efficient invariants. A graph parameter is (an) invariant if it has the same value for every
isomorph of a given graph. The most readily available invariants are naturally the order n
and the size m, but one would like to have an invariant where preserving value would be
a necessary and sufficient condition for isomorphism — which is not, precisely, the case of
order and size. An important invariant to consider is the ordered degree set (ODS) associ-
ated with a graph but, once again, two graphs with the same ODS can be non-isomorphic.
On the other hand, two graphs with different ODS are non-isomorphic — and ODS is
easy to calculate through a polynomial ordering algorithm. The graph spectrum (its set
of adjacency matrix eigenvalues) is also an invariant but, again, there are non-isomorphic
cospectral graph pairs, Cvetkovic et al. [7]. Until now, necessary and sufficient invariance
is an open research field, no invariant having been found which fulfills it. Most well-
known invariants (such as the chromatic number and the independence number) are not
polynomial, thus they are of no interest here.

This work proposes an invariant (the QAPV invariant) to be calculated using the Quadratic
Assignment Problem (QAP) structure (Loiola ef al. [24]). Our aim is to translate into a non-zero
deviation value any structural difference between two graphs of the same order and size. If we
obtain different values of this invariant for the two graphs, they will certainly be non-isomorphic:
we say that we have been able to discriminate between the two graphs. We present the results by
giving a gap between two values associated with the graphs.

The database for a QAP instance is a pair of (symmetric) matrices F and D, which are frequently
associated with work flows between pairs of machines and distances between machine locations.
For given F and D, the pair (F,D) is a QAP instance, QAP(F,D). Among a number of possible
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meanings, a QAP instance can be constructed with the adjacency matrices of two simple graphs
of equal order and size, which can be used to investigate isomorphism.

Despite the QAP’s NP-hardness, the calculation of the variance of a QAP instance’s solution set
is polynomial, Boaventura-Netto & Abreu [4], Abreu et al. [1]. Given a graph pair (G,H), we
can define two more instances, (G,G) and (H,H), and calculate these three variances. If G and H
are isomorphic, they have to be equal, but this is not sufficient for the graphs to be isomorphic: a
counterexample is the pair (Petersen graph, pentagonal prism) in Figure 1.1.

Figure 1.1 — Petersen graph and pentagonal prism.

To deal with this difficulty, we use invariant edge weight functions: functions on the edge set
whose values depend only on the graph structure and so are independent of the vertex numbering,
thus reinforcing eventual differences between the graph structures. In this work, we present some
such functions, discuss their complexity and apply them to sets of examples of regular and planar
graphs and also to pairs obtained from public databases. The use of regular graphs has to do with
the difficulty to be foreseen in discriminating between a given graph and another with closely
similar structure: one could expect to find general non-regular graphs an easier problem to work
with. Among the planar graphs, we chose the triangulated-grid family (6-point stencils, Voss &
Subhlok [34], given by their order and rectangular (p, ¢) dimensions). Their square diagonals
are built in the northeast-southwest direction, as in [34]. These graphs are near the maximum
density for planar graphs; they have n = pq vertices and m = 3n — 2(p 4+ ¢) + 1 edges. Thus,
a (600,500) graph of this type has almost 900,000 edges.

2 THEORETICAL BASIS
2.1 Quadratic Assignment Problem (QAP)

The QAP can be seen as the problem of how to assign n activities to n positions in such a way
as to optimize the transportation cost between activity pairs over the distances associated with
position pairs,

ZF=opt Y fiidpire(p (CA))

pell, I<i<j<n

Minimization is the most frequent application, but when dealing with graph isomorphism we
will be interested in maximization. Matrix F = [ f;;] is the flow matrix (quantities transported
between i and ;) and matrix D = [dj] is the distance matrix, where dy; is the distance between
positions k and /). In this work we consider F and D as symmetric matrices.
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The parcels of (2.1) are related to the set IT, of all n-element permutations, with every QAP
solution being associated with a permutation ¢ € II,, in this case, based on positions with
respect to activities. Thus, QAP structure is evidently attractive when examining the restricted
GIP: if G| and G, are isomorphic with adjacency matrices 4| and A,, we will find in the solution
set of QAP(A1, A>) a permutation corresponding to their isomorphism relation. We give further
attention to this point in Item 2.3.

Since graph isomorphism preserves the adjacency relations, if we look for a maximum value z*
of a solution for such an instance we will find either z* = m, if the graphs are isomorphic, or
z* < m, if they are not. The first result is a necessary and sufficient condition for isomorphism,
but we immediately run into a complexity problem: the QAP is NP-hard and experience shows
its exact resolution is presently limited, with some exceptions, to instances with order below
40. Specially designed heuristics, as well as metaheuristics, have been applied to it. With these
resources, graph pairs of higher order have been successfully tested for isomorphism by treating
them as QAP instances, Lee ef al. [25], the results being subjected to the error margin of the
heuristics.

2.2 Statistic moments of QAP instances

Average solution value and variance of solution values have been used to compare the computa-
tional difficulty of QAP instances with respect to heuristic algorithms. We will be concerned with
the results of Graves & Whinston, [17] and Abreu et al. [1]. Let us discuss briefly the calculation
presented there.

We can store the data of a symmetric QAP instance with the aid of two vectors, F and D, with
order N = n(n—1)/2, respectively associated with the matrices F and D, where a vector position
k can be associated with a matrix position (7, j) by the expression

k=@G—Dn—iG+1/2+]. (2.2)

We can then define a N-order matrix, @ = FD’, which contains every parcel composing every
QAP solution ¢ (n-order permutation). Since (2.1) shows us both i and j(i < ;) with values
between 1 and n, every QAP solution has N parcels, which correspond to a set of independent
positions in Q. All n! solutions of a given instance can be found there among the whole N! sets
of this type. A problem based on Q is therefore a relaxation of the original QAP, where not
every set of independent positions corresponds to a feasible QAP solution. We will denote such
relaxation as Q A P(Q). We have also use for ordered vectors F~ and D™ obtained from F and
D through non-decreasing and non-increasing orderings respectively, from which we define a
matrix Q' = (F)(DH)T.

Let S be the sum of all Q elements. Then the average cost of an instance QA4 P (E,D), [1], [3],
[4], [17], is
nw=S/N. (2.3)
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The variance of the relaxed instance, QA4 P(Q), is, [1], [17],
— 1 Y 2 d2 2 d 2/. =1 2.4
=~ 2 Z N(N [o W)e*@p] =16, j=1,....n) (24
i=1

The variance of the (original) instance QA P(E,D) is, [1], [4],

of.p=(So+ 81+ 8)/nt — u?, 2.5)
where
So = 4(n _4)‘Zfljfrs Zdt/drs (26)
Mo
Sio= =Y fijfos Y dijds 2.7)
My Ny
S = 2= > fi > 4 (2.8)
1<i<j<n 1<i<j<n
and
[No | =Cpp, N1 |=2(n-2) (2.9)

where N (k € {0, 1}) is the set of pairs ((i, j), (,s)) such that |{7, j} N {r,s}| = k.

The computational complexity of the first variance is thus O (n?), and that of the second is O (n*),
in both cases, considering F and D as full matrices. By using adjacency lists, they become O (m)
and O(m?) respectively. The reuse of several terms gives way to a significant time economy,
as shown by the pseudocode below, which includes the three-instance calculation referred to in
Item 1 (Figure 2.1):

2.3 Instance classes related to isomorphism

We can define a Q4P (F~,D") with coefficient matrix Q' and then define a related instance
class where the ordering of every pair (F,D) will result in the same Q’, [1],

Relclass(F~, D7) = {0AP(F,D)/(F)(DHT = Q'} (2.10)

By going into graph language, a QAP instance can be represented by two complete graphs Kr
and Kp, respectively edge-valued by the weight functions w(Kr) = F and w(Kp) =

We will then say that two edge-valued complete graphs K, (Vy, E1, F) and K, (V>, E>, D) are
w-isomorphic if there is a permutation @ € II, such that (i, j) € E; & (x(@),a(j)) € E;
and F(i, j) = D(x(),a(j)). We will then denote this isomorphism as w(Kr) =~ w(Kp).
QAP(F,Dy) and QAP (F,,D,) will thus be isomorphic (Q4AP(F{,D) =~ QAP (F,, Dy))
if and only if w(Kr1) =~ w(Kr2) and w(Kpi) =~ w(Kpy).
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begin < instance (F = [fi], D = [ds] ); order n; size m; sn = n(n — 1)/2; mf(k,1) =i, mf(k,2) = |
fj 20, md(k,1) =r, md(k,2) =s | ds 20, Vf(k) = fj, vd(k) = drs, k= (n -1)i —i(i + 1)/2 +j, >
< constants cint0 = (n — 2)(n — 3)/2; cint1 = 2(n - 2); >
< variables xmed(3), squmed(3), varzrel(3), varzorig(3); >
function sum(vec); < sum of vector elements >
function varzr(a,b,c,h,smed,sn) = a.b/sn + c.h/sn(sn — 1) — smed?;
function varzo(a,b,c,sq(i),sn,cint0,cint1) = (c + a/cint0 + b/cint1)/sn — sq(i)%;
procedure parce(mf,md,vf,vd,x,y,z,t,m)
begin
retake indices i,j,r,s
X < sum(vf pairs, ij, rs) | (i,j) N (r,s) | =0);
y < sum(vf pairs, ij, rs) | (i,j) N (r,8) | =1)
z « sum(vd pairs, ij, rs) | (i,j) " (r,s) | =0);
t « sum(vd pairs, ij, rs) | (ij) n(r,8)|=1)
end;

)

< calculation of the relaxed instance variances >

begin
sd1 < sum(vd(s)); sd2 = sum(vd(s)?); sf1 « sum(vf(e)); sf2 = sum(vf(s)?);
xmed(1) « sf1.sd1/sn; xmed(2) = (sf1)% xmed(3) = (sd1)%
squmed(i) = (xmed(i))%, i = 1,2,3; xf = (sf1)? — sf2; xd = (sd1)? — sd2;
varzrel(1) = varzr(sf2,sd2,xf,xd,squmed(1),sn);
varzrel(2) = varzr(sf2,sf2,xf, xf,squmed(2),sn);
varzrel(3) = varzr(sd2,sd2,xd,xd,squmed(3),sn);

end;

< calculation of the original instance variances >
begin
parce(mf,md,vf,vd,x,y,z,t,m)
varzorig(1) = varzo(sf2,sd2,4x.y,4z.t,squmed(1),cint0,cint1);
varzorig(2) = varzo(sf2,sf2,4x.y,4x.y,squmed(2),cint0,cint1);
varzorig(3) = varzo(sd2,sd2,4z.t,4z.t,squmed(3),cint0,cint1);
end:

lend.

Figure 2.1 — Pseudocode for calculating the QAPV invariant.

On the other hand, we say that G; = (V, E1) and G, = (V3, E») are isomorphic if and only if
there exists a function f which preserves the adjacency relations over a permutation « of one of
their vertex sets with respect to the other, that is, for every (7, j) € E; we have f(a(i), a(j)) €
E,.

This isomorphism appears then as a particular case of the w-isomorphism defined in the context
of QAP, where the weight function is given by the adjacency matrix for a graph G = (V, E),
A= [a,-j], ajj = 1 lf(l,]) € E and ajj = 0 if (i,j) ¢ E.

The theorem and corollary below constitute the basis for the application of QAP variance on GIP.

Theorem 2.1 [1]: Two isomorphic instances QAP (F1,D1) and QAP (F,, Dy) have the same

set of feasible solutions.

This isomorphism implies that there is isomorphism between the corresponding relaxed in-
stances, which may differ in Q, but have the same Q’. However, not every pair of relaxed in-
stances satisfying this condition is isomorphic.
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Corollary 2.2. Tivo isomorphic instances have the same variance.

Proof. Immediate from Theorem 2.1, since they share the same set of feasible solutions. O

The variance of QAP solutions is then an invariant with respect to instance isomorphism. In
Section 1, we had an initial look at the practical use of this property, but it requires a more
detailed discussion.

Trying to avoid variance equality when using the comparison sketched in Section 1 with non-
isomorphic graphs (such as those in Figure 1.1), we propose to give weights to the edges, thus
obtaining matrices which could be tested for w-isomorphism. For this to have a meaning, these
values have to be given by an invariant function — that is, a function whose values correspond
to a property of the graph structure — which is given by its adjacency relations, preserved by
isomorphism and not related to vertex labeling.

3 METHODOLOGY
3.1 A comparison standard and the use of weight functions

Let us call Q4P (G, G») the instance built with the adjacency matrices of two graphs. We then
associate two other instances with it, QA P(G1, G1) and QA P(G,, G3) with two copies of the
same matrix for each graph. We will call these last two instances associated instances, and their
variances, associated variances. Both for the original and the relaxed instances, Corollary 2.2 is
only a necessary condition: to have the same variance is not sufficient for two instances to be
isomorphic. A consequence of this is that a number of graph pairs with approximately similar
structures show equal variances for the three instances presented above.

We try to overcome this difficulty by applying edge invariant weight functions, going into w-
isomorphism to look for discrimination between the graphs of such pairs. In this work, we use
the following functions, whose complexity is presented considering the use of adjacency lists.
We will represent them as f(G), where it is understood that the function concerns the edge set
E, for G = (V,E).

e Function w3(G): number of 3-edge closed walks using the concerned edge: this function
can be calculated in O(nd).

e Function w4(G): number of 4-edge closed walks using the concerned edge: it is more
costly since it deals with a larger neighborhood. The worst complexity case is O (n2d).

These two functions can be calculated with the aid of the following theorem, the second one
being obtained from the first one by induction:

Theorem 3.1 (Festinger, apud Boaventura-Netto [5]). Let G = (V, E) be a graph, A = |[a;;]
its adjacency matrix and A* = [al.(jl.{)] the k' potency of A. Then ai(f) is equal to the number of
k-walks between i and j € V.
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Since we are interested in valuating pairs i, j which define edges, the exponent to be used will
be the length of the walks minus one (kK = 2 or 3 respectively to calculate w3(G) and w4(G)).
Other similar functions can be used, according to the girth of the graphs examined, but the
complexity grows rapidly. We can also define new functions by summing the obtained values into
the adjacency matrix, which can be beneficial with sparse graphs, thus making graph extensions
in the sense of Porumbel [29].

e Function de(G): dc stands for distance to centers: it can be calculated with all-distances
techniques such as Floyd or n-times applied Dijkstra algorithms. We use the distance
matrix to find the graph center set C and then, for every v € V, we calculate dc(v) =
Y éec d(v, ¢). The function value for the edge (i, j) is given by the sum of the values
obtained for i and ;. The initial “infinite” values of non-existing edges will be greater than
n. The complexity depends on the implementation, going from O(n? log n) to O(n>).

e Function es(G): es stands for edge sum: for each vertex, it is the sum of its adjacent edge
values. The edge function value is then the value sum of its adjacent vertices. es(G) should
not be directly applied to regular graphs (it would give equal values for all edges) but it can
be applied to a regular graph already valued with the aid of another function, for example,
es(w3(G)). The complexity is O(m).

Other functions can be devised as discriminating tools, provided they are invariant and poly-
nomial, as in Bessa et al. [6].

3.2 Graph families used in the tests

We used a regular graph generator where the vertex pair selection for edge introduction was
randomly done with the aid of two random number generators, a conventional product-overflow
generator and, for larger graphs, a (5,17) lagged-Fibonacci generator, Marsaglia [28], Knuth [23].
The program contains an edge reallocation routine designed to correct regularity failures which
are intrinsic to direct generation. Ten graphs of each order and degree were created this way.

We also generated what we call almost-isomorphic graphs by making random 2-exchanges in
each original graph in order to create structural differences. We define a 2-exchange as an edge
exchange in G = (V, E) where we take off two edges (a,b), (c,d) € E and replace them with
either (a,c), (b,d) ¢ E, or (a,d), (b,c) ¢ E, thus preserving ODS. For each chosen (n, d) pair, we
constructed ten sets composed of an original graph and two almost isomorphs of it, comprising
one graph with one 2-exchange and another with four 2-exchanges. We applied the weight func-
tions to all these graphs. The data set has regular graphs with orders 50, 100, 200, 500, 1000,
1500, 2000, 2500 and 3000, with d < n/2 and d € {3, 5, 10, 25, 50, 100, 200}. Higher degree
values were not used to generate the bigger graphs, in order to limit to acceptable values the
processing times required by the weight functions.

The tests with planar graphs used five triangulated grids (TGG) for each order. In order to gen-
erate almost-isomorphs, we took each TGG and randomly selected four vertices from which
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we eliminated the northeast upper diagonal. The corresponding squares formed what we called
windows in the graph, creating localized structure differences among them. To the graphs thus
obtained we applied the function es?(G) and we took them two by two to build ten QAP instances.
Order values and rectangle dimensions were 4,000 (50,80), 5,000 (50,100), 7,000 (70,100),
10,000 (100,100), 15,000 (150,100), 20,000 (200,100), 30,000 (200,150), 40,000 (200,200),
50,000 (250,200), 60,000 (300,200), 80,000 (400,200), 100,000 (400,250), 150,000 (500,300),
200,000 (500,400), 250,000 (500,500) and 300,000 (600,500). All used databases can be found
in [5].

3.3 Discrimination measure

The discrimination instrument was the total percentage gap between the variance relation of the
associated instances, 62[QAP(f(G1), f(G1))] and 62[QAP(f(G2), f(G2))], and that of the
instance built with the graph pair, oz(QAP(f(Gl), f(G2)), calculated up to 10712,

R%G1 = 100{c*[QAP(f(G1). f(G))]/a’[QAP(f(G1). f(G2)]} (€R)
R%Gy = 100{c*[QAP(f(G2). f(G))]/a*[QAP(f(G1). f(G))]} (3.2)

Gap(G1, G2)

|R%G1| + |R%G3|. (3.3)

From the previous discussion, a positive gap indicates absence of isomorphism while a null
gap fails to discriminate between the pair of graphs. The results involve both the original and
the relaxed instances. We know that Relclass(F~, D) includes non-isomorphic graphs, then it
can happen that the relaxed instances calculation do not show discrimination. However, if we
obtain this discrimination, it would be sufficient to guarantee the absence of isomorphism with a
much lower computational cost. Most of our examples show this behavior, which can be seen in
Tables 4.1 (a) and (b), where we list the number of discriminations out of each set of ten graphs.

4 COMPUTATIONAL RESULTS
4.1 Discrimination results for regular graphs

Tables 4.1 (a) and (b) show the results obtained with functions w3, w4 and dc for the regular
10-graph sets with given (n, d) values. Columns ndiscr show the number of instances (out of
10) where discrimination was obtained. Results are given for relaxed (RI) and original (OI)
instances, with 1 and 4 random 2-exchanges.

These tables show dc(G) as more discriminating than w4(G), and w4(G) as more discriminating
than w3(G), chiefly with lower degree values, which clearly lead to greater difficulties. Within
the tests, w3(G) was unable to discriminate between pairs of both 3- and 5-regular graphs, with
the exception of the lesser order ones. We think this problem has to do with the absence of closed
3-walks in the graphs. With d > 25, or d > 50 for greater order graphs, it produced 80% or
more efficiency, while w4(G) goes to 100% with d > 25 for all cases and also for d = 10 with
lesser order graphs.
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Table 4.1(a) — Discrimination results of QAPV invariant on almost-isomorphic regular graph pairs.

Instances One exchange | Four exchanges | One exchange | Four exchanges | One exchange | Four exchanges
) PR [ o RI o1 RI [ o RI o1 RI oI RI o1
ndiscr, Function w3 ndiscr, Function w4 ndiscr, Function dc
3 2 2 2 2 3 3 8 8 10 10 10 10
50 5 5 5 9 10 9 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10
25 9 10 10 10 10 10 10 10 9 9 9 9
3 1 1 1 1 1 1 3 3 10 10 10 10
5 4 4 9 9 8 8 10 10 10 10 10 10
100 10 9 9 10 10 10 10 10 10 10 10 10 10
25 9 10 10 10 10 10 10 10 10 10 10 10
50 10 10 10 10 10 10 10 10 9 9 9 9
3 1 1 1 1 1 1 3 3 10 10 10 10
5 1 1 2 2 6 7 10 10 10 10 10 10
200 10 7 9 9 10 10 10 10 10 10 10 10 10
25 10 10 10 10 10 10 10 10 10 10 10 10
50 10 10 10 10 10 10 10 10 9 9 9 9
100 | 10 10 10 10 10 10 10 10 9 9 9 9
3 0 0 0 0 0 0 1 1 10 10 10 10
5 0 4 6 6 5 6 10 10 10 10
10 7 9 9 10 10 10 10 10 10 10 10 10
500 25 10 10 10 10 10 10 10 10 10 10 10 10
50 10 10 10 10 10 10 10 10 10 10 10 10
100 | 10 10 10 10 10 10 10 10 9 9 9 9
200 | 10 10 10 10 9 10 10 10 8 9 9
3 0 0 0 0 0 1 1 10 10 10 10
5 1 1 3 3 1 1 6 6 10 10 10 10
10 2 3 3 4 9 9 10 10 10 10 10 10
1000 25 9 9 10 10 10 10 10 10 10 10 10 10
50 10 10 10 10 10 10 10 10 10 10 10 10
100 | 10 10 10 10 10 10 10 10 2 3 2 7
200 | 10 10 10 10 10 10 10 10 1 9 1 9
500 | 10 10 10 10 10 10 10 10 - - - -

Function dc(G) was 100% efficient with all instance sets of lower degree, thus complementing
the range of the other two functions. We can see that it does not perform as well with the denser
graphs, owing probably to the equalization of the number of centers and to lesser distance ranges.
The results from the (1000,100) and (1000,200) pairs, for instance, were not good and that led
us to abandon the idea of testing higher degrees.

We can also observe that, in most cases, a single 2-exchange was enough for the invariant to
show a structural difference, specially with function de(G).

Finally, we exemplify the application of es(w3(G)) and es(w4(G)) by using it with lesser-degree
instances, where w3(G), and even w4(G), encountered difficulties in discriminating between
pairs of almost isomorphs. Table 4.2 shows these results, which can be compared with those
from Tables 4.1 (a) and (b) for the same instance collections.

We put in bold type the ndiscr values that were enhanced by the use of es( f(G)) when com-
pared with the original values of w3(G) and w4(G) (Tables 4.1 (a) and (b)). We can see that they
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Table 4.1(b) — Discrimination results of QAPV invariant on almost-isomorphic regular graph pairs.

Instances One exchange | Four exchanges | One exchange | Four exchanges | One exchange | Four exchanges
, , LN [ o RI oI RI [ o RI o1 RI or RI o1
ndiscr, Function w3 ndiscr, Function w4 ndiscr, Function dc
3 0 0 0 0 0 0 0 0 10 10 10 10
5 0 0 2 2 0 0 3 4 10 10 10 10
10 3 3 5 5 9 9 8 8 10 10 10 10
1500 25 7 8 9 9 10 10 10 10 10 10 10 10
50 10 10 10 10 10 10 10 10 10 10 10 10
100 | 10 10 10 10 10 10 10 10 2 9 10 10
200 | 10 10 10 10 10 10 10 10 - - - -
3 0 0 0 0 0 0 0 0 10 10 10 10
5 0 0 5 5 0 0 3 3 10 10 10 10
10 3 3 5 5 6 6 10 10 10 10 10 10
2000 25 6 6 9 10 10 10 10 10 10 10 10 10
50 10 10 10 10 10 10 10 10 - - - -
100 | 10 10 10 10 10 10 10 10 - - - -
200 | 10 10 10 10 - - - - - - - -
3 0 0 0 0 0 0 0 0 10 10 10 10
5 0 0 0 0 0 0 2 2 10 10 10 10
10 2 4 4 6 6 9 9 10 10 10 10
2500 25 5 5 10 10 10 10 10 10 10 10 10 10
50 10 10 10 10 10 10 10 10 - - - -
100 | 10 10 10 10 10 10 10 10 - - - -
200 | 10 10 10 10 - - - - - - - -
3 0 0 0 0 0 0 0 0 10 10 10 10
5 0 0 1 1 1 2 2 10 10 10 10
10 0 0 3 3 7 7 9 9 10 10 10 10
3000 25 6 7 9 9 10 10 10 10 10 10 10 10
50 9 9 10 10 10 10 10 10 - - - -
100 | 10 10 10 10 - - - - - - - -
200 | 10 10 10 10 - - - - - - - -

constitute a significant majority of those values that can be enhanced (discr < 10), (see, for
instance, the 25-regular graphs with w4(G), n > 1500, compared with those of Table 4.1(b)).
In the whole, this experiment shows about 78% of enhanced values, which is interesting because
of the very low cost of this function. For some instances, this application is fruitless; some ex-
amples are the 3-regular graphs with 1000 or more vertices. We think that, in these cases, the
structures associated with w3(G) and w4(G) (3- and 4-closed walks) do not easily exist in the
graphs, a situation which can be found in large, low-degree regular graphs, where larger girths
are to be expected.

4.2 Processing times for regular graphs

Processing times are based on the use of a computer with an Intel Core i7 / 975 3.33 Ghz pro-
cessor, with 8 Gb of RAM, operating with Linux OpenSUSE 11.2 and a 64-bit Intel Fortran
compiler. Figure 4.1 shows the weight functions’ processing times for the instances presented in
the preceding tables.
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Table 4.2 — Application of es(f(G)) to some instance collections affected by w3(G) and w4(G).

Graph One exchange | Four exchanges | One exchange | Four exchanges

Y | o [RrR] o RI| o |[RI| oI
ndiscr, Function w3 ndiscr, Function w4

3 3 6 4 5 4 8 10 10
30 5 7 7 10 10 10 10 10 10
100 3 1 1 4 8 4 10
5 6 6 9 9 10 10 10 10
3 2 2 1 1 2 4 6 9
200 | 5 1 1 5 7 7 10 10 10
10 9 10 10 10 10 10 10 10
3 0 0 0 1 3 5 6 8
500 | 5 1 1 5 8 9 10 10
10| 8 8 9 10 10 10 10 10
0 0 1 1 4 5 4 9
1000 2 4 7 8 5 7 10 10
10| 4 7 4 8 9 9 10 10
0 0 0 0 1 5 7 8
1500 1 1 3 4 1 5 8 10
10 | 4 5 7 9 9 9 10 10
25| 7 9 10 10 10 10 10 10
3 0 0 0 0 3 4 3 7
5 1 1 6 8 2 5 7 9
2000 10 | 4 5 5 6 9 9 10 10
25 | 7 10 10 10 10 10 10 10
3 0 1 1 1 4 4 5 8
2500 5 1 2 0 2 5 7 7 10
10 | 3 3 6 8 8 8 10 10
25| 5 6 10 10 10 10 10 10
0 0 0 0 2 6 3 9
3000 0 2 2 4 3 5 8 9
10| 1 1 5 5 8 8 10 10
25| 6 8 9 10 10 10 10 10

We can see that the processing time for es(.) is negligible when compared with the other
functions.

By examining Figures 4.1 and 4.2, we see that the graphs show comparable times between w3(G)
and variance calculation, with w4(G) taking more time. The times depend on the graph degree
with the exception of de(G), whose time requirements are almost constant for a given order.

4.3 Going to practical application

The following conjecture, which we did not attempt to prove, is supported by our tests:
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Figure 4.1 — Processing times for weight functions applied to regular graphs.
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Figure 4.2 — Processing times of QAPV invariant for regular QAP-GIP instances.

Conjecture 4.1. For every graph pair (G, G2) of the same order and size, there exists a

polynomial invariant weight function such that, for non-isomorphic G| and G, the instances
QAP(Gq1, Ga), QAP(G1, G1) and QAP(Ga, Go) will have different variances.

We summarize some tests done with the three functions w3(G), w4(G) and dc(G) for some order-
degree pairs and one 2-exchange in order to show that, for every pair (n, d), we always have

a function providing 100% discrimination among the almost-isomorphic pairs. We outline the
computing time requirements as shown by Table 4.3, where they are expressed in seconds.
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Table 4.3 — Discrimination and total QAPV processing time for some regular graph instances.

Function time
Order | Degree w3(G) Variance Total .
. . Discr.%
n d w4(G) time time
dc(G)
0.0002 0,0005 0.0007 20
3 0.0004 0,0005 0.0009 30-80
50 0.0016 0.0005 0.0021 100
0.0048 0.0024 0.0072 | 90-100
25 0.0110 0.0024 0.0134 100
0.0036 0.0024 0.0060 90
0.0042 0.0016 0.0058 10-20
5 0.0128 0.0016 0.0144 | 60-100
200 0.0780 0.0016 0.0796 100
0.1410 0.1025 0.2435 100
50 0.7980 0.1025 0.9005 100
0.1270 0.1025 0.2295 90
0.039 0.027 0.066 80
10 0.440 0.027 0.467 100
500 1.140 0.027 1.167 100
3.97 2.34 6.31 100
100 16.31 2.341 8.65 100
1.73 2.34 4.07 90
0.08 0.96 1.04 20-40
10 0.67 0.96 1.63 90-100
1000 5.13 0.96 6.09 100
8.03 93.76 101.79 100
100 59.00 93.76 152.76 100
5.97 93.76 99.73 20-70
0.19 2.15 2.34 30-50
10 1.52 2.15 3.67 80-90
18.83 2.15 20.98 100
1.08 13.32 14.40 70-90
1500 25 18.51 13.32 29.83 100
19.75 13.32 33.07 100
18.37 21.04 39.41 100
100 191.83 21.04 212.87 100
16.54 21.04 37.94 20-100
0.66 0.38 1.04 30-50
10 5.39 0.38 5.77 60-100
2000 90.78 0.38 91.16 100
3.80 2.35 6.15 60-100
25 68.76 2.35 71.11 100
93.94 2.35 96.29 100
8.50 5.27 13.77 60-90
3000 25 161.66 5.27 166.93 100
330.30 5.27 335.57 100
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5 TESTS WITH TRIANGULATED-GRID GRAPHS

The almost-isomorphs used in the tests allowed 100% discrimination with the (50,80), (50,100),
(70,100), (100,100), (150,100), (200,100), (200,200) and (500,500) instances. The (200,150),
(250,200), (300,200), (400,200), (400,250), (500,300) and (500,400) instances had 90% discrim-
ination. The (600,500) instance testes showed 70% discrimination. Discrimination was always
the same with relaxed and original instances. For each of these tests, five almost-isomorphs were
randomly generated and compared two by two, thus allowing ten comparisons.

The processing time of all relaxed instances was negligible (< 0.002 sec). Figure 5.1 shows the
processing time for the original instances.

Processing times for triangulated-grid graphs

3500

A

300
250 ///

[+

3 200

@

E 150 (/

1000f //

500 /
—

cn«-o“"'/.—‘

0 50 100 150 200 250 300
Order, n/1000

Figure 5.1 — Processing times of QAPV for TGG.

As an example, Figure 5.2 shows a (15,11)-TGG with four windows (indicated by the circles).

7

Figure 5.2 — A (15,11)-TGG with four windows.
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6 AN EXAMPLE OF ISOMORPHISM

As a case of isomorphism, we present a (30,8) graph and an isomorph of it characterized by
a given permutation, applying w3(G) to both of them. The graphs are described by their non-
symmetric valued adjacency lists, firstly v; € V, then v;|3(v;, v;), j > i and finally, the corre-
sponding w3(G) edge values. The main instance and its associates produced the same variance
values (R% null), both with the relaxed and with the original instances (Fig. 6.1):

Reg30_8_1_w3: 30

11111112222 22223 33334444414 455
555 6 6 6 6 6 6 6 7 7 77 7788 88 88 9 9 9 9 91 10
10 10 11 11 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 16 17 17 18 18
18 19 19 19 20 20 20 20 21 21 22 22 22 22 24 26 26 27

3 911 14 16 23 28 5 10 12 17 20 21 24 30 4 10 11 20 28 13 14 17 20 23 28
29 8 16 24 25 30 9 14 18 21 26 27 30 12 18 21 23 24 25 16 20 25 26 29 30 10
16 21 24 30 11 16 17 28 17 22 25 13 15 16 23 30 17 18 19 23 25 27 18 19 27 28
29 2326 29 23 19 23 22 25 27 21 22 28 22 24 26 27 24 28 24 25 27 28 26 29 30 29

21112122111 1132222132221221311
1222211221111 11111312 122112121
1111114132131 121332111212231411
3 23213112211 221

Permutation for the isomorph:

(132719 1172918242726 321151214 9222820 8162523 4 6 5101130)
Reg30_8_1iso1_w3: 30

1111112222222 33313132321444 44455 515°7:5
556 6 6 6 66 6 77 777748 8888899999 9101010
10 10 10 11 11 11 11 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 16

17 17 17 18 18 19 19 19 20 21 21 21 22 23 23 24 24 25 26

2 414 18 23 30 3 8 9 20 23 27 30 12 14 21 25 29 30 16 18 21 22 26 29 11 15
16 17 20 21 22 11 12 17 18 20 23 30 10 13 19 20 26 27 10 17 23 24 28 29 19 21 25
262728 13 15 16 1927 28 12 15 18 19 25 14 15 24 25 26 18 24 25 27 17 19 22 28
20 22 23 26 28 22 24 3020 30 20 21 25 23 22 25 28 29 24 29 27 30 29 27

1
1
1

—_—
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1
1
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Variances for the three test instances: relaxed 170.1935335, originals 173.3623220.
Gaps null.

Figure 6.1 — A regular graph and one isomorph.

7 LOOKING FOR A COMPARISON

7.1 The most recent results on graph isomorphism refer to progressive assembly of structures,
either using exact algorithms or with the aid of heuristics The exact algorithms are often highly
complex: its elaborate construction allows their use with pairs of graphs of order relatively high
(e.g., 500 vertices) but the processing time varies greatly according to the permutation found.
Heuristics have higher possibilities of approach and can be useful, for example, in applications
of pattern recognition, but their result is prone to error. All these techniques are iterative, unlike
the invariant calculations, which do not involve alternate returns as seen in Figure 2.1.
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Anyway, we try to present some comparisons, involving two aspects:

7.1.1 The calculation of QAPYV invariant for public access graphs collections on the Internet.

1. We used the first ten graph pairs of the sets 001, r005 and r01, with orders 20 < n <
600, indicated as isomorphs in the category randomly connected graphs, from Santo et
al. [32] database. We also processed pairs indicated as xxA/xxBlex and xxAlex/xxB
(where the suffix Iex indicates almost-isomorphic with one 2-exchange), obtained from
the corresponding xxA and xxB original graphs.

2. We generated almost-isomorphs with one 2-exchange for two sets of 19 strongly regular
graphs [20] of 45 and 64 vertices (numbered 001-019), each graph being tested along with
its almost-isomorph. The invariant obtained discrimination in all cases, using the functions
w3(G) and w4(G), the dc(G) function was not efficient in these cases.

Table 7.1 indicates the number of pairs (out of 10) from Test 1, for which there was discrimi-
nation, both for the relaxed instances (RI) and the original ones (OI). The pairs (A, B) are the
original graph pairs, while the suffix “lex.” indicates one 2-exchange in A or B file. There was
no discrimination between the original pairs.

Table 7.1 — Results obtained with Santo ef al. database.

Instance Function: es(G) Function: w3(G) Function: w4(G) Function: dc(G)
collection (AB) | Alex. Blex. (A,B) | Alex. | Blex. (AB) | Alex. Blex. (A,B) | Alex. | Blex.
RI|OI|RI|OI [RI|OI|RI[OI [RI |OI|RI|OI [RI|OI |[RI|OI |RI|OI [RI|OI |RI|OI|RI|OI
001 (0020 0| O |2 |2]|0|O0O|O0O|O]|10|I0O|10f10[ OO ]| 1| 1]3 0|0 |10]|10][10]| 10
0040| 0| 0| O oO(0|O]|Ofl0f[10|l0O|J1OfO| O[3 [3|2]|]2]0]0O 8 18| 8

0060| 0 | O | 6 717100 (10/10[10[10]| 0| O |6 7 o0 |7]|717
0080 0 | O |6 |10|10[10| 0O | O |10|10|IlOflO| O] O] 7 |l0O]10]10| 0| O |10|10]|10]10

0100 0 | O | 4 5/9|0|0(10|10f10[10|O| O |8 |10]6|9|O0O|O0]|10[10]|9
0200 0|07 (|10|9|10|lO|O]|l0O[lO|lO|1O0fO| O]9 |10O|9|10] 0| O |10]|10]|10] 10
0400 0|07 (10| 4]|9|O0O|O]|10[10|IO|10|O| O |l10O|[IO0O|10|10| O | O |10]| 10|10/ 10
0600 0 | O |9 |10|l0[10| 0O | O [10|l0O[10|10| O | O |[IO[10[10|10| O | O [10[10] 9 |10
0050020 0 | O |5 (8|7 |10{0|O0|4|4|3|3[0[0]|]6|8[9(|10/0]|O0|8|9]10]]10
0040 0|09 (|10|7|10|lO|O|4]|6|5|5|0|0]|l0[l0|10|10[ OO |7 ]|10]9 |10
0060|009 (107 |10/O|O|8[9|7|8|0|O0]|10[IO|10|10]| O | O |10]10]10] 10
o080 0|0 (8|9|9|10|lO|O|8[9|7|8|0|O0O]|lO0O[IO|10|10| O | O |10]|10]|10] 10
oloojlo|o0f(7|9|7|10/O|O|9][9]|9|10/O0O|O0O]|l10[IO|10|10| O | O |10]|10]|10] 10
0200 0| O f10f10| 7 |10|lO|O|10|[10|10O|10|O | O|l1O|[10O|10|10| O | O |10]| 10|10/ 10
0400 0| O |9 (10| 8|10/O|O]|l10O|lO|IO|10|O|O|I1O|IO|10|10| O | O |6 |8 |10 8
0600| 0 | O (1010|1010l O | O |10[l0|10O|10|O | O|lO|[I0O|10|10| O | O |10]| 10|10/ 10
01 {0020 0 | O |5|7|6(8|0]|0(10[10[10{10] 0| O[99 |10|10[O0O|O0]|10]|10|10] 10
0040 0| O |8 (|10|6|10/O|O]|10[10O|IO|10[O|O|I0O|IO|10|10| O[O |6 |8 |69
0060 0|09 (10|89 |O0|O0O]|10[10]9 |10|O|O]|lO[IOf10|10| O[O |5]|7|5]|F6
0080| 0|09 (109 |10|/O|O]|9]|l0]9|10|[O|O]|lO0O[IO|10|10| O | O |[1O|10| 6 |9
0100 0 | O (1010 8 |10lO|O|10|l0O|10O|10|O| O |I1O|1O|10|10| O | O [10|10| 6 |9
0200 0 | O 1010|1010 O | O [10]|10[10|10| O | O [IOf[10[10|10| O |O |7 [10] 9 |10
0400 O [ O [ 9|10]|9|9|O0O]|O([l0o|lOf[l0|10|O|O|IO[10[10{10]| OO |9]|9]9]9
0600 0|09 (10|99 |10|lO|O]|l0[lO|IO|10|O|O|lO|LIO|10|10| O[O |9]|9]|9]|9
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The results from Test 2, with strongly regular graphs and their almost-isomorphs, are indicated
in Table 7.2:

Table 7.2 — Results for strongly regular graphs.

w3(G) | w4(G) | de(G)
RI| Ol |RI|OI|RI|OI
(45,12,33) [ 19| 19 | 19 | 19
(64,182,6) | 19 | 19| 19 | 19

Instance

7.1.2 We applied the algorithm VF2 [33] to regular graphs of order 100, 200 and 500 from the
database already used in this work. We created isomorphs for these graphs and formed
pairs (graph, isomorph). We also used the same one 2-exchange (graph, almost-iso-
morph) pairs referred to in Table 4.1 (a).

For the application of VF2 to our instances we used the IGRAPH library [21], version 0.5.4,
a free software package for creating and manipulating undirected and directed graphs which
contains the VF2 algorithm. All instances were put in Dimacs format and submitted to VF2.

In order to compare the runtime of our algorithm with the library VF2, we needed a maximum
time limit for large instances. However, IGRAPH is a closed pack which only stops when it
finishes processing. To guarantee a time limit, we created two jobs (shell) using Linux OS. The
first shell (JOB1.sh), controls the time limit and the second shell (JOB2.sh) uses the VF2 library
in order to check all instances for isomorphism.

If JOB1.sh finishes first, then JOB2.sh execution time is equal or greater than the time limit and
JOBI.sh interrupts both child processes. If, on the contrary, JOB2.sh finishes within the time
limit, it interrupts JOB1.sh execution before stopping. See Figure 7.1.

JOB2.sh
for all instances for all instances
verify the existence of the instance in the current directory verify the existence of the instance in the current directory
create JOB1 control file create JOB2 control file
control the maximum processing time execute VF?2 library
verify the existence of the control files verify the existence of the control files
if they exist then if they exist then
remeove control files remove control files
Kill both child processes Kill child process of JOB1.sh
end for end for

Figure 7.1 — Pseudocodes of JOB1 and JOB2 (shells).

Tables 7.3 and 7.4 show the results for each (n, d) ten-graph collection, both for QAPV and
VF2, respectively with isomorphic and almost-isomorphic pairs. The maximum processing time
allowed for VF2 was 3,600 seconds. All times are expressed in seconds.

The function de(G) was utilized in these tests, with the exception of (500,100) and (500,200),
since it is not very efficient in these cases (see Table 4.1(a)). We replaced it by w3(G), its cor-
responding time values being written in italic. The second column shows the time average for
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Table 7.3 — QAPV-VF2 comparison of processing time with isomorphic pairs.

Instance QAPV VF2
n,d avg,dc | avg X avg max min avg max min
100,3 0.011 | 0.001 | 0.012 0.020 0.008 0.158 0.484 0.001
100,10 0.014 | 0.002 | 0.016 0.026 0.011 0.075 0.246 0.003
100,25 0.017 | 0.008 | 0.025 0.036 0.021 0.123 0.448 0.001
100,50 0.021 | 0.029 | 0.050 0.066 0.046 0.303 0.839 0.016
200,3 0.039 | 0.001 | 0.040 0.050 0.036 | 98.903 | 472.88 | 0.002
200,10 0.039 | 0.005 | 0.044 0.060 0.040 | 10.017 | 85,347 | 0.004
200,25 0.054 | 0.029 | 0.083 0.118 0.058 3.086 | 25.887 | 0.011
200,50 0.090 | 0.104 | 0.194 0.207 0.187 4734 | 37.423 | 0.003
200,100 | 0.121 | 0.401 | 0.522 0.548 0.518 7.636 | 26.424 | 0.038
500,3 0.827 | 0.004 | 0.831 0.849 0.813 - >3600 | 548.87
500,10 0.973 | 0.029 | 1.002 1.016 0.992 - >3600 | 41.68
500,25 1.076 | 0.150 | 1.226 1.248 1.214 - >3600 | 61.79
500,50 0.818 | 0.610 | 1.428 1.459 1.401 | 220.83 | 997.65 3.82
500,100 | 4.536 | 2.369 | 6.905 6.994 6.870 | 497.49 | 2294.8 | 0.165
500,200 | 17.735 | 9.440 | 27.175 | 27.437 | 26.719 | 598.26 | 2122.8 | 26.44

Table 7.4 — QAPV-VF2 comparison of processing time with almost-isomorphic pairs.

Instance QAPV VE2
n,d avg dc* | avgqapv | X avg | max min avg max min
100,3 0.010 0.000 0.010 | 0.021 | 0.006 | 0.454 2.372 | 0.000
100,10 | 0.013 0.002 0.015 | 0.026 | 0.011 0.137 0.485 | 0.015
100,25 | 0.016 0.007 0.023 | 0.032 | 0.021 0.442 1.596 | 0.010
100,50 | 0.021 0.027 0.048 | 0.063 | 0.044 1.730 2916 | 0.344
200,3 0.038 0.001 0.039 | 0.049 | 0.034 | 68.863 | 368.28 | 0.446
200,10 | 0.039 0.005 0.044 | 0.061 | 0.040 | 6.605 | 26.078 | 0.156
200,25 | 0.053 0.003 0.056 | 0.084 | 0.033 | 4.409 18.404 | 0.434
200,50 | 0.091 0.100 0;191 | 0.204 | 0.185 | 3.149 12.725 | 0.240
200,100 | 0.120 0.392 0.512 | 0.530 | 0.506 | 18.533 | 39.091 | 3.281

500,3 0.819 0.003 0.822 | 0.848 | 0.772 - >3,600 | 45,573
500,10 | 0.975 0.026 1.001 | 1.018 | 0.991 - >3,600 | 10,617
500,25 1.072 0.153 1.225 | 1.240 | 1.218 - >3,600 | 8,836

500,50 | 0.822 0.603 1.426 | 1.453 | 1.405 — >3,600 | 20,519
500,100 | 4.527 2.346 6.873 | 6.891 | 6.869 | 1215,46 | 1776,56 | 6,921
500,200 | 17.787 9.370 | 27.157 | 27.215 | 27.029 — >3,600 | 117,87

applying the function to a graph pair. Column 3 shows QAPV processing time of this pair and
Column 4 shows the total average time for the pair (sum of Columns 2 and 3). Columns 5 (6)
presents the sum of the corresponding maximum (minimum) values. These values do not neces-
sarily correspond to the same pair; their sum indicates extremes for the processing time.
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The last three columns indicate the average, minimum and maximum processing times obtained
by the algorithm VF2. Where an instance exceeded the time limit, the average time for its col-
lection was not calculated.

8 CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

Within the orders and degrees studied, the results obtained are in accordance with Conjecture
4.1, the set of functions here proposed allowing us to discriminate between every graph pair used
in the tests. We can see that de(G) had a complementary performance with respect to w3(G) and
w4(G). On the other hand, es(f{(G)) enhanced w3(G) and w4(G) performances in most cases at a
very low additional cost.

We used regular graphs in the majority of the tests because they seem to present a more difficult
problem than general graphs, owing to their structure restrictions. Nevertheless, general graphs
could also be examined, the technique presenting no restriction concerning degree sequences, as
it can be seen with the public instances we tested. For general graphs, es(G) could be applied
directly, which would mean much lower computing times.

The study shown here can be extended through the use of new weight function criteria and more
efficient programming, especially for the walk-counting techniques. Interesting possibilities are
brought by the matrices shown in [6]. It can be applied to other graph families, such as gen-
eral planar graphs and trees. We also think that QAPV can be advantageously applied as a first
resource to detect non-isomorphic pairs when generating given graph families, VF2 or another
exact algorithm taking over the doubtful cases.

The relation between degree and number of centers for regular graphs (in de(G) calculation) is a
subject that could lead to interesting theoretical studies. However, they are not within the scope
of this paper.

The es(G) function, even when applied twice as in the planar examples, is very quick when
compared with the QAP instance processing for the instances examined above 30,000 vertices.

The variance calculation times from Figure 4.2 are those of the original variance, the relaxed one
being much less time-consuming. By starting with the relaxed instance, one can then expect to
work with bigger graphs much more quickly.

Working with big planar graphs opens possibilities to apply the technique to pattern recognition
problems, allowing for quantification of the differences between pairs of images.

It is interesting to observe that, if Conjecture 4.1 could be proven, this would be equivalent to
establishing the complexity of the restricted graph isomorphism problem as being polynomial
for all graphs.

The comparison with VF2 algorithm shows QAPYV values as being much more rapid to calculate
than VF2 results. Since VF2 is an exact constructive algorithm, this is not unexpected. On the
other hand, QAPV can be applied to graph pairs of higher order than VF2.
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