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ABSTRACT. Industries conduct the Sales and Operations Planning (S&OP) to balance demand and supply
aligned to business targets. This study aims at proposing a model and an algorithm for the tactical supply
chain planning admitting uncertainty and reflecting the peculiar S&OP aspect of rolling horizon planning.
Therefore, a two-stage stochastic programming model is developed and solved via a multi-cut Benders
decomposition algorithm. The model and the solution method are evaluated by numerical experiments and
a case study. Results show that the optimal supply chain profit is not proportional to demand, in fact, an
increase in demand can even decrease the optimal profit due to capacity constraints along the supply chain.
Such findings reinforce that profitability and service level are increased with the synergy of the sales team
with production, distribution and procurement team on establishing which demand should be satisfied - or
not - in each period. The stochastic solution is compared to deterministic approaches.

Keywords: sales and operations planning, supply chain planning, stochastic programming, Benders
decomposition.

1 INTRODUCTION

Supply chains (SC) are dynamic systems that operate in uncertain environments to meet cus-
tomers’ requirements. Marketing uncertainties and the increasing complexity of operations raise
further challenges for SC coordination. To cope with these challenges, companies adopt the Sales
and Operations Planning (S&OP), a centralized planning process that improves vertical integra-
tion and inter-functional coordination. S&OP is a business planning process that comprises the
coordination of material, financial, and information flows to balance customer demand with sup-
ply capabilities by establishing production mix and volume at the tactical level (Tuomikangas &
Kaipia, 2014).
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2 A DECOMPOSITION APPROACH FOR THE TWO-STAGE STOCHASTIC SUPPLY NETWORK PLANNING

S&OP has its origins in aggregate production planning, introduced in the 1950s, and settled into
use in business and academia only by the early 2000s. IT tools and models support the com-
munication and decision-making process supporting tactics and the strategy. Strategy defines the
level of data aggregation. The models use aggregate data to set the medium-term tactical SC
plan (Buxey, 2003; Thomé et al., 2012; Ba et al., 2018). Every period, decision-makers share
activities of procurement, production, distribution, and sales to produce a consensus forecast and
to validate the company tactical plan. The process follows a predefined schedule to review cus-
tomer demand and supply resources creating a revised plan across an agreed rolling horizon. This
framework increases the quality of the first-period plan data, which becomes demand require-
ments included in a fixed-horizon for short-term programs. Although pilot projects can adopt
spreadsheets, when the process evolves to a maturity model, optimization tools with sophisti-
cated models are recommended. However, the development of powerful S&OP tools integrated
into financial parameters requires further research (Thomé et al., 2012; Tuomikangas & Kaipia,
2014).

Empirical studies show that the S&OP practice impacts positively on operational performance,
particularly on plants with complex manufacturing processes (MT Thomé et al., 2014). Case
studies in the electronics, oil, and food sector show companies that successfully adopted the
S&OP by a mathematical modeling approach (Wang et al., 2012; Zhulanova & Zhulanov, 2014;
Taşkın et al., 2015; Nemati et al., 2017). The results include the integration of top-managers on
the development of a consensus plan, and the enhancement of coordination between financial and
activities of procurement, production, and distribution. The models adopt an aggregate demand
forecast and encompass all planning periods. The advantage of adopting the aggregate demand
forecast is that it will have reduced variance unless all items are perfectly correlated (Hax &
Meal, 1973). However, S&OP implementation remains difficult and challenging (Pedroso et al.,
2016). Companies lack the right managerial tools to achieve the desired outcomes. Besides, the
planning problems remain deterministic on the analysis of a single-stage demand scenario, so
uncertainty is not properly evaluated.

The idea of incorporating uncertainty in mathematical programming was pioneered by Dantzig
(Dantzig, 1955), and the concept of integrating decentralized SC by stage is introduced by Clark
(Clark & Scarf, 1960). Since then, the understanding of uncertainty via stochastic programming
for production and inventory planning has progressed (Birge & Louveaux, 2011; King & Wallace,
2012; Alem & Morabito, 2013; Cunha et al., 2017).

Researches have addressed SC planning on a tactical level admitting uncertainty by a two-stage
stochastic programming (2SSP) approach (Moraes & Faria, 2016). In the S&OP context, appli-
cations approach the configure-to-order system (Chen-Ritzo et al., 2010), the chemical industry
(Calfa et al., 2015), the forest-based biomass power plant (Shabani & Sowlati, 2016), and the
blood SC (Dillon et al., 2017). Nevertheless, few works had developed models to evaluate a
rolling horizon framework, as discussed in mining operations (Carniato & Camponogara, 2011)
and renewable energy power systems (Wang et al., 2020). The inclusion of uncertainty into SC
models lead to large-scale problems due to numerous elements presented on each echelon. There-
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fore, decomposition approaches, as Benders’ decomposition (BD) (Benders, 1962), can be used.
However, such applications have been employed to the capacity expansion problem, on a strategic
level, via the stochastic dual dynamic programming algorithm (Thomé et al., 2013).

To date, the proposed models for S&OP assume that the first planning period has the same level
of importance in comparison to complementary planning periods. The first planning period has
more information, instead of pure demand forecast. Moreover, considering its importance to
the practice, the analysis of the different scenarios simultaneously should hedge the first-period
against the uncertainty of the following periods. The current S&OP planning practice advocates
better planning and fixing the first-period plan. However, there is a lack of practical and academic
studies that proposes SC planning models approaching the S&OP rolling horizon framework that
sets the best first-period plan based on uncertain scenarios of complementary periods. Besides,
few models address uncertainty on tactical SC planning by a 2SSP approach (Shabani & Sowlati,
2016; Dillon et al., 2017), and BD (You & Grossmann, 2013; Oliveira et al., 2014; Kayvanfar
et al., 2018), and, to the best of our knowledge, no study has proposed a BD algorithm to solve a
2SSP model based on the broader scope of the S&OP method.

This manuscript aims at evaluating a tactical SC model aligned to S&OP rolling horizon planning
strategy approaching uncertainty by a 2SSP formulation, which leads to a complex problem; and
proposing a multi-cut BD algorithm to reduce the computational solving time of the large-scale
problem. The work evaluates the decomposition approach by a numerical experiment and a case
study in a flat steel chain. For modeling the steel production technology, the reader is referred
to a seminal paper (Fabian, 1958), a survey (Dutta & Fourer, 2001), and applications (Seong &
Suh, 2012).

The rest of the paper is organized as follows: Section 2 introduces the 2SSP formulation. Section
3 presents a multi-cut BD algorithm developed for solving large-scale problems. In Sections
4 and 5, the model and algorithm are evaluated by a numerical experiment and a case study,
respectively. Finally, Section 6 draws conclusions and suggestions for future research.

2 MATHEMATICAL FORMULATION

This section proposes a 2SSP formulation for S&OP adopting technology constraints to indus-
tries that faces uncertainty on product price and demand. The approach enhances the SC model
to evaluate flexibility on tactical SC planning (Almeida et al., 2018) and model the planning
process uncertainties in second-stage scenarios, such that the practice is responsible for imple-
menting only the first-period results. At the end of every period, the newly available information
updates the second-stage scenarios of the following periods on a rolling planning horizon basis.

The 2SSP formulation adopts a classic notation (Birge & Louveaux, 2011) and consists in max-
imizing c>x+Eξ Q(x,ξ )|Ax = b,x ≥ 0, where Eξ Q(x,ξ ) = maxq(ξ )>y(ξ )|T (ξ )x+Wy(ξ ) =
h(ξ ),y(ξ ) ≥ 0. Eξ is the mathematical expectation with respect to ξ , and let Ξ ⊆ ℜN be the
support of ξ , that is, the smallest closed subset in ℜN such that P{ξ ∈ Ξ}= 1.
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4 A DECOMPOSITION APPROACH FOR THE TWO-STAGE STOCHASTIC SUPPLY NETWORK PLANNING

The model represents a four-echelon SC with P as the set of products consisting of X raw
materials and Y finished products (i.e. P = X ∪Y ). Let L be a location in an SC consisting
of F suppliers, I industrial plants, H distribution hubs, and C customers; thus, L = F ∪
I ∪H ∪C . In this four-echelon SC, F suppliers provide X raw materials for I industrial
plants. These plants process raw materials on R resources and make Y finished products over
T periods to meet the demands of C customers. The set of products, locations, resources, and
time periods are indexed by p, l,r and t, respectively. The notation used to formulate: (i) the
deterministic and stochastic parameters; (ii) the first and second-stage variables; and (iii) the
elements of the objective function (1) and constraints (2)–(48) are described in Tables 1, 2 and 3
respectively.

The 2SSP objective function model for the optimization problem can be stated as follows:

maxΨ = RP
1 −CL

1 −CF
1 −CV

1 −CP
1 −CS

1 −CX
1 +Q(α,y,r) (1a)

Q(α,y,r) = ∑
s∈S

ρs

(
RP

2 −CL
2 −CF

2 −CV
2 −CP

2 −CS
2 −CX

2

)
(1b)

The objective function to be maximized in Eq. (1) represents the expected profit resulting from
the after-tax revenue and the operational costs. Q(α,y,r) = Eω [α,y,r,ξ ] represents the expecta-
tion of the second-stage scenarios evaluated over all possible realization of uncertain param-
eters given the decision of (α,y,r), and ρs is the occurrence probability of each scenario s
(∑s∈S ρs = 1). The objective function is subjected to the following constraints:

sl pt = S0
l p ∀l ∈ (I ∪H ), p ∈P, t = 0 (2)

SS
l pt ≤ sl pt ≤ SX

l pt ∀l ∈ (I ∪H ), p ∈P, t = 1 (3)

SS
l pt ≤ sl pts ≤ SX

l pt ∀l ∈ (I ∪H ), p ∈P, t ∈ 2..|T |,s ∈S (4)

LM
l prl p ≤ AR

l pt ∀l ∈F , p ∈X , t = 1 (5)

LM
l prl pts ≤ AR

l pt ∀l ∈F , p ∈X , t ∈ 2..|T |,s ∈S (6)

Constraint (2) expresses the initial stocks of raw materials and goods present in industrial plants
and distribution centers. Constraints (3) and (4) describe the storage of raw materials and finished
products. Quantities must consider the inventory safety levels and must not exceed the storage
capacity limits of each location. Constraints (5) and (6) mean that the number of lots of raw
materials purchased must respect their availability with suppliers in each period.
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Table 1 – Deterministic and stochastic parameters of the 2SSP model.

Deterministic parameters Unit

T R
lrp Matrix of technical route of product p on resource r at location l Binary

Bp′p Bill of materials p′ required to produce a unit of product p Scalar

MC
lrp Time unit required to produce product p on resource r at location l h

EF
lrt Resource efficiency r at location l in period t %

AH
t Available hours in each period t h

AX
lrt Extra hours available on resource r at location l in period t h

LM
l p Lot size of product p at location l Scalar

PM
lrt Preventive maintenance of resource r at location l in period t h

SS
l pt Safety stock of product p at location l in period t Scalar

SX
l pt Stock capacity of product p at location l in period t Scalar

AR
l pt Availability of raw materials for product p at location l in period t Scalar

S0
l p Initial inventory of product p at location l Scalar

Ylr Raw material yield on resource r at location l %

NM
lr Number of resources of type r at location l Scalar

TCX
mll′ Transportation capacity of raw-material on modal m from location l to l′ Scalar

TCY
mll′ Transportation capacity of products on modal m from location l to l′ Scalar

CI
lt Inbound handling capacity at location l in period t Scalar

CO
lt Outbound handling capacity on location l and time period t Scalar

AV
lrt (AH

t NM
lr −PM

lrt)(E
F
lrtYlr) Availability of resource r at location l in period t h

Stochastic parameters

Dcpts Demand of customer c for product p in period t and scenario s

Rps Sales revenue of finished product p in scenario s

Nps Fictitious cost penalty for not meeting demand p in scenario s

CF
lrs Fixed cost of resource r at location l in scenario s

CV
l ps Variable cost of production of p at location l in scenario s

CX
lrs Extra capacity cost on resource r at location l in scenario s

CS
l ps Unit inventory cost of product p at location l in scenario s

CL
mll′s Unit transport cost on modal m from location l to l′ in scenario s

CP
l ps Unit procurement cost of raw material x at location l in scenario s

T X
l ps Tax over finished product y sold to customer c in scenario s

ρs Probability of each scenario s, ∑s∈S ρs = 1
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Table 2 – First-stage and second-stage decision variables of the 2SSP model.

First-stage decision variables

αl p ∈ Z+: Multiple of lot-size for production of product p at location l in the first period

alrp Production of product p on resource r at location l in the first period

bl p Consumption of raw material p at location l in the first period

sl pt Stock of product p at location l at the end of the first period

dl p Met demand of product p at location l in the first period

nl p1s Non-satisfied demand of product p at location l in the first period and scenario s

rl p ∈ Z+: Multiple of lot-size for procurement of raw material p at location l in the first period

tmll′p Transportation of product p on modal m from l to l′ in the first period

clr Consumption of resource r at location l in the first period

c′lr Overtime percentage for resource r at location l in the first period

ylr ∈ {0,1}: Activate (or not) resource r at location l in the first period

Second-stage decision variables

αl pts ∈ Z+: Production of product p at location l in period t and scenario s

alrpts Production of product p on resource r at location l in period t and scenario s

bl pts Consumption of raw material p at location l in period t and scenario s

sl pts Stock of product p at location l at end of period t in scenario s

dl pts Met demand of product p at location l in period t and scenario s

nl pts Non-satisfied demand of product p at location l in period t and scenario s

rl pts ∈ Z+: Procurement of raw material p at location l in period t and scenario s

tmll′pts Transportation of product p on modal m from l to l′ in period t and scenario s

clrts Consumption of resource r at location l in period t and scenario s

c′lrts Overtime percentage for resource r at location l in period t and scenario s

ylrts ∈ {0,1}: Activate (or not) resource r at location l in period t and scenario s
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Table 3 – Objective function elements of four-echelon SC planning model.

Elementsa Description

RP
1 After-tax revenue from sales in the first-stage

CL
1 Logistics cost on different transport modes in the first-stage

CF
1 Fixed cost for machine activation in each plant in the first-stage

CV
1 Finished product cost in each plant in the first-stage

CP
1 Procurement cost of raw material in the first-stage

CS
1 Storage cost in each plant in the first-stage

CX
1 Capacity expansion cost of resources in each plant in the first-stage

CN
1 Non-delivery cost for each customer in the first-stage

RP
2 Revenue after taxes from sales in the second-stage

CL
2 Logistics cost on different transport modes in the second-stage

CF
2 Fixed cost for machine activation in each plant in the second-stage

CV
2 Finished product cost in each plant in the second-stage

CP
2 Procurement cost of raw material in the second-stage

CS
2 Storage cost in each plant in the second-stage

CX
2 Capacity expansion cost of resources in each plant in the second-stage

CN
2 Non-delivery cost for each customer in the second-stage

aElements subscript 1 and 2 represents the first-stage[1] and the second-stage[2].

RP
1 = ∑l∈C ∑p∈Y (Rp−T X

l p)dl p CL
1 = ∑m∈M ∑ll′∈K ∑p∈Y CL

mll′stmll′p

CF
1 = ∑l∈I ∑r∈R CF

lrsylr CV
1 = ∑l∈I ∑p∈Y CV

l psαl p

CP
1 = ∑l∈F ∑p∈P CP

l psrl p CS
1 = ∑l∈I ∑p∈Y CS

l pssl p

CX
1 = ∑l∈I ∑r∈R CX

lrsc
′
lr CN

1 = ∑s∈S ∑l∈C ∑p∈Y Npsnl p

RP
2 = ∑l∈C ∑p∈Y ∑t>1(Rps−T X

l ps)dl pts CF
2 = ∑l∈I ∑r∈R ∑t>1 CF

lrsylrts

CL
2 = ∑m∈M ∑ll′∈K ∑p∈Y ∑t>1 CL

mll′stmll′pts CV
2 = ∑l∈I ∑p∈Y ∑t>1 CV

l psαl pts

CP
2 = ∑l∈F ∑p∈P ∑t>1 CP

l psrl pts CS
2 = ∑l∈I ∑p∈Y ∑t>1 CS

l pssl pts

CX
2 = ∑l∈I ∑r∈R ∑t>1 CX

lrsc
′
lrts CN

2 = ∑s∈S ∑l∈C ∑p∈Y Npsnl pts
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LM
l prl p = ∑

m∈M
∑

ll′∈K
tmll′p ∀l ∈F , p ∈X , t = 1 (7)

LM
l prl pts = ∑

m∈M
∑

ll′∈K
tmll′pts ∀l ∈F , p ∈X , t ∈ 2..|T |,s ∈S (8)

∑
m∈M

∑
l′l∈K

tml′l p +S0
l p = sl p +bl p ∀l ∈I , p ∈X , t = 1 (9)

∑
m∈M

∑
l′l∈K

tml′l pts + sl pt−1s = sl pts +bl pts ∀l ∈I , p ∈X , t ∈ 2..|T |,s ∈S (10)

LM
l pαl p + ∑

m∈M
∑

l′l∈K
tml′l p +S0

l p =

∑
m∈M

∑
ll′∈K

tmll′p + sl pt ∀l ∈I , p ∈ Y , t = 1 (11)

LM
l pαl pts + ∑

m∈M
∑

l′l∈K
tml′l pts + sl pt−1s =

∑
m∈M

∑
ll′∈K

tmll′pts + sl pts ∀l ∈I , p ∈ Y , t ∈ 2..|T |,s ∈S (12)

∑
m∈M

∑
l′l∈K

tml′l p +S0
l p = ∑

m∈M
∑

ll′∈K
tmll′p + sl pt ∀l ∈H , p ∈ Y , t = 1 (13)

∑
m∈M

∑
l′l∈K

tml′l pts + sl pt−1s =

∑
m∈M

∑
ll′∈K

tmll′pts + sl pts ∀l ∈H , p ∈ Y , t ∈ 2..|T |,s ∈S (14)

∑
m∈M

∑
l′l∈K

tml′l p = dl p ∀l ∈ C , p ∈ Y , t = 1 (15)

∑
m∈M

∑
l′l∈K

tml′l pts = dl pts ∀l ∈ C , p ∈ Y , t ∈ 2..|T |,s ∈S (16)

The end of each period is connected by the sum of the input and output flows; consequently, the
transportation of products is not permitted if the product does not reach the destination within the
planned horizon. The input and output flows are respected for each location, product, and period.
Equations (7) and (8) refer to the procurement and transportation of raw materials to industrial
plants. Equations (9) and (10) represent the stock flow of raw material and its consumption for
producing finished products. The input flow is expressed by the transport of raw materials or
finished products from the preceding SC echelon, the production of lots of goods, the inventory
level, and the procurement of multiple lots of raw materials the end of the previous period.
Equations (7) to (10) represent the flow of raw materials, while equations (11) and (12) represent
the flow of finished products in industrial plants. Equations (13) and (14) represent the flow of
finished products on distribution centers, and equations (15) and (16) represent the transportation
and delivery of finished products to customers. The output flow is the result of the balance of
shipment of items to the subsequent SC echelon, the satisfied demand, the inventory level, and
the consumption of raw materials in processes at the end of a period.
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∑
m∈M

∑
l′l∈K

∑
p∈Y

tml′l p ≤CI
lt ∀l ∈H , t = 1 (17)

∑
m∈M

∑
l′l∈K

∑
p∈Y

tml′l pts ≤CI
lt ∀l ∈H , t ∈ 2..|T |,s ∈S (18)

∑
m∈M

∑
ll′∈K

∑
p∈Y

tmll′p ≤CO
lt ∀l ∈H , t = 1 (19)

∑
m∈M

∑
ll′∈K

∑
p∈Y

tmll′pts ≤CO
lt ∀l ∈H , t ∈ 2..|T |,s ∈S (20)

∑
p∈Y

alrpMC
lrp = clr ∀l ∈I ,r ∈R, t = 1 (21)

∑
p∈Y

alrptsMC
lrp = clrts ∀l ∈I ,r ∈R, t ∈ 2..|T |,s ∈S (22)

clr ≤ AV
lrtylr + c′lrA

X
lrt ∀l ∈I ,r ∈R, t = 1 (23)

clrts ≤ AV
lrtylrts + c′lrtA

X
lrt ∀l ∈I ,r ∈R, t ∈ 2..|T |,s ∈S (24)

Constraints (17) to (20) describe the inbound and outbound handling capacities at the distribution
centers for each period. The production in each process depends on the route and production
time of each item. Equations (21) and (22) represent the production capacity use. Constraints
(23) and (24) express the capacity of a process, which is ruled by the available production time.
In this period, a process may or may not be activated. If activated, its capacity can be reduced by
implementing a preventive maintenance, for instance.

c′l p ≤ ylr ∀l ∈I ,r ∈R, t = 1 (25)

c′l pts ≤ ylrts ∀l ∈I ,r ∈R, t ∈ 2..|T |,s ∈S (26)

Constraints (25) and (26) mean that the choice to overtime can be a profitable option. The use
of extra capacity results in extra costs, which are included in the objective function. However,
the value of the extra costs is bounded by the company. These constraints also ensure that extra
capacity can be activated only if there is a requirement for production in the period
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10 A DECOMPOSITION APPROACH FOR THE TWO-STAGE STOCHASTIC SUPPLY NETWORK PLANNING

alrpT R
lrp = LM

l pαl p ∀l ∈I ,r ∈R, p ∈P, t = 1 (27)

alrptsT R
lrp = LM

l pαl pts ∀l ∈I ,r ∈R, p ∈P, t ∈ 2..|T |,s ∈S (28)

bl p′ = ∑
p∈Y

Bp′pLM
l pαl p ∀l ∈I , p′ ∈X , t = 1 (29)

bl p′ts = ∑
p∈Y

Bp′pLM
l pαl pts ∀l ∈I , p′ ∈X , t ∈ 2..|T |,s ∈S (30)

∑
p∈X

tmll′p ≤ TCX
mll′ ∀m ∈M , ll′ ∈K , t = 1 (31)

∑
p∈X

tmll′pts ≤ TCX
mll′ ∀m ∈M , ll′ ∈K , t ∈ 2..|T |,s ∈S (32)

∑
p∈Y

tmll′p ≤ TCY
mll′ ∀m ∈M , ll′ ∈K , t = 1 (33)

∑
p∈Y

tmll′pts ≤ TCY
mll′ ∀m ∈M , ll′ ∈K , t ∈ 2..|T |,s ∈S (34)

dl p = Dt pcs−nl ps ∀l ∈ C , p ∈ Y ,s ∈S , t = 1 (35)

dl pts = Dt pcs−nl pts ∀l ∈ C , p ∈ Y , t ∈ 2..|T |,s ∈S (36)

bl p,sl pt ,dl p,nl p ≥ 0 ∀l ∈L , p ∈P, t = 1 (37)

bl pts,sl pts,dl pts,nl pts ≥ 0 ∀l ∈L , p ∈P, t ∈ 2..|T |,s ∈S (38)

tmll′p ≥ 0 ∀m ∈M , ll′ ∈L , p ∈P (39)

tmll′pts ≥ 0 ∀m ∈M , ll′ ∈L , p ∈P, t ∈ 2..|T |,s ∈S (40)

αl p,rl p ∈ Z+ ∀l ∈L , p ∈P (41)

αl pts,rl pts ∈ Z+ ∀l ∈L , p ∈P, t ∈ 2..|T |,s ∈S (42)

alrp ≥ 0 ∀l ∈I ,r ∈R, p ∈P (43)

alrpts ≥ 0 ∀l ∈I ,r ∈R, p ∈P, t ∈ 2..|T |,s ∈S (44)

ylr ∈ {0,1} ∀l ∈I ,r ∈R (45)

ylrts ∈ {0,1} ∀l ∈I ,r ∈R, t ∈ 2..|T |,s ∈S (46)

0≤ c′lr ≤ 1 ∀l ∈I ,r ∈R (47)

0≤ c′lrts ≤ 1 ∀l ∈I ,r ∈R, t ∈ 2..|T |,s ∈S (48)

Constraints (27) and (28) assure that a finished product is released by the latest machine of the
product line routing in each plant. Constraints (29) and (30) express the bill of materials for a
generic product structure (Pochet & Wolsey, 2006); accordingly, a finished product is a result
of the combination of raw materials in different proportions. Constraints (31) to (34) guarantee
that the product flow does not surpass the transportation capacity for each transport mode. Con-
straints (35) and (36) indicate that eventually, part of the original demand may not be satisfied.
Constraints (37) to (48) define the domain of the variables.
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3 MULTI-CUT BENDERS DECOMPOSITION

Stochastic programming problems take uncertainty into account. The problems tend to grow
and require significant computational resource. This section proposes a relaxation followed by
a multi-cut decomposition strategy to solve the stochastic original problem. The procedure con-
sists in decomposing a complete deterministic equivalent problem into a Master Problem (MP)
and relaxed Slave Problems (SP) where recourse decisions are taken. The optimization model
with first-stage integer variables (on the first planning period) and second-stage continuous vari-
ables (on complementary planning periods) can be approached by the L-Shaped Method (Van
Slyke & Wets, 1969; Laporte & Louveaux, 1993). The method is a scenario-based decomposi-
tion structure based on Benders decomposition (Benders, 1962) which is employed to stochastic
optimization. The MP can be reformulated as follows:

maxΨ = RP
1 −CL

1 −CF
1 −CV

1 −CP
1 −CS

1 −CX
1 +θ (49)

Subjected to first period (t = 1) constraints: (2) (3) (5) (7) (9) (11) (13) (15) (17) (19) (21) (23)
(25) (27) (29) (31) (33) (35) (37) (39) (41) (43) (45) (47)

θ ≤Q(α,y,r) (50)

The variable θ introduced in the objective function (49) provides a connection between the MP
and each scenario SP, however, since the proposed constraint (50) is not defined explicitly, it can
not be used computationally as a constraint, so this constraint is replaced by a number of cuts,
generated from dual vectors of SP, which are gradually added to the MP in an iterative process.
The SPs are reformulated as follows:

maxΦ = ∑
s∈S

ρs

(
RP

2 −CL
2 −CF

2 −CV
2 −CP

2 −CS
2 −CX

2

)
(51)

Subjected to the following periods (t ∈ 2..|T ) constraints: (4) (6) (8) (10) (12) (14) (16) (18)
(20) (22) (24) (26) (28) (30) (32) (34) (36) (38) (40) (42) (44) (46) (48)

The proposed model with relaxed second-stage variables has complete recourse (Birge &
Louveaux, 2011); therefore, for any feasible first-stage solution, the second-stage problem is
always feasible, so only optimality cuts are needed in the Benders stochastic decomposition.
On a single-cut approach, the number of iterations needed for reaching the optimum grows
exponentially with the number of realizations. The advantage of the proposed method is that for
the multi-cut approach it grows linearly (Oliveira et al., 2014).

Let n ∈ N be the index of iterations needed for reaching the optimum. In order to accelerate
the BD algorithm, we decompose the variable θ for each scenario s to return the number of
cuts equivalent to the number of scenarios for each iteration n. We define πi ∈ Π as the optimal
extreme point of the dual polyhedron Π resulted from constraints i = (4), (6), (10), (12), (14)
(18), (20), (32), (34), and (36). However, we consider only a subset Π ′ of Π because cuts are
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added iteratively. The Inequality (50) is replaced by optimality multi-cuts (52), that link the MP
and SP scenarios.

θs ≤ ∑
l∈(I∪H )

∑
p∈P

∑
t∈2..|T |

π(4)SS
l pt + ∑

l∈(I∪H )
∑

p∈P
∑

t∈2..|T |
π(4)SX

l pt + ∑
l∈F

∑
p∈P

∑
t∈2..|T |

π(6)AR
l pt

− ∑
l∈I

∑
p∈X

∑
t∈2..|T |

π(10)sl pt−1s− ∑
l∈I

∑
p∈Y

∑
t∈2..|T |

π(12)sl pt−1s− ∑
l∈H

∑
p∈Y

∑
t∈2..|T |

π(14)sl pt−1s

+ ∑
l∈H

∑
t∈2..|T |

π(18)CI
lt + ∑

l∈H
∑

t∈2..|T |
π(20)CO

lt + ∑
m∈M

∑
ll′∈K

∑
t∈2..|T |

π(32)TCX
mll′

+ ∑
m∈M

∑
ll′∈K

∑
t∈2..|T |

π(34)TCY
mll′ + ∑

l∈C
∑

p∈Y
∑

t∈2..|T |
π(36)Dt pcs, ∀s ∈S ,πi ∈Π

′ (52)

The proposed Algorithm 1 is applied for solving of the mixed-integer 2SSP SC planning problem.
It consists in relaxing the SP integrality constraints, conducting the multi-cut BD approach, and
recovering the integrality constraints for a branch and bound or branch and cut scheme (Birge
& Louveaux, 2011) while it creates non-examined nodes. The strategy is evaluated by numerical
experiments and a case study.

Algorithm 1 Multi-cut Benders decomposition for the MILP 2SSP model.

1 Let GAP = ∞, θs = ∞ ∀s ∈ S, tol = 0.0001, n = 1, initialize parameters s̄l pt .
2 Relax integrality constraints of SP[2] scenarios.
3 Relax integrality constraints of MP[1].
4 If GAP ≤ tol then

Activate integrality constraints of SP[2] scenarios.
Solve the SP[2] scenarios.
Update variables of optimality cuts constraints.
Activate integrality constraints of MP[1].
Solve the MP[1]. The optimal solution to the original problem (1)–(48) was reached.
Else

5 Solve SP[2] scenarios.
6 Let n = n+1. Compute optimality cuts coefficients πi, add (52) to MP[1].
7 In n, solve the MP[1] with previous iterations cuts and fix the values of sl pt obtained

from the first-stage solution.
8 Let GAP = min{GAP , ∑s∈S θs - Φn} and return to step 4.

Elements subscript 1 and 2 represents first stage[1] and second stage[2].

4 NUMERICAL EXPERIMENTS

In this section numerical experiments are conducted to evaluate the computational performance
of the proposed algorithm on solving a medium-sized 2SSP SC problem with 6 suppliers, 2 in-
dustrial plants, 4 distribution centers, 20 demand clusters, 8 types of raw materials, 10 production
resources, 20 product families, and 2 modes of transport over a planning period of 12 months.
The models were implemented in AMPL™(Fourer et al., 2003) and solved with Gurobi 9.0™in
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a Linux Mint 17.3 64-bit, RAM of 16 GB, and an Intel Core I5 2.50 GHz. Gurobi used dual
simplex LP optimizer with presolve activated, and branch-and-cut with simplex for MIP opti-
mizer with cutting planes activated (Gomory, Implied bound, MIR, Flow cover, Zero half), and
multi-thread (thread count was 4 of 4 available processors).

Table 4 – Size and solving time of 2SSP for LP and MILP Monolithic model (M) and Multi-Cut Benders
Decomposition (MC Dec.) model.

LP (CPU(s)) MILP (CPU(s))
Scen Const. Var. Int. Bin. M MC Dec. Ma MC Dec.
20 71,964 151,082 3,319 221 3.50 7.09 124.62 56.49
40 143,704 301,582 6,619 441 8.95 14.95 1,131.98 117.86
60 215,444 452,082 9,919 661 14.31 22.82 3,373.13 341.52
80 287,184 602,582 13,219 881 21.72 30.72 5,609.30 524.31

100 358,924 753,082 16,519 1,101 28.39 39.75 10,000.00∗ 591.61
120 430,664 903,582 19,819 1,321 39.19 48.09 ∗∗ 788.24
140 502,404 1,054,082 23,119 1,541 78.35 57.47 ∗∗ 874.88
160 574,144 1,204,582 26,419 1,761 153.19 65.95 ∗∗ 1,216.40
180 645,884 1,355,082 29,719 1,981 175.58 77.19 ∗∗ 1,796.82
200 717,624 1,505,582 33,019 2,201 306.37 94.25 ∗∗ 3,547.75

a∗No solution. ∗∗No RAM.

Table 5 – Statistical analysis carried out on different scenarios sets.

Scen. 20 40 60 80 100 120 140 160 180 200
Min. 8,272 7,329 7,932 7,487 7,660 7,438 7,569 7,132 7,461 7,255
Q1 8,798 8,725 8,537 8,335 8,470 8,650 8,344 8,303 8,456 8,327
Q2 9,130 8,964 8,860 8,759 8,756 9,027 8,805 8,720 8,873 8,717
X̄ 9,198 8,952 8,858 8,768 8,804 8,994 8,756 8,710 8,829 8,702
σ 490 526 505 585 554 558 576 602 537 549
σX̄ 109 83 65 65 55 51 49 48 40 39
Q3 9,436 9,312 9,137 9,148 9,173 9,443 9,130 9,119 9,133 9,046
Max. 10,262 9,883 10,097 10,084 9,998 10,100 10,143 10,342 10,340 10,406
C.I.(95%) 215 133 128 128 109 100 95 93 79 76

The experiment consists on solving 10 test-problems with a number of scenarios ranging from
20 to 200 in increments of 20. The experiment comprises different instances of independent
samples with random variables adopting the same parameters for all instances. The probability
is uniformly distributed according to the number of scenarios. The optimization experiments run
for up to 10,000 seconds to evaluate the efficiency of the proposed method compared to the
monolithic model.

Table 4 presents the problems size and shows the effect of the multi-cut BD algorithm applied to
the relaxed LP and to the MILP version of the 2SSP model, and Table 5 presents the statistical
analysis of the scenarios outputs. The results illustrated in Figure 1 suggest that the expected
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Figure 1 – The expected profit precision is increased in a rising number of scenarios. Confidence
Interval (95%) and Standard Error of the expected profit of 2SSP model.

profit precision is increased in a rising number of scenarios. The Figure 1 also shows the range
of confidence interval of the expected profit and its standard error. The confidence interval and
standard error are reduced and the number of scenarios is increased. The proposed multi-cut BD
method is efficient on solving both linear and particularly mixed-integer problems. Decomposed
2SSP MILP problems take approximately one-tenth of the monolithic model solving time on
instances with 20-80 scenarios and less than an hour for instances with 100-200 scenarios, which
were not solved by monolithic model due to the overflow limit of computer memory. The method
becomes more attractive as the instances increase in size. Although the results suggest the advan-
tage of stochastic multi-cut BD method over the monolithic model, these results may not occur
at all possible test-problems, nevertheless, they illustrate the potential of the proposed method.
The multi-cut BD is efficient because when multiple cuts are applied in the MP, the number of
iterations is significantly reduced, so the MP is solved in a short time, despite its large size.

5 CASE STUDY

The 2SSP model is applied to the tactical SC plan of a Brazilian flat steel chain that faces demand
and price uncertainty. Over the last decade, the Organization for Economic Cooperation and De-
velopment (oe.cd/steelcapacity) revealed the steel over-capacity with structural supply-demand
imbalances as a challenge to the global steel industry (Otsuka, 2017). Therefore, this flat steel
industry redesigned its SC acquiring upstream mining operations and downstream distribution
centers to hedge against price and demand variations over the long-term. In the medium term,
this steel industry adopted the S&OP methodology to balance demand and supply. The inte-
gration of medium-term tactical SC plan to short-term operational plan occurs through monthly
review, following the S&OP methodology to which the proposed 2SSP SC model is aligned.
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The integrated production and logistics process begins with the provision of ore and coal by three
suppliers to two industrial plants, where they are converted to steel and transformed into 30 prod-
uct families. Ships supply coal in multiple of 60,000, 120,000, and 150,000 tons, respectively,
and the trains comprise 170 to 320 wagons, setting lots multiple of 17,000 tons and 32,000 tons.
Industrial plants 1 and 2 contain 24 and 22 transformation processes, respectively. BOF furnaces
size varies from 180 to 240 tons of steel, setting a batch production. The SC includes a complex
logistics network with transshipment hubs at two ports, six distribution centers, and three trans-
portation modes. The finished products, like slabs, plates, and coils, are shipped to 34 demand
regions encompassing internal and external customers by railway, highway, or waterway over a
planning horizon of 12 months.

The transport costs consist of average rates of cargo trucks, wagons or ships. Although the rail-
way transport capacity is limited, third-party logistics (3PL) systems can expand the road trans-
portation capacity. Processes analysts provided equipment capacity, product line routing, and
production costs and time. The values of demand and price match the normal distribution, with
average values derived from sales forecast and variance from sales histories. The normal distri-
bution captures the essential characteristics of uncertainty and is often adopted in the literature
(Gupta & Maranas, 2003; You & Grossmann, 2013).

Table 6 – Financial and operating results of the case study

Financial report Value ($) Operational report Value (t.)
Sales revenue 1,910,739,797.99 Production on plant-[1] 2,979,420
Logistics cost 511,717,155.55 Production on plant-[2] 1,507,900
Production fixed-cost 5,987,185.18 Overtime on plant-[1](h) 3,593.52
Production variable-cost 7,780,054.66 Overtime on plant-[2](h) 2,241.92
Procurement cost 439,192,253.11 Transport on modal-[1] 7,557,859
Overtime cost 18,677.87 Transport on modal-[2] 5,245,359
Inventory cost 9,903,492.29 Transport on modal-[3] 5,242,080
Expected overall profit 936,140,979.30
Profit scenario-[1] 964,289,708.25 Total demand 4,929,647
Profit scenario-[2] 917,697,569.37 Satisfied demand 4,609,799
Profit scenario-[3] 926,435,660.28 Unsatisfied demand 319,848
Model statistics
Scenarios 3 Inventory on plant-[1] 2,527,276
Variables 1.062.079 Inventory on plant-[2] 2,436,179
Integers 6.936 Inventory on DCs 1,695,308
Binaries 1.632 Inventory on Ports 636,521
Constraints 1.085.067 Ore procurement-[S1] 4,320,000
Time CPU(s) 10.000,00 Ore procurement-[S2] 2,080,000
Gap (%) 0,97 Coal procurement-[S3] 3,150,000
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The results of the 2SSP SC planning problem are presented in Table 6. For confidentiality reasons
and respect for the company, the original data have been preserved. The demand was generated
by a random procedure following the normal distribution with proportional data to validate the
functionality to which the model is proposed. The financial-operational report presents the result
of three random scenario planning. In these scenarios, the demand is lower than the nominal
capacity. Production is concentrated in plant 1 where fixed and variable costs are lower. Some
resources of plant 1 and plant 2 are used to maximum capacity, requiring expansion through
overtime. It is justified when the product mix is heterogeneous. Still, 6.5% of the total demand
is not satisfied. This occurs when products have high operating costs and do not share resources
with other products line routes. In such occasions, the most profitable decision may be to disable
a resource and lose sales.

For this scenario, the global demand is less than the plant nominal capacity, so the dominant
strategy is to use plant 1 at maximum capacity, due to lower fixed and variable costs. Inventories
are not fully used in the last month, due to safety stock constraints. On ports, the flow level is
higher, since these transshipment hubs concentrate all foreign market demand.

The computational performance of the BD method applied to the case study model is also eval-
uated. Since the S&OP process presumes the interactions of participants and, eventually, many
optimizations run to obtain a general agreement for the tactical SC plan, the experiments consid-
ered a limit of 3,600 seconds for both decomposed and monolithic models. Results are presented
in Table 7. The optimal solution of this 2SSP SC problem instances are difficult to obtain. The
monolithic model did not find a feasible initial solution in experiments with three or more sce-
narios. However, the BD algorithm found solutions under an acceptable gap for problems with
more than two million variables and constraints within one hour.

Table 7 – Performance of the 2SSP model for 1−6 scenarios.

S Constraints Variables Integer Binary Monolithica Decomposedb

1 382.487 374.343 2.448 576 0,76% 1,60%
2 733.762 718.211 4.692 1.104 0,91% 1,14%
3 1.085.067 1.062.079 6.936 1.632 *,**% 1,72%
4 1.436.372 1.405.947 9.180 2.160 *,**% 1,57%
5 1.787.677 1.749.815 11.424 2.688 *,**% 3,81%
6 2.138.982 2.093.683 13.668 3.216 *,**% 1,53%
a,bOptimality gap for 3,600 seconds ∗No initial solution.

Decision-makers often evaluate plans classified into pessimistic, most likely, and optimistic in
corporate environments. Therefore, we set three random scenarios to compare the stochastic to
the deterministic plan and to evaluate the case study’ metrics of EVPI and VSS by the 2SSP
SC model. The decomposed 2SSP model was run for 5,990.69 s until the solver reach optimal
solution. The result is available in Table 8.
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The EVPI is the expected value of perfect information, and consists in the difference between
the average of the optimal solutions of the deterministic problem with the perfect information
for each scenario and the solution of the stochastic programming model. The VSS is the value of
the stochastic solution, and represents the difference between the result of the stochastic model,
which adopts random parameters represented by a probability distribution, and the result of the
deterministic model when adopting average values. Therefore, EVPI and VSS represent, respec-
tively, the loss of profit in the presence of uncertainty and the likely gain on solving the stochastic
model. The EVPI of this 2SSP SC case study is $ 233,370,620.63. However, as the perfect infor-
mation of all the planning periods is not available, this is only a hypothetical reference value. On
the other hand, the VSS of the case study is $ 186,998,433.19 revealing the superior quality of
the stochastic model towards the deterministic model.

Table 8 – Case study EVPI and VSS analysis.

EVPI Analysis Value ($) VSS Analysis Value ($)
Profit scenario-[1] 1,169,131,282.44 Profit2 749,142,546.11
Profit scenario-[2] 1,170,201,701.33
Profit scenario-[3] 1,169,201,815.94
(A1) Expected profit 1,169,511,599.93 (A2) Expected profit 749,142,546.11

2SSP model
Profit scenario-[1] 964,289,708.25
Profit scenario-[2] 917,697,569.37
Profit scenario-[3] 926,435,660.28
(B) Expected profit 936,140,979.30

EVPI (A1-B): 233,370,620.63 VSS (B-A2): 186,998,433.19
1Deterministic instances with perfect information. 2Adopts average information.

Finally, we investigated the effect of using the 2SSP model for SC planning in an S&OP context,
where elements of SC may vary and impact the tactical plan. The experiment consists in changing
proportionately the random parameters of the cost of raw materials, the price of the finished
product and demand across -20%, -10%, 10% to 20% and comparing to the baseline scenario the
following performance indicators: expected profit, satisfied demand, unsatisfied demand and the
SC inventory level.

The results suggest that the price reduction of ore and coal increases proportionally the overall
SC profit. Nonetheless, the rise in raw materials price may cause stock disruption, reduce service
level by increasing unsatisfied demand, and affect the overall SC profit. The price variation of
the finished product, however, has a greater impact on overall profit. The Figure 2(b) illustrates
the devastating effect to the company’s results influenced by the products price reduction.
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(a) Effect of raw materials cost variation. (b) Effect of product price variation.

(c) Effect of demand variation.

Figure 2 – Operational and financial effect of the change in the raw materials costs and products prices.

This reduction can occur by sales discounts and by macroeconomic policy restrictions. On the
other hand, policies that add value to the finished product and result in price increase, impact
positively the overall SC profit. However, this increase in profit is also dependent on increasing
the overall SC inventory levels. This result suggests that the reduction of unsatisfied demand
is obtained by accumulation of finished products during periods of availability of production
capacity.

The Figure 2(c) presents a counter-intuitive result. In this simulation, a demand variation reduces
profit compared to the baseline scenario. This happens, for example, when the company adopts
a strategy of increasing its market-share, but it has no power to influence the demand, adopting
a reactive approach. In this case, the strategy can lead to an increase of heterogeneous demand
resulting in lost sales. On the other hand, if a company has the power to influence demand, its
strategy can lead to an increase of demand of products that could be allocated to resources with
idle capacity. Thus, we conclude that the optimal SC profit is not proportional to demand. In
these cases, the proactive attitude of the sales team contributes when it acts cohesively with the
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production, distribution and procurement team promoting the increase of demand of the ideal
production mix.

6 CONCLUSION

This study proposed a multi-cut BD algorithm to solve a 2SSP model for the tactical SC planning
admitting uncertainty and reflecting the rolling horizon planning practice in the context of S&OP
methodology. The algorithm and model were evaluated by numerical experiments and by a case
study of a Brazilian flat steel industry that adopts the S&OP for balancing supply and demand in
the medium term.

Numerical experiments showed that the multi-cut BD method becomes more attractive as the
problem increase in size. The proposed method solved large-scale instances taking nearly one-
tenth of the monolithic model solving time. The case study showed the 2SSP model’s adequacy to
the rolling horizon planning framework adopted on the S&OP methodology. Successfully imple-
mentation, however, comes with top management support, cross-functional integration, metrics
monitoring, appropriate information system, and training.

This study fills some literature gaps as the general model adequately tackles the S&OP peculiar
aspect of rolling horizon planning and the proposed multi-cut BD algorithm solve large-scale
2SSP MILP SC problems. In general, the findings suggest that the optimal SC profit is not pro-
portional to demand due to capacity constraints along with the SC. Such findings reinforce the
usefulness of the proposed model to support the S&OP process raising the synergy of the sales
team with the production, distribution, and procurement team.

Some limitations of the study are worth mentioning. Although numerical experiments consid-
ered up to 200 scenarios, the case study examined up to six situations due to RAM limitations.
Therefore, the case study should consider a set of at least 30 scenarios to obtain better statistical
significance to the expected value of the objective function. Further research may improve the
multi-cut decomposition method and formulation with acceleration techniques, and the stochas-
tic formulation admitting more elements of uncertainty. Additional avenues for developments in-
clude formulating capacity planning problem and multi-commodity network flow via nonlinear
global optimization (Ferreira et al., 2013), or robust optimization models (Babazadeh & Sab-
baghnia, 2018) for examining multiple planning scenarios and alternative risk profiles. These
procedures can increase the integration of executive leaders with the S&OP team for a strategic
S&OP process.
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