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ABSTRACT. Maritime shipping is vital to worldwide commerce. Due to the high flow in ports throughout
the world, the efficient allocation of vessels in berths has become a problem. A new mathematical model
and several algorithms are proposed in this paper to planning the allocation of the vessels in berths and the
allocation of resources to the service of each vessel. Those resources, in general, are machines to load or
unload vessels. The mathematical model was implemented on Cplex and can solve small scale instances,
due to its high complexity. To solve larger instances, a genetic algorithm-based metaheuristic, a first-in
first-out heuristic, and a machine allocation algorithm are also proposed in this paper. The model and the
algorithms produce very useful and interesting results. Comparing, the results produced by the GA are, on
average, 94% better than the results of the Cplex and 26% better than the results of FIFO.

Keywords: Berth allocation problem, allocation of port machines, optimization of port processes.

1 INTRODUCTION

More than 80% of world trade is carried out by maritime transportation, and the shipping of all
these goods is only possible by loading them at least one port of origin and unloading them at
least one port of destination. Due to the high volume of trade, it is common for a port to have a
queue of vessels to be serviced, causing delays for all waiting vessels, which can cause losses to
the port, to its clients, and even to the country.
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2 THE BERTH ALLOCATION PROBLEM WITH SEVERAL TYPES OF MACHINES

Good planning can reduce the occurrences and the length of the queues on the terminals of the
port. This planning should determine where and when each vessel will be serviced.

The duration of the service of the vessel depends on the number of resources allocated. Therefore
any planning should also inform the number of resources that will be allocated to the service of
each vessel. The resources, in general, are machines like quay cranes, unloaders, trucks, conveyor
belts, among others. More than one type of resource can be necessary, like quay cranes and trucks
or unloaders and conveyor belts, depending on the operations of the port.

In this paper we propose a new mathematical model to the berth allocation problem, considering
berths with a predetermined length. The mathematical model has the objective to minimize the
waiting time and the service time of the vessels. The waiting time is the difference between the
arrival time and the allocation time of the vessel to begins its service, and the service time is the
duration of the service. The premise used on the problem is that the service is made by a chain
of machines, and the service time is determined by the level with the slowest rate of that chain.

The mathematical model was implemented and solved by the CPLEX and several instances were
generated to validate the model and the algorithms. Despite the high complexity, the model was
able to generate results in several small-scale instances. The small scale instances generated
useful results and insights. A Genetic Algorithm and a fist-in first-out heuristic were proposed to
solve medium and large-scale instances. The GA and the FIFO uses a heuristic to determine the
resource allocation and the service time of each vessel.

Section 1 of this paper brings an introduction to the motivation and the main results of this work.
Section 2 brings a literature review, with a survey of important results related to this work. Section
3 brings the description of the problem studied in this work. Section 4 brings the mathematical
model proposed to the berth allocation model with several types of machines to servicing the
vessel and a comparison of the proposed model with other models in the literature. Section 6
brings the description of the algorithms used to find solutions to the problem of this work. Section
5 brings the algorithms used to solve the proposed mathematical model. Section 6 brings an
analysis of the results of several instances of the problem. Section 7 brings the conclusion.

2 LITERATURE REVIEW

Since the port terminal is getting busier caused by the intense worldwide trade growth, the ef-
ficiency of the port terminal is gaining importance and that makes the amount of works in this
area significantly grow. One important issue related to the efficiency of terminals is the berth
allocation problem, which consists in allocate the vessel that arrives at the port on berths along
the quay.

One of the earliest models for the berth allocation problem (BAP) can be found in Imai et al.
(1997) where the berths have fixed length and are considered discrete points along the quay.
Their model assumes a situation they named static, where the vessels to be served on the time
horizon are already in port, this model is referenced as static Discrete Berth Allocation Problem,
or static BAPD, by the authors. They called Discrete referring to the fixed-length berth that
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generates discrete berths. This model aims to minimize the vessels mooring time to give a better
solution than the first-in first-out (FIFO), also called first-in fist-served (FIFS), a strategy that is
used in most commercial ports.

In Imai et al. (2001) they extend the BAP in Imai et al. (1997) to the dynamic version where all
vessels that have an arrival time on the planning horizon are considered in the model, this model
is referenced as dynamic BAPD by the authors. The BAPD model assumes that all vessels can
be allocated in any berth, which is not usual in practice. They also develop a heuristic method
based on a subgradient method with the Lagrangian relaxation to find solutions for the dynamic
BAPD. Nishimura et al. (2001) and Xu et al. (2012) further extended the dynamic version of the
BAPD limiting the berth where each vessel can moor and Nishimura et al. (2001) also solve the
problem with a genetic algorithm (GA).

Cordeau et al. (2005) formulated the BAP as a Multi-Depot vehicle-Routing Problem with Time
Windows (MDVRPTW) and developed two versions of a heuristic beased on tabu search. The
heuristic has a version for the discrete and another one for the continuous BAP, the continuous
version of BAP will be described further in this literature review. The results obtained by the
heuristics were compared with the results obtained by the Cplex with the same instances in their
work.

There is another approach for the BAP that consist in partitioning the quay in several parts of
any length unit and every vessel have their length expressed in that same unit. This property
is called continuous location, and the BAP model that uses this type of quay is referred to as
Continuous Berth Allocation Problem (BAPC). In this type of model, the allocation of vessels
is planned based on how many units of quay they need for mooring. In this approach, the berths
lengths can vary with each service. If the model uses the two described kinds of berths, it is called
hybrid. That type of BAP model is inspired by the cutting-stock problem, where the vessels are
the commodities and the length of the quay (expressed in partitions) is the space available to
pack the commodities. Lim (1998) is the first to proposed a BAP model with this approach. The
model proposed by him considers that a vessel remains in the same position all service time, and
his model aims to minimize the maximum quay space used at any time.

In Li et al. (1998) a vessel can be relocated during its service. Park & Kim (2003) propose a
subgradient Lagrangian relaxation heuristic to solve the BAPC. The BAPC model proposed in
Imai et al. (2005) have different service time for each position of the quay. They also develop
a heuristic to solve the instances of the BAPC model proposed and, using a previous heuristic
to solve the same instances of BAPD, they argue that the solutions obtained from the BAPC
and BAPD models with the same instances have equivalent solutions. They also argue that real
instances of BAP always can be solved using models that have discrete berths.

The last group of problems related to the BAP is the tactical berth allocation problem (TBAP).
The first work to address this problem is Moorthy & Teo (2006) where their model aims to
represent the trade-off between the waiting time for vessels and the cost of moving containers
between berth and yard. They model this as a rectangle-packing problem on a cylinder and use
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4 THE BERTH ALLOCATION PROBLEM WITH SEVERAL TYPES OF MACHINES

a sequence pair based simulated annealing algorithm to solve the problem. The two objectives
of their model are maximizing the service level (defined as the number of vessels served in two
hours) and minimize the costs related to the movement of containers between berth and yard.

Giallombardo et al. (2010) proposed another TBAP model, which integrates the BAP with the
quay crane schedule (QC). In such models, the variables and parameters associated with the
vessel and berth are very similar to the BAPD except for a new index associated with the dis-
cretization of the time horizon in several time partitions, the model also has variables and pa-
rameters related to the QC allocation and schedule. The QC schedule assumes that relocation
can occur every work shift change, so the time partition on this model is the length of the work
shift time. Additionally to the cost associated with QCs, they consider the yard cost that de-
pends on the berthing location in the objective function. This model is one of the first to consider
the integration between the BAP and the port machine schedule, but the time partition usually
causes a large increase in the number of variables and consequently demands more memory and
processing time to solve instances of this model.

Vacca et al. (2013) developed an exact-solution algorithm based on branch and price technique
for the TBAP of Giallombardo et al. (2010). Iris et al. (2017) focuses on the integrated berth al-
location and quay crane assignment problem in container terminals based on a continuous berth,
discretized in small equal-sized sections, they consider the decrease in the marginal productivity
of quay cranes and the increase in handling time due to deviation from the desired position an
Adaptive Large Neighborhood Search heuristic has proposed too. The parameters and variables,
use a discretized time horizon.

Pereira et al. (2018) compare the simulated annealing (SA) and genetic algorithm (GA) meta-
heuristics applied to the berth allocation problem (BAP) of a port container terminal. They also
compare the OX, CX, PMX, and HX crossovers operators that can be used in the GA.

Correcher et al. (2019) proposed a new mixed integer linear model for the Berth Allocation
Problem and the Quay Crane Assignment Problem, for the continuous BACAP version with
time-invariant crane assignment, in this new model the vessels can be moored at any position on
the quay, not requiring any quay discretization, but the time horizon is discretized.

For more bibliographical information related to BAP, Bierwirth & Meisel (2010) and Bierwirth
& Meisel (2015) contain a large and detailed review. Imai (2015) also contains a good literature
review.

The mathematical model proposed here is inspired by models described in Imai et al. (2001)
and Cordeau et al. (2005) and has been developed to plan the allocation of the full chain of
machines relevant to a vessel’s servicing. To achieve this, the mathematical model does not make
use of time intervals, just like hour-by-hour (Park & Kim (2003) and Meisel & Bierwirth (2009))
or turn-by-turn (Giallombardo et al. (2010) and Vacca et al. (2013)), but considering that the
operation of machines on the vessel begins with the mooring of that vessel and ends with its
departure. In this way, variables defined in time intervals are not needed; only allocation variables
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are needed for each vessel. Additionally, the model allocates machine-by-machine, allowing for
the fact that machines of the same type may work at different rates.

Comparing our mathematical model with the mathematical model proposed in Imai et al. (2008),
which aims to model a similar problem, some major differences are worth mentioning. Imai
et al. (2008) works with quay crane machines, while the proposed model works with any type of
machine. The number of quay cranes that should serve each vessel is fixed in Imai et al. (2008),
while in our model the number of machines is variable, limited by a minimum and a maximum
value for each machine type. The service time of each vessel needs to be provided as a parameter
to their model meanwhile in the proposed model the service time is a variable that depends on
how many machines are allocated to serve each vessel. Also, the mathematical model of Imai
et al. (2008) is not optimized or implemented in any mixed-integer programming software. It
is solved by a metaheuristic based on the genetic algorithm while our mathematical model is
implemented in the IBM CPLEX and tested for several small instances and a specific heuristic
and a genetic algorithm metaheuristic are provided to solve medium and large-scale instances.

Also, we cannot find a mathematical model for the BAP and QC allocation with continuous-
time variables. All mathematical models found work discretizing the time horizon to define their
parameters and variables.

3 PROBLEM DESCRIPTION

The problem consists of deciding the order, where, and the number of resources allocated to the
service of each vessel to minimize the total waiting and handling time. If there are idle berths, the
vessels can be allocated without waiting time. If every berth is handling vessels when a vessel
arrives, that vessel needs to wait in a queue. The time horizon is the length of time considered
on the problem. When the handle of a vessel is initiated, it needs to be performed until the end.
That means every vessel is handled one time by one berth.

Each vessel has a maximum departure time and the servicing of each vessel needs to be com-
pleted before the departure time. The time between the arrival of a vessel and its maximum
departure time is called the time window. The objective of the problem is to determine when and
where each vessel is allocated to minimize the total waiting time plus the service time.

When a vessel is allocated to a berth, it needs to be handled by port machines such as quay cranes,
drain machines, ship loaders, ship unloaders, trucks, conveyor belts, container handlers, tractors,
among others. In many cases, more than one type of machine is needed to handle a vessel, for
instance, a quay that load vessels with containers need quay cranes and trucks to load the vessels
because the truck brings the container to the quay crane and the quay crane load the container
on the vessel. Another example is a quay that unloads solid bulk, a vessel needs ship unloaders
and conveyor belts to be unloaded. The ship unloader removes the solid bulk of the cargo hold of
the vessel and puts it on the conveyor belt. We can also have a container handler to withdraw the
containers of the trucks or tractors to stack the solid bulk in the cargo hold of the vessel.
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6 THE BERTH ALLOCATION PROBLEM WITH SEVERAL TYPES OF MACHINES

We have a chain of machines to do the service of the vessel. Each level of the chain has several
machines of the same type. The machines do not necessarily need to be in the berth area, but they
need to be handling cargo of the same vessel, like trucks to move containers from the allocation
berth of the vessel to the yard area. Each type of machine or each level of the machine chain will
have some rate of operation based on the number of machines and the individual rate of that type
of machine.

Also, if a level of the machine chain has a total rate lesser than the total rate of the remaining
levels, that level will limit the rate of the entire operation. For instance, if we have two trucks and
just one quay crane, where each truck can bring thirty containers in one hour and the quay crane
can handle forty containers in one hour, therefore the rate of the entire operation can not be more
than forty containers per hour. That is, we have the total operation rate given by the minimum
operation rate of the chain of machines.

Each vessel has a maximum and a minimal number of machines of each type that can handle the
vessel at the same time. The vessel can only moor when enough number of machines of each
type is available to handle it. Each machine allocated to handle a vessel begins to operate when
the vessels moor on the berth.

Some types of machines have restrictions of overlapping, as the quay cranes that move on the
same conveyor belt. Therefore the order of some machines can not change. Giallombardo et al.
(2010) approach a similar problem and use a discrete-time horizon to manage the allocation of
quay cranes. In general, they use a discrete-time horizon in small units of some length of time
and define the allocation variable of the quay cranes. When the quay crane is allocated to a vessel
on some segment of time, the respective variable assumes the value one. We manage to model
this problem with a continuous-time horizon as it is shown in Section 4.

4 MATHEMATICAL MODEL FOR A MULTI-MACHINE TERMINAL

The mathematical model for terminals that works with multiple types of machinery, and allocates
vessels in berths and machines in vessels. The mathematical model was developed with a generics
machine, type α ∈P and can be used for any type of machine including quay cranes, trucks, drain
machines, pipelines, container handlers, among others. Some types of machines could generate
specific constraints.

Sets

• B: Set of berths. Index k.

• N: Set of vessels. Index i, i′.

• O: Set of order. Index j.

• P: Set of machine types. Index α .

• Mα : Set of α type machines, where α ∈ P. Index c.
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Variables

• xi, j,k: Equals 1 if the vessel i is the j-th vessel in berth k, 0 otherwise.

• Ti: Allocation time of vessel i. Can also be described as the mooring time of vessel i.

• ti: Duration of servicing of vessel i.

• yα
i, j,k,c: Equals 1 if the vessel i is the j-th vessel being serviced by machine c type α in berth

k, otherwise 0.

• Rα
i,c: Allocation time of the machine c type α in vessel i.

• wα
i,c: Operation time of the machine c type α on vessel i.

Parameters

• β and γ: Weight of Ti and ti in the objective function, respectively.

• ai and bi: Arrival time and the maximum departure time of each vessel in the port,
respectively.

• uB: Last berth of the set B.

• uα : Last machine of the Mα set of machine type α .

• mα
i and nα

i : Minimum and Maximum numbers of type α machines needed to serve vessel
i, respectively.

• Qi: Load of vessel i.

• rα
c : Efficiency rate of machine c type α .

• H: Very large number, used in the modeling technique.

Mathematical Model

min ∑
i∈N

β (Ti−ai)+ γ ti (1a)

s.t. wα
i,c ≥ ti−H

(
1−∑

j∈O
∑
k∈B

yα
i, j,k,c

)
∀i ∈ N,∀c ∈Mα ,α ∈ P (1b)

wα
i,c ≤ H

(
∑
j∈O

∑
k∈B

yα
i, j,k,c

)
∀i ∈ N,∀c ∈Mα ,α ∈ P (1c)

∑
c∈Mα

wα
i,crα

c ≥ Qi ∀i ∈ N,α ∈ P (1d)

wα
i,c ≤ ti ∀i ∈ N,∀c ∈Mα ,α ∈ P (1e)
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Ti ≥ ai ∀i ∈ N (1f)

Ti + ti ≤ bi ∀i ∈ N (1g)

∑
i∈N

xi, j,k ≤ 1 ∀ j ∈ O,∀k ∈ B (1h)

∑
j∈O

∑
k∈B

xi, j,k = 1 ∀i ∈ N (1i)

∑
i∈N

xi, j,k ≤ ∑
i∈N

xi, j−1,k ∀ j ∈ O\{1},∀k ∈ B (1j)

Ti +H(2− xi, j,k− xi′, j−1,k)≥ Ti′ + ti′ (1k)

∀i ∈ N,∀i′ ∈ N,∀ j ∈ O\{1},∀k ∈ B

∑
j∈O

∑
k∈B

∑
c∈Mα

yα
i, j,k,c ≥ mα

i ∀i ∈ N,∀α ∈ P (1l)

∑
j∈O

∑
k∈B

∑
c∈Mα

yα
i, j,k,c ≤ nα

i ∀i ∈ N,∀α ∈ P (1m)

∑
i∈N

∑
k∈B

yα
i, j,k,c ≤ 1 ∀ j ∈ O,c ∈Mα ,∀α ∈ P (1n)

∑
j∈O

yα
i, j,k,c ≤ ∑

j∈O
xi, j,k ∀i ∈ N,k ∈ B,∀c ∈Mα ,∀α ∈ P (1o)

Rα
i,c +H

(
2−∑

k∈B
yα

i, j,k,c−∑
k∈B

yα

i′, j−1,k,c

)
≥ Ti′ + ti′ (1p)

∀i ∈ N,∀i′ ∈ N,∀ j ∈ O\{1},∀c ∈Mα ,∀α ∈ P

Rα
i,c ≤ Ti +H

(
1−∑

j∈O
∑
k∈B

yα
i, j,k,c

)
∀i ∈ N,∀c ∈Mα ,∀α ∈ P (1q)

Rα
i,c ≥ Ti−H

(
1−∑

j∈O
∑
k∈B

yα
i, j,k,c

)
∀i ∈ N,∀c ∈Mα ,∀α ∈ P (1r)

∑
j∈O

yα
i, j,1,c ≥ ∑

j∈O
yα

i, j,1,c+1 ∀i ∈ N,c ∈Mα \{uα},∀α ∈V (1s)

∑
j∈O

yα
i, j,uB,c+1 ≤ ∑

j∈O
yα

i, j,uB,c ∀i ∈ N,c ∈Mα \{uα},∀α ∈V (1t)

xi, j,k ∈ {0,1} ∀i ∈ N,∀ j ∈ O,∀k ∈ B (1u)

Ti ≥ 0 ∀i ∈ N (1v)

ti ≥ 0 ∀i ∈ N (1w)

wα
i,c ≥ 0 ∀i ∈ N,∀c ∈Mα ,∀α ∈ P (1x)

yα
i, j,k,c ∈ {0,1} ∀i ∈ N,∀ j ∈ O,∀k ∈ B,∀c ∈Mα ,∀α ∈ P (1y)

Rα
i,c ≥ 0 ∀i ∈ N,∀c ∈Mα ,∀α ∈ P. (1z)

Where (1a) is the objective function that is the minimization of the waiting time plus the service
time of all vessels. The parameters β and γ was added due to the different importance of waiting
time and the service time may have. For example, if the service is given much importance, the
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solution tends to be allocating the maximum number of machines in few berths to rush the service
of the vessels, while a high importance of the waiting time tends to occupy more berths at the
same time. Constraints (1b), (1c) and (1d) represent the calculation of the servicing time for each
type of machine. If the machine c is allocated to the vessel i then ∑ j∈O ∑k∈B yα

i, j,k,c = 1 and the
Constraints (1b) and (1c) became wα

i,c ≥ ti and wα
i,c ≤ H respectively, which makes the operation

time of the machine c equals the service time of the vessel. If the machine c is not allocated to
the vessel i then ∑ j∈O ∑k∈B yα

i, j,k,c = 0 and the Constraints (1b) and (1c) become wα
i,c ≥−H and

wα
i,c ≤ 0 respectively, which does not interfere on the value of the service time of the machine c.

Since the minimum number of machines of any type should be at least one, wα
i,c > 0 for at least

one c ∈Mα , for all α ∈ P.

The Constraints (1d) calculates the operation time generated by the machines of the same type.
Constraints (1e) represent the calculation of the service time for each vessel. The Constraints
(1e) combined with (1b), (1c) and (1d) makes the service time of the vessel equals to the slowest
time generate by the allocated machines of a same type.

Constraints (1f) ensures that the docking time of each vessel is greater than its arrival hour. Con-
straints (1g) ensures that the vessel has completed its service before reaches its maximum depar-
ture time. Constraints (1h) ensures at most one vessel in each order position for each berth. Con-
straints (1i) ensures that each vessel is serviced once and in one berth. Constraints (1j) ensures
the sequence of the order for each berth.

Constraints (1k) compute the mooring time of each vessel. If the vessel i is allocated immedi-
ately after vessel i′ in berth k, then the Constraints (1k) is given by Ti ≥ Tp + tp. Otherwise, the
Constraints (1k) is given by Ti +H ≥ Tp + tp and the constraint is redundant. Constraints (1l)
and (1m) ensures the minimum and maximum number of machines for each vessel. Constraints
(1n) ensures a single order in the sequence of each machine. Constraints (1o) ensures that each
machine serves a vessel at most once in one berth.

Constraints (1p), (1q) and (1r) compute the time spent by each machine on each vessel. If the
machine c are allocated to the vessel j cames imediatly after vessel p then ∑k∈B yα

i, j,k,c = 1 and
∑k∈B yα

p, j−1,k,c = 1 and the Constraints (1p) is given by Rα
i,c ≥ Tp + tp. Otherwise, the Constraints

(1p) is given by Rα
i,c +H ≥ Tp + tp which is redundant. If the machine c is allocated to the vessel

i then the Constraints (1q) and (1r) are given by Rα
i,c ≤ Ti and Rα

i,c ≥ Ti, respectively, which makes
Rα

i,c = Ti. Otherwise the Constraints (1q) and (1r) are given by Rα
i,c ≤ Ti +H and Rα

i,c ≥ Ti−H,
respectively, which are redundant. Constraints (1s) and (1t) ensures no overlap of the machines,
that constraint is not necessarily applied to every machine type.

Constraints (1u), (1v), (1w), (1x), (1y) and (1z) ensures the allocation variables to be binary and
time variables to be non-negative reals.

The constraints (1s) and (1t) restrict this model to three or fewer berths sharing machines; with
four or more berths, the constraint to ensure no overlap will be much more complicated to elab-
orate. However, this constraint can easily be contoured when using heuristics, metaheuristics, or
even grouping three adjacent berths at a time.
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4.1 Comparison with Some Existing Mathematical Models

As mentioned before, the mathematical model proposed in Imai et al. (2008) and the proposed
model has some major differences that make the proposed model efficient and innovative.

The proposed model of Imai et al. (2008) aims to optimize the vessel allocation and the quay
crane allocation scheduling. To do that they add constraints of the CAP to the BAP model of Imai
et al. (2001). They named that model as B&CAP and the objective function is the minimization of
the total service (or handling) time plus the waiting time of vessels. Each vessel has a parameter
called Fi defined as the number of cranes needed by vessel i that means the service of each vessel
needs a predetermined number of cranes. Our proposed model uses a variable yα

i, j,k,c where the

∑
j∈O

∑
k∈B

∑
c∈Mα

yα
i, j,k,c represents the number of machine type α used to the service of the vessel i.

That means the number of each machine type, including quay cranes, will be determined by the
model and should be between a minimum, given by mα

i , and a maximum, given by nα
i , for each

vessel and each machine type.

As the number of quay cranes of Imai et al. (2008) model for each vessel is invariant, they also
have a parameter for the service duration of each vessel, given by CI,k defined as service (or
handling) time of vessel i at berth k. Although seemingly the service time no longer depends on
the allocation berth of the vessel, the authors do not specify any kind of change or the reason
to maintain the berth index on this parameter. As the number of machines is a variable in our
proposed model, the service time is also a variable defined as ti the service time of vessel i that
depends on how many machines of each type are allocated to the serve the vessel.

The quay crane schedule in Imai et al. (2008) is made by transfers between adjacent berths
controlled by variable mkk′ ii′ define as the number of cranes transferred from berth i

′
after serving

the i
′−th vessel to berth k (the next to berth k

′
) after serving the i-th vessel. In our proposed model

the machine schedule is controlled by yα
i, j,k,c, which is set to 1 if the vessel i is the j-th vessel being

served by machine c type α in berth k and 0 otherwise.

Finally, the mathematical model of Imai et al. (2008) is not optimized or implemented in any
mixed-integer programming software, it is solved by a metaheuristic based on the genetic al-
gorithm. Our mathematical model is solved using the IBM CPLEX and tested for several
small-scale instances. Also, a specific heuristic and a genetic algorithm-based metaheuristic are
provided to solve medium and large-scale instances.

Another model that aims to optimize the vessel allocation and the quay crane allocation, schedul-
ing is proposed in Giallombardo et al. (2010) where they propose a mixed-integer quadratic pro-
gramming formulation for the berth allocation problem with quay crane allocation which they
called tactical berth allocation problem. The proposed mathematical model is a mixed-integer
linear programming formulation.

In their model, the quay crane machine is allowed and it does not allow any other machine type.
The handling of the BAP variable and parameters are similar to the BAP of Imai et al. (2001),
also similar to our proposed model. The quay crane schedule is made by a time step allocation
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variable defined as λ
p
i which is 1 if vessel i is served by the profile p, and 0 otherwise. Every

vessel has a set of feasible quay crane profile. The time step used is the working turn shifts, which
means the quay cranes can only reallocate at the end of a work shift (and before the next work
shift), regardless of the allocation of the vessels.

Our proposed model considers that a machine works in the vessel until its service ends. With
that assumption, we do not need the time step index on the time variables and parameters. The
time-related variables are continuous and the machines are treated individually with the variable
yα

i, j,k,c. The individual treatment of each machine brings some advantages such as a distinct work
rate of each quay crane (or any machine).

5 ALGORITHMS TO SOLVE THE BERTH AND MACHINES ALLOCATION
PROBLEM

To solve the mathematical model (1) we develop a First-In-First-Out heuristic and a genetic
algorithm, both described in this section.

5.1 Genetic Algorithm

The genetic algorithm described in Algorithm (1) follows the steps and structure of Glover &
Kochenberger (2003).

Algorithm 1 Genetic Algorithm to Allocate Vessels and Machines in Berths

1: Regulates the number of berths;
2: Definition of the initial population;
3: for i = 1,2,...,MaxIt do
4: Generation of children based on OX permutation;
5: Generation of children based on PMX permutation;
6: Generation of Machine Allocation for each child;
7: Calculation of the mooring and service time;
8: Mutation;
9: Selection of individuals that will compose the next population;

10: Selection of the best individual;
11: end for

The algorithm (1) first verifies if the numbers of berths are consistent with the number of ma-
chines if the number of machines of a determined type is less than the number of berths, we
need to reduce the number of berths to the same amount of the machine type in question. After
that validation, the algorithm defines the initial population, which is generated by a heuristic that
aims to achieve good individuals, and the rest is generated randomly. A detailed description of
our GA elements is given in this section.
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Solution Representation

The representation of a solution is an ordered vector with the numbers 1 to N representing the
vessels and |B|−1 positions with zero representing the berth, where |N| is the number of vessels
and |B| the number of berths. A position with zero on the vector indicates a change of berth. The
Vector 2 shows an example.

[ 5 3 6 9︸ ︷︷ ︸
Berth 1

0 2 1 7︸ ︷︷ ︸
Berth 2

0 4 8 10︸ ︷︷ ︸
Berth 3

] (2)

On the Vector 2 we have 3 berths and 10 vessels. The Berth 1 services the vessels 5, 3, 6, and 9
in that order. The Berth 2 services the vessels 2, 1, and 7 in that order, and the Berth 3 services
the vessels 4, 8, and 10 in that order. Each solution has a machine allocation, a fitness function,
a mooring time, and a service time associated. The tests use a population size of 25 since each
solution requires a considerable amount of memory to be stored.

Machine Allocation, Mooring Time and Sevice Time

A machine allocation of a solution is a matrix A : |P|× |N|, where Ai, j is the number of machines
type i allocated to serve the vessel j. The Matrix 3 shows an example of machine allocation.

A =

[
1 3 2 1 1 4 2 1 2 3
2 5 3 1 2 6 4 2 4 3

]
. (3)

Each column j of the Matrix 3 is the machine allocation of the vessel j, therefore, vessel 2 is
served by 3 machines of type 1 and 5 machines of type 2. To generate the machine allocation for
each vessel allocation we use the Heuristic given by the Algorithm 2.

The estimated service time of the vessels is calculated by equally divided the machines between
the berths, if the number is not an integer, the number is regulated to an integer. With this machine
allocation, we calculate the service time of each vessel, considering the berth allocated to its
service. To allocate machines on Step 20 we use a mathematical model. Given a vessel schedule,
first, we take a subset V ∈ N of vessels that are serviced at the same time in different berths. We
define the problem of finding the machine allocation and the service time of the vessels in V as a
mathematical model described in Model (4).

Pesquisa Operacional, Vol. 41, 2021: e239994
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Algorithm 2 Algorithm to Allocate Machines in a Vessel Schedule

1: Sb is the vessel schedule of Berth b ∈ B;
2: N is the set of Vessels;
3: Ti; ti;mi,α ;z are the morring time, service time, machine number, objective function value,

respectively. Where i ∈V and α ∈ P.
4: T ∗i ; t∗i ;m∗i,α ;z∗ are the best morring time, service time, machine number, objective function

value, respectively. Where i ∈V and α ∈ P.
5: BTb is the opening time of berth b ∈ B;
6: pb← 1 for b ∈ B, is the position of the schedule of berth b;
7: T ←minb∈B(apb + tpb), is the initial time reference;
8: mBb,α is the number of machines type α in the berth b, where b ∈ B and α ∈ P;
9: n← 0;

10: Initialize the values of T ∗i ;m∗i,α ;z∗;mBb,α as zero;
11: ti← estimate service time of the vessel i ∈ N;
12: while n < |N| do
13: for b ∈ B do
14: if pb > |Sb| then
15: Remove the berth b of set B;
16: end if
17: end for
18: I←{b : BTb < T,b ∈ B} ;
19: S←{Sb(pb) : b ∈ I};
20: Find T ∗i ; t∗i ;m∗i,α ;z∗ for i ∈ S and α ∈ P solving the Model (4);
21: Ordered I and S according to the value of BT in descendent order;
22: for i ∈ I do
23: T ← BTi + tS(i);
24: nS(i),α ← mBi,α ;
25: Find Tj; t j;m j,α ;z for j ∈ S and α ∈ P solving the Model (4) with the new machine

constraint ;
26: if z < z∗ then
27: z∗← z;
28: BTi← TS(i)+ tS(i); mBi,α ← mS(i),α T ∗j ← Tj; t∗j ← t j; where j ∈ S and α ∈ P.
29: end if
30: Remove S(i) from S;
31: end for
32: T ←maxb∈B{T ∗Sb(pb)

+ t∗Sb(pb)
};

33: BTb← T ∗Sb(pb)
+ t∗Sb(pb)

for all b ∈ B;
34: mBb← m∗Sb(pb),α

for all b ∈ B,α ∈ P;
35: pb← pb +1 for all b ∈ I;
36: n← n+ |I|;
37: end while
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z = min ∑
i∈V

∑
i∈N

βTi + γ ti (4a)

s.a. ti ≥ ∑
α∈M

Qi

rα mi,α
∀i ∈V (4b)

Ti ≥ BT ∀i ∈V (4c)

Ti ≥ ai ∀i ∈V (4d)

∑
k∈B

mi,α ≤Mα ∀i ∈V,α ∈M (4e)

oi,α ≤ mi,α ≤ ni,α ∀i ∈V,α ∈M (4f)

mi,α ∈ {0,1,2,3...} ∀i ∈V,α ∈M. (4g)

where Ti is the mooring time of vessel i, ti is the service time of the vessel i, BT is the opening
time of the berths, ai is the arrival time of vessel i, Qi is the amount of cargo of the vessel i, rα

is the rate of a machine of type α , mi,α is the quantity of α type machines allocated to serve the
vessel i, Mα is the total amount of type α machines available, oi,α is the minimum number of
machines type α needed to serve the vessel i and ni,α is the maximum number of machines type
α that can serve the vessel i.

To show how the Algorithm 2 works, consider Figure 1.

B1

B2

...

Bn

T

BTB2BTB1 BTBn

time

s1

s2

sn

Figure 1 – Example of Heuristic 2 - Iteration 1.
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The Figure 1 shows three berths, B1, B2 and Bn. Each rectangle represents a vessel and its length
represents the service time. The solid rectangles are vessels treated in previous iterations and the
dotted rectangles represent vessels treated in the actual iteration. Each berth became available in
the time BTBi , which is given by the end of the service of the vessels of the previous iterations.
The Step 18 of the Algorithm 2 results in I = {B1,B2,Bn}.

The optimization of Step 20 determines the values of T ∗i ; t∗i ;m∗i,α ;z∗. In this optimization all
berths are available at the time T = maxb∈BBTb, in this time position, every machine is available
to work in any berth, therefore, the optimization consider the standard machine constrains, which
are the limitation on machine number due to vessels and berths limitations. The set vessels treated
in this iteration are S = {s1,s2,sn}. On the Step 21 the set S is ordered by berth time BTb in the
descendant order, which is S = {s2,sn,s1}. The Step 22 begins with T = maxb∈BBTb, in our
example, T = BTB2 . In this iteration, the vessel in B2 has its position fixed and it is removed from
the set S, that is, the values of mooring time, service time and number of machines are given by
T ∗B2

, t∗B2
and m∗B2,α

, respectively. On the next step the value of T returns to the previous position,
which is T = BTBn . The Figure 2 shows the second iteration of the Loop 22.

B1

B2

...

Bn

T

TB2TB1 TBn

time

s1

s2

sn

Figure 2 – Example of Heuristic 2 - Iteration 2.

On the second iteration of the Loop 22, we have T =BTBn and S = {sn,s1}. Adding the constraint
limiting the machines of vessels s1 and sn to the sum of machines in B1 plus the machines in Bn

plus the idle machines, which is ms1,α +msn,α ≤ mBB1,α +mBBn,α +(|Mα |−∑b∈B mBb) for all
machine type α . With that constraint and the initial berth time set to BT = TBn , the model of
Step 20 is solved. If the objective function value z, is better than z∗, that is z < z∗ then z∗ ← z,
T ∗s1
← Ts1 , t∗s1

← ts1 , m∗s1,α
← ms1,α , T ∗sn ← Tsn , t∗sn ← tsn , m∗sn,α ← msn,α , for all α ∈ P. If z ≥ z∗
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or the problem is infeasible, nothing changes for T ∗s1
, t∗s1

,m∗s1,α
,T ∗sn , t

∗
sn ,m

∗
sn,α , for all α ∈ P. The

vessel sn is fixed with the values of T ∗sn , t
∗
sn and m∗sn,α , for all α ∈ P. In our example, the value of

z is greater than the value of z∗, therefore, the vessel sn is fixed with Tsn = BTB2 , which can be
seen in Figure 3.

In Iteration 3, T = BTB1 and S = {s1}. The Figure 3 shows the beginning of the iteration 3.

B1

B2

...

Bn

T

BTB2BTB1 BTBn

time

s1

s2

sn

Figure 3 – Example of Heuristic 2 - Iteration 3.

Adding the constraint limiting the machines of vessel s1 to the sum of machines in B1 plus the
idle machines, that is ms1,α ≤ mBB1,α +(|Mα | −∑b∈B mBb) for all machine type α . With that
constraint and the initial berth time set to BT = TB1 , the model of Step 20 is solved. In our
example, z < z∗, therefore, z∗← z, T ∗sn ← Tsn , t∗sn ← tsn , m∗sn,α ← msn,α . The value Ts1 is fixed as
Ts1 = BTB1 , s1 is remove from S and the Loop 22 ends. The Figure 4 shows the final allocation of
s1,s2 and sn.

After the allocation of the machines in all vessels of S, the values of BT , mB, p, and T are updated.
On the next iteration of the main loop, T will be used to select the new group of vessels. The
service time value can change as the number of machines changes. To simplify the Algorithm 2
some special cases tests were omitted, one example is in Step 18, if the vessels have sparse arrival
time and tend to have low service time, the Step 18 can find an empty set before the vessels queue
of all berths ends, in this case, the value T = minb∈B(apb + tpb) will generate a nonempty set.
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B1

B2

...

Bn

T

BTB2BTB1 BTBn

time

s1

s2

sn

Figure 4 – Example of Heuristic 2 - Final.

Fitness Function

The value of the fitness of a solution is given by Equation 5.

f iti =
1

∑i∈N β (Ti−ai)+ γ ti +1
(5)

Where f iti ∈ (0,1], β = 4 and γ = 1.

Permutation

To improve the efficiency, two permutation heuristics are used, the Partially-mapped Crossover
and the Order Crossover.

The permutation Partial-Mapped Crossover (PMX) can be described in three steps:

1. Randomly selects two points of the Father1 and two points of Father2.

2. Trade values between positions of Father1 making the interior of the segment of the
Father1 equals the interior of the segment of the Father2.

3. Exchange the segment of Father1 with a segment of Father2.

For example, consider the Solutions 6a and 6b. The segment is defined by positions 5 to 8.
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Father1 =
[ 1 2 3 4 5 6 7 8 9 10

2 1 5 4 |7 8 9 3| 6 10
]
. (6a)

Father2 =
[ 1 2 3 4 5 6 7 8 9 10

1 5 4 6 |10 2 8 7| 3 9
]
. (6b)

To make the segment of Father1 equal to the segment of Father2, we exchange the value of
position 7 with the value of position 1 and the value of position 8 with the value of position 10.
The Solutions 7b and 7a shows the result of the exchanges.

Father1 =
[ 1 2 3 4 5 6 7 8 9 10

9 1 5 4 |7 8 2 10| 6 3
]
. (7a)

Father2 =
[ 1 2 3 4 5 6 7 8 9 10

1 5 4 6 |10 2 8 7| 3 9
]
. (7b)

With equal values in the segment interior, we exchange the segments to generate new solutions.
The Solutions 7c and 7d shows the final solutions generated by PMX.

Son1 =
[ 1 2 3 4 5 6 7 8 9 10

9 1 5 4 |10 2 8 7| 6 3
]
. (7c)

Son2 =
[ 1 2 3 4 5 6 7 8 9 10

1 5 4 6 |7 8 2 10| 3 9
]
. (7d)

The permutation Order Crossover (OX) can be summarized in three steps:

1. Randomly selects two points to generate a segment in each Father.

2. Separate the segments of Father1 and Father2 to apply them on Son1 and Son2 respect.

3. Complete the Son1 with elements of Father2 which are not in Son1, in the order, they
appear in the Father2. Do the same with Son2.

For example, using the Solutions 6a and 6b and the segment defined by the position 5 to 8. We
separate the segments of Solutions 6a and 6b. The Solutions 8a and 8b shows the segments.

Son1 =
[ 1 2 3 4 5 6 7 8 9 10

|7 8 9 3|
]
. (8a)
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Son2 =
[ 1 2 3 4 5 6 7 8 9 10

|10 2 8 7|
]
. (8b)

The missing values of 8a will be filled by values of 6b in the order that they appear and the
missing values of 8b will be filled by values of 6a in the order that they appear. The solutions 8c
and 8d shows the final solutions of OX.

Son1 =
[ 1 2 3 4 5 6 7 8 9 10

1 5 4 6 |7 8 9 3| 10 2
]
. (8c)

Son2 =
[ 1 2 3 4 5 6 7 8 9 10

9 1 5 4 |10 2 8 7| 6 3
]
. (8d)

Mutation

The mutation is the swap between two positions of a solution.

Selection

We use two types of selection, a portion of the solutions are selected by Tournament with a size
of two, and the remaining by Elitism.

5.2 FIFO strategy

We compare the results of our model with the first-in-first-out strategy. The FIFO strategy con-
sists of equally divided the machines between the berths, if the number is not an integer, the
number is regulated to an integer by round up on the firsts berths until the division of the remain-
ing machines on the remaining berths is an integer. With this machine allocation, we can create
a matrix |B|× |N| with the service time of each vessel on each berth.

The vessels are ordered according to the arrival time and are allocated on the first available berth.
Therefore the FIFO algorithm first ordered the vessel vector by arrival time, then go through this
vector allocating the vessel in the first available berth, updating the berth time and the vessel
parameters.s

6 NUMERICAL TESTS

To validate the proposed mathematical model, we implemented it in the IBM OPLT M software,
which has a Cplex library capable of solving linear integer problems. The instances tested here
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are small, medium, and large-scale. The Cplex was capable of solving only the small-scale in-
stances, in the large and medium-scale instances, the Cplex does not even find a feasible solution.
In those cases, the GA metaheuristic and a FIFO heuristic were used.

The data of each instance are randomly generated, a control is included to generate a nontrivial
instance. The small scale instances have the arrival time of each vessel between 1 and 10, the
medium and large scale instances have the arrival time of each vessel between 1 and 100. The
load is a number between 1 and 100,000. The maximum number of machines that can operate in
a berth is a number between 1 and 5. The rate of each machine type is a number between 3000
and 9000. Every instance is nontrivial, which means, the best solution is not as allocated every
machine in a single berth and service the vessels as they arrive. We use β = 4 and γ = 1.

All test results were carefully analyzed and no inconsistencies were found. The data, the result,
and codes of each test instance on the Cplex, GA, and FIFO algorithms can be found at Cereser
(2018). Each instance was optimized on the GA metaheuristic only once and the result was
collected.

The Table 1 brings the results of some of those instances. The name of each instance is given by
[number of berths] + B + [number of vessels] + N +[quantity of machine Type 1] + [quantity of
machine Type 2] + [quantity of machine Type 3].

In the Table 1 the column Instance is the name of the instance, Cplex is the result reached
by the Cplex algorithm, GAP is the percentage gap of the Cplex solution, Cplex Time is the
computational time of the Cplex algorithm, FIFO is the result achieved by the FIFO algorithm,
GA is the result of a single run of the Genetic Algorithm (2), GA Time is the computational
time of the Genetic Algorithm, GA / Cplex is the comparison between the GA and the Cplex
solutions, given by (GA solution−Cplex solution)

GA solution and GA / FIFO is the comparison between the GA

and the FIFO solutions given by (GA solution−FIFO solution)
GA solution . The lower values of GA / Cplex and

GA / FIFO are better to the GA.

The small-scale instances with three or fewer berths have a maximum optimization time of
900 seconds (or 15 minutes) in the Cplex, the GA, and the FIFO. In some instances, the post-
optimization processes make the computational time greater than 900 seconds. The FIFO time
was omitted since the algorithm took less than one second on small scale instances and up to two
seconds on the largest case of the table.

Most of the Cplex solutions appear to be very early feasible solutions, which are indicated by the
reach of the maximum optimization time, the high gap, and can be transformed into solutions
with better objective function with some swaps between vessel positions. In cases with more
than three berths, the Cplex was unable to find a feasible solution with more than one hour of
optimization time. The genetic algorithm was executed a single time per instance and found so-
lutions equal or better than the Cplex in all instances of Table (1). More than a hundred instances
were generated to test the Mathematical Model, the GA, and the FIFO algorithm, and only in a
few small scale instances, which are close to trivial, the Cplex was able to find a better solution
than the GA.
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Table 1 – Tests and results.

Instance Cplex GAP Cplex
Time

FIFO GA GA
Time

GA /
Cplex

GA /
FIFO

2B7N73 227,1 87% 900 231,8 204,4 338 -11% -13%
2B8N33 611,4 88% 900 599,8 426,6 426 -43% -41%
2B8N55 218,8 89% 900 161,8 99,2 335 -120% -63%
2B8N64 288,7 90% 906 168,0 168,0 295 -72% 0%

2B10N46 394,9 94% 904 147,8 138,1 484 -186% -7%
2B4N432 131,7 0% 76 138,7 131,7 215 0% -5%
2B6N628 221,0 0% 183 282,9 221,0 562 0% -28%
2B7N254 168,0 82% 900 230,1 158,9 290 -6% -45%
2B7N256 509,2 0% 678 657,5 509,2 371 0% -29%
2B7N346 133,0 74% 900 124,3 85,4 434 -56% -46%
2B8N237 73,0 0% 266 74,6 73,0 492 0% -2%
2B8N428 884,8 86% 901 742,5 592,5 565 -49% -25%
2B9N476 721,2 94% 901 319,3 223,6 707 -223% -43%
2B9N815 1319,3 96% 916 804,8 505,1 1118 -161% -59%

3B7N37 100,9 82% 911 81,0 67,2 438 -50% -21%
3B7N43 156,6 54% 905 182,6 136,4 448 -15% -34%
3B7N47 266,7 92% 903 112,3 93,7 92 -184% -20%
3B7N85 123,1 84% 901 76,2 73,7 277 -67% -3%
3B8N55 317,8 91% 902 151,7 108,0 520 -194% -39%
3B9N33 583,6 97% 902 163,7 163,7 307 -256% 0%
3B9N34 866,2 94% 902 373,9 372,6 421 -132% 0%

3B10N33 618,5 95% 909 223,1 193,6 498 -219% -15%
3B6N457 198,8 79% 911 171,8 137,4 273 -45% -25%
3B6N536 89,8 81% 904 61,3 46,8 281 -92% -31%
3B7N645 338,1 94% 905 125,1 125,1 350 -170% 0%
3B8N735 502,4 90% 917 288,6 288,4 296 -74% 0%
7B30N30 - - - 8864,1 5746,7 1838 - -54%

16B50N47 - - - 628,2 620,8 2295 - -1%
20B60N54 - - - 801,3 774,8 2727 - -3%

30B100N6745 - - - 654,4 293,6 1457 - -123%
30B100N75 - - - 6045,8 5624,7 2241 - -7%

30B200N6099 - - - 602,0 602,0 1586 - 0%
50B200N125105 - - - 24314,0 23058,0 6916 - -5%
60B300N150120 - - - 1057,9 631,5 2288 - -68%

125B600N300250 - - - 2080,8 1192,8 4533 - -74%

Pesquisa Operacional, Vol. 41, 2021: e239994



22 THE BERTH ALLOCATION PROBLEM WITH SEVERAL TYPES OF MACHINES

The GA and the FIFO aim to distribute the vessels between all berths, which tends to generate
good results. The solutions found by GA are at least equal to the FIFO solutions, since some
individuals of the initial population are generated by the FIFO algorithm but, in most instances,
the GA was able to found a better solution. The GA solutions are up to 250% better than the Cplex
solutions and up to 120% better than the FIFO solutions. The average gain of GA is around 94%
over Cplex and 26% over FIFO.

The instances with more than three berths are made based on the dimensions of real terminals.
In those instances, the average save of the GA is 37% when compared to the FIFO strategy.

The largest statistics of a port that we could found have approximately 125 berths, 600 vessels,
and 300 machines, which is the base of the largest instance of this paper. The GA was able to
find a solution that is 74% better than the FIFO solution in approximately one hour and fifteen
minutes.

Analysis of a Solution

To present a solution to the GA, we will analyze the results of 3B8N55. The Tables 2 and 3 brings
the input data of the instance.

Table 2 – 3B8N55 General and Machines Data.

Number of Vessels 8
Number of Berths 3

Large Number 300
Machine Type 2

Rate of Machine 1 4656,5
Number of Machines 1 5

Minimum Machine 1 per Vessel 1
Maximum Machine 1 per Vessel 3

Rate of Machine 2 7984,25
Number of Machines 2 5

Minimum Machine 2 per Vessel 1
Maximum Machine 2 per Vessel 4

In this instance, every vessel has the same limitation of minimum and maximum machines. But,
in some cases, that can change due to the length of the vessel, the length of the berth, lack
of space, among others. A deadline time of 100 in this instance is very large, which increases
the number of possible allocations. To estimate the service time of each vessel, as described in
Section 5, the number of machines is equally divided between the berths, in this case, is 1.6 of
each. To make the value more accurate, we can round up the value on the first berths until the
remaining number of machines are multiple of the remaining number of berths. This leads to the
machine numbers of 2, 2, and 1, respectively from berth 1 to 3.
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BRUNO LUÍS HÖNIGMANN CERESER et al. 23

Table 3 – 3B8N55 Vessel Data.

Vessel Arrival Time Dead Line Time Load
s1 9 100 15312
s2 7 100 20095
s3 7 100 91641
s4 2 100 8856
s5 8 100 21530
s6 8 100 97494
s7 3 100 72479
s8 6 100 97728

The rate generated by machine 1 on berths 1 and 2 are 9313, and the rate generated by machine
2 is 15968.5, from that, the estimated rate of service on berths 1 and 2 are 9313 units of load per
unit of time. In the same way, the estimated rate of service on berths 3 is 4656.5. Therefore, the
estimated service time of vessel s1 on berths 1 and 2 is 1.64, and in berth 3 is 3.29. Those values
are used to generate the group of vessels of an iteration, described in Section 5.

The Table (4) shows the GA solution found by Algorithm (3).

Table 4 – AG Solution of 3B8N55.

Berth 1

Vessel s4 s7 s5 s6

Time 2.0 3.0 8.2 12.8
Service 0.6 5.2 4.6 10.5

Machine 1 3 3 1 2
Machine 2 4 3 1 3

Berth 2

Vessel s2 s3

Time 7.0 9.2
Service 2.2 6.6

Machine 1 2 3
Machine 2 2 2

Berth 3

Vessel s1 s8

Time 9.2 15.8
Service 3.2 7.0

Machine 1 1 3
Machine 2 2 2

Figure 5 was generate with the data of the Table 4.
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Figure 5 – Representation of AG Solution of 3B8N55

The vessel allocation found by the GA has an objective function of 108.0 and a better occupation
rate of berths and machines. Four vessels are allocated on Berth 1, two on Berth 2 e two on
Berth 3.

• At the time 2, the vessel s4 arrives and it is immediately allocated in Berth 1 with the
maximum amount of machines, which generates a service time of 0.6.

• At the time 3, the vessel s7 arrives and it is immediately allocated in Berth 1 with the three
machines of each type which generates a service time of 5.2.

• At the time 6, the vessel s8 arrives, at this time the berths 2 and 3 are idle. The vessel s8 is
the first to go to the queue.

• At the time 7, the vessels s2 and s3 arrives, the berths 2 and 3 are idle and the vessel s2 is
immediately allocated in Berth 2 with two machines of each type. The vessel s3 is sent to
the queue, which is given by {s8,s3}.

• At the time 8, the vessels s5 and s6 arrives. Both of them are sent to the queue, which is
given by {s8,s3,s5,s6}.

• At the time 8.2, the Berth 1 ends the service of the vessel s7 and the vessel s5 is allocated
in Berth 1 with one machine of each type, generating a service time of 6.6. The queue is
given by {s8,s3,s6}.

• At the time 9, the vessels s1 arrives and is sent to the queue, which is given by
{s8,s3,s6,s1}.

• At the time 9.2, the Berth 2 ends the service of the vessel s2 and the vessel s3 is allocated
in Berth 2 with 2 machines of each type, and the vessel s1 is allocated in the Berth 3 with
one machine type 1 and two machines type 2. The queue is given by {s8,s6}.

• At the time 12.4, the Berth 3 ends the service of the vessel s1.

• At the time 12.8, the Berth 1 ends the service the vessel s5, and the vessel s6 is allocated
with 2 machines of type 1 and 3 machines of type 2, which generates a service time of
10.5. The queue is given by {s8}. At this time, every machine is occupied, which forces
berth 3 to be idle with a nonempty queue of vessels.

• At the time 15.8, the Berth 2 ends the service of the vessel s3, and the vessel s8 are allocated
on Berth 3, with three machines type 1 and two machines type 2. The queue is empty.
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• At the time 22.8, the service of vessel s8 ends.

• At the time 23.3, the service of vessel s6 ends and the process is complete.

If the vessel s8 was allocated in Berth 3 at 12.8, then it will be served with one and two machines,
respectively, which generates a service time of 20. The vessel s6 has the same allocation time,
but with one machine of each type, which generates a service time of 20.9. Despite the lower
allocation time of the vessel s8, this solution has an objective function of 119.8, which is worst
than the actual solution.

7 CONCLUSIONS

The model and the algorithms are designed to allocate vessels in berths and resources to service
vessels. Most of the models of the literature do not allocate resources to determine the service
time of each vessel and some models only allocate specific machines like quay cranes, normally
not integrated with the allocation of vessels in berths.

The mathematical model was successfully validated by the instances and is effective to allocate
vessels in berths and machines in vessels. Due to the complexity of the mathematical model, it
was necessary to develop algorithms to solve larger instances. The algorithms mainly consist of a
genetic algorithm, a first in first out heuristic, and a heuristic to allocate machines. The model and
the algorithms are very sophisticated and produce important results and insights for the problem.

In many instances, one berth with many machines is used to service vessels with low cargo, while
berths with fewer machines were servicing vessels with more cargo, which is very interesting
since seems to be more natural to allocate more machines in vessels with more cargo and fewer
machines in vessels with less cargo. Another important result is the existence of a commitment
between early allocation in berths or waits for more idle machines to the service, which could
generate some, generally small, waiting times between services. There has also a tendency to
allocate vessels with less cargo first and vessels with more cargo last, which is consistent since
those vessels have a longer service time, and allocating it first will delay the allocation of the
remaining vessels and, in general, will generate a worst objective function.

The Genetic Algorithm proposed here, was run only once per instance, and the solutions found
are at least equal to the FIFO solutions but, in most instances, the GA was able to found a better
solution. The GA solutions are up to 250% better than the Cplex solutions and up to 120% better
than the FIFO solutions. The average gain of GA is around 94% over Cplex and 26% over FIFO.
Multiple runs of the GA could lead to betters solutions.

The Genetic Algorithm allows solving larger-scale instances, with more than 125 berths, 600
vessels, and several machines. Instances of this size are close to the largest ports in the world.
The mathematical model with the genetic algorithm could be used for the strategic planning of
the service of the vessels on terminals. It can be used to assist decisions like the acquisitions of a
new machine, the build of new berths or to reduce the occurrence of late fees since the algorithm
can be used to estimate the allocation time and the duration of the service of the vessels. The
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gain of the largest cases presented here is around 20% and can reach 55% compared to the
FIFO strategy, which is used on some terminals. Future work is to implement the model and the
algorithms in real terminals to evaluate their practical value.
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