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ABSTRACT. This paper describes an exact algorithm to solve a nonlinear mixed-integer programming

model due to capacity expansion and flow assignment in multicommodity networks. The model combines

continuous multicommodity flow variables associated with nonlinear congestion costs and discrete decision

variables associated with the arc expansion costs. After establishing precise correspondences between a

mixed-integer model and a continuous but nonconvex model, an implicit enumeration approach is derived

based on the convexification of the continuous objective function. Numerical experiments on medium size

instances considering one level of expansion are presented. The results reported on the performance of the

proposed algorithm show that the approach is efficient, as commercial solvers were not able to tackle the

instances considered.

Keywords: capacity expansion, flow assignment, global optimization, implicit enumeration, multicom-

modity flow problems.

1 INTRODUCTION

We consider a model for the joint problem of capacity expansion and flow assignment in multi-
commodity flow networks which takes into account congestion effects. The resulting optimiza-
tion problem relies on the combination of two conflicting criteria: the expansion and the con-
gestion cost functions. Capacity expansion cost functions are discrete as only a finite number of
capacity sizes are available. On the other hand, congestion cost functions are nonlinear convex
increasing functions as they try to capture queueing effects on the network [3, 4, 18, 23]. For
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instance, Ishfaq & Sox [18], in the context of an intermodal hub network, deal with shipment
delays due to limited resources at logistics hubs for measuring service performance. The authors
conducted a study of strategies to integrate hub operation queuing model and the hub location-
allocation model on a 25-city road-rail intermodal logistics network. Our aim is to study the
general multicommodity flow problem under such assumptions, with no particular application
in mind.

Typically, the two decision levels of capacity expansion and flow assignment are decoupled to
treat the corresponding difficulties separately, and few works, at least those considering queue-
ing effects, have been done on the joint optimization problem. Gerla & Kleinrock [14] stated
the general Capacity and Flow Assignment problem (CFA), decomposed it into simpler subprob-
lems, and then suggested a heuristic procedure that alternates a capacity assignment phase with a
flow assignment phase. Similar approaches have been proposed in successive papers by Gavish
and co-authors [11, 12] and Gerla et al. [15]. Most of that literature concerns heuristic proce-
dures, but the paper by Mahey et al. [20] is an exception for this rule, showing that a generalized
Benders decomposition method can find exact solutions for the CFA problem.

The capacity expansion problem is a special case of CFA where initial capacities are already in-
stalled on each arc of the network. Given a traffic requirement matrix between origin-destination
pairs, the problem consists in jointly deciding which arc capacities, if any, should be expanded
and the flow assignment leading to a feasible routing that minimizes expansion and congestion
costs. Thus, the problem results in finding a trade-off between investment and routing costs.

Luna & Mahey [19] modeled the capacity expansion and flow assignment as a piecewise con-
vex multicommodity flow problem. Congestion is modeled by a convex increasing function for a
given capacity and, at given breakpoints, which represents the maximum tolerable congestion for
the users (thus strictly lower than the available capacity), expansion to a higher capacity is de-
cided, decreasing the marginal congestion cost in a discontinuous way. The combinatorial nature
of the problem, related to arc expansion decisions, is therefore embedded in a continuous objec-
tive function that encompasses congestion and investment costs. The resulting objective function
is continuous, but it is nonconvex and nonsmooth. Mahey and Souza [22] derived local optimal-
ity conditions for the model proposed in [19]. By exploiting complete optimality conditions for
local minima, Souza et al. [25] give the convergence analysis of the negative-cost cycle cancel-
ing method. Remark that these former works only consider the case of simple expansions from
one installed capacity to a new one. The case of the general expansion problem where several
capacity expansion values are available for each arc is analyzed by Ferreira & Luna [7], where a
method to find solutions with performance guarantee is introduced.

The contribution of this paper is to provide an algorithm to assure the global optimality of the
problem, also including computational experiments to show the efficiency of the method to cope
with the case of simple expansions. After showing the correspondences between the continuous
model of Luna & Mahey and a mixed-integer model, we analyze the numerical behavior of an
implicit enumeration algorithm. The discrete model is used to assign capacities to a subset of arcs
and hence to define what is called a partial solution. The continuous model is used to compute,
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given a partial solution, a lower bound on the value of the best solution that can be obtained
with the assigned capacities. The resulting procedure is tested on different types of networks and
shown to be quite efficient to solve the mixed-integer nonlinear model.

2 RELATIONS BETWEEN THE CONTINUOUS AND MIXED-INTEGER MODELS

This section presents the network expansion model. The basic component of the model is a
digraph G = (V, E) with n nodes and m arcs. Any kind of traffic between a given pair of nodes
is treated as a separate commodity k. Let T be a (n × n) traffic requirement matrix such that
ti j is the traffic between origin i and destination j . We will consider the problem of deciding
which arcs should be expanded from a given installed capacity c0 to a greater capacity cl while
minimizing the total congestion and expansion costs.

Given a commodity k, we consider the set of directed paths Pk joining the corresponding origin
and destination. Let xkp be the amount of flow of commodity k through the path p ∈ Pk and akp

its arc-path incidence vector defined by

ae
kp =

{
1 if arc e is used in path p of commodity k
0 otherwise

(1)

The vector x is composed by the component xe which denotes the total flow on arc e, and also
by the component xkp which denotes the flow of commodity k routed through path p. These two
components are related by

xe =
∑

k

∑

p∈Pk

ae
kpxkp.

The set of multicommodity flow vectors, denoted by M(T ) can be described by the arc-path
formulation, i.e., for each commodity k flowing between nodes i and j , the active paths must
satisfy ∑

p∈Pk

xkp = ti j .

That implicit formulation (as the paths are not known in advance) is generally preferred to the
node-arc formulation where xe =

∑
k xk

e and each xk is a flow vector on G satisfying flow
constraints for commodity k.

We assume now that for each arc e in the topology is assigned a positive capacity c0e that is
expandable to a larger capacity chosen among a given set of capacities c1e < . . . < cNe at given
fixed costs πle, l = 1, . . . , N . Let δle = cle − c0e, l = 1, . . . , N , be the increment of capacity
to the l-th capacity value. The capacity expansion model will minimize the total congestion cost
plus the expansion fixed costs. Let 8(ce, xe) be the arc congestion function for a given capacity
ce. It is assumed that 8 is expressed in terms of monetary values and that it is convex smooth
and increasing up to infinity on the interval [0, ce]. A common choice is the Kleinrock’s average
delay function valid for M/M/1 queues which is proportional to xe

ce−xe
, see [3, 14].
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A mixed integer model makes use of a binary variable yle, l = 1, . . . , N , e ∈ E , that assumes 1
if capacity of arc e is to be expanded from c0e to cle and 0 otherwise. We can now define a mixed
integer nonlinear model for the capacity expansion problem (DCE):

Minimize φ(x, y) =
∑

e∈E

[
8(c0e +

N∑

l=1
δle yle, xe) +

N∑

l=1
πle yle

]

subject to x ∈ M(T )

xe ≤ c0e +
N∑

l=1
δle yle, ∀e ∈ E

N∑

l=1
yle ≤ 1, ∀e ∈ E

yle ∈ {0, 1}, ∀e ∈ E, l = 1, . . . , N

(2)

We will now study the relationship between (DCE) and a continuous model which does not make
use of any boolean decision variables y (CCE):

Minimize f (x) =
∑

e∈E
fe(xe)

subject to x ∈ M(T )
(3)

where we assume π0e = 0, ∀e ∈ E , and fe(xe) = min{8(cle, xe) + πle, l = 0, . . . , N }.

Remarks.

1. Thanks to the feasibility assumption above and the fact that 8(cNe, xe) → +∞ whenever
xe ↑ cNe, we do not need any capacity constraint in the continuous model.

2. As shown on Figure 1, where the nonconvex resulting arc cost function of (CCE) is rep-
resented by a bold line, we denote by γ(l−1)e, l = 1, . . . , N the breakpoint at which ex-
pansion occurs from c(l−1)e to cle. The breakpoint can thus be interpreted as the capacity
where congestion is such that the network manager is willing to pay for a new expan-
sion. Thus, πle −π(l−1)e = 8(c(l−1)e, γ(l−1)e)−8(cle, γ(l−1)e) is the new expansion cost
converted in congestion cost units.

3. The arc cost function in (CCE) is continuous but nonconvex and nonsmooth at the break-
points γle. It is shown in [19] how one can easily compute a lower bound on the optimal
value of (CCE) by taking the convex envelope of each arc cost function.

Proposition 1. If (x, y) is feasible for (DCE), x is feasible for (CCE); If x is feasible for (CCE),
then there exists y such that (x, y) is feasible for (DCE); If one of both problems is infeasible, so
is the other one.

The proof is straightforward and it is omitted here for sake of simplicity, as the correspondence
between (DCE) and (CCE) works with feasibility the same way it works with optimality, as
developed below.
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Figure 1 – The integrated function of congestion and expansion costs and its convex envelope conv( fe(xe)).

The following lemma is a direct consequence of the cost structure of (DCE).

Lemma 1. Let (x∗, y∗) be an optimal solution of (DCE); then, we have the correspondences:

γ(l−1)e < x∗
e < γle =⇒ y∗

le = 1,

and yqe = 0, q = 1, . . . , N , q 6= l

Moreover, if there exists an arc e with x∗
e = γ(l−1)e, then either y∗

(l−1)e = 1 and y∗
le = 0 or

y∗
(l−1)e = 0 and y∗

le = 1, so the optimal solution is not unique.

The two cases where x∗
e is not a breakpoint are straightforward. If x∗

e = γ(l−1)e, we have:

8(c(l−1)e, γ(l−1)e) + π(l−1)e = 8(cle, γ(l−1)e) + πle

which shows that the value of the arc cost function does not change whenever y∗
(l−1)e = 1 and

y∗
le = 0 or, conversely, y∗

(l−1)e = 0 and y∗
le = 1. The correspondence between optimal solutions

of (DCE) and (CCE) follows immediately.

Proposition 2. i) If (x∗, y∗) is an optimal solution of (DCE), then x∗ is optimal for (CCE) and
the cost values are equal.
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ii) If x∗ is an optimal solution of (CCE), then (x∗, y∗) is optimal for (DCE) with:

y∗
le






= 1 if γ(l−1)e < x∗
e < γle

∈ {0, 1} if x∗
e = γ(l−1)e

∈ {0, 1} if x∗
e = γle

= 0 if x∗
e /∈ [γ(l−1)e, γle]

(4)

y∗
(l−1)e + y∗

le = 1, if x∗
e = γ(l−1)e (5)

where l = 1, . . . , N, and the cost values are equal.

Finally, we would like to point out that the tight relationship between the optimal solutions of
both models does not mean that they are equivalent. In general, the continuous model is not able
to take into account additional constraints on the topology which, unlike, can be generally done
by the y-variables. Nevertheless, we will mention a few common situations where it is possible
to convert such constraints from (DCE) to (CCE):

a. Many models of network design require the same capacity on arcs (i, j) and ( j, i) between
two adjacent nodes i and j in G. The orientation of arcs (i, j) and ( j, i) being mainly to
model the flow that pass from i to j and from j to i in a common physical link. As these
two flows actually share a common link, it is required in such models symmetry between
capacities of arcs (i, j) and ( j, i). This is modelled in (DCE) by the constraint yi j = y ji

for some arc e = (i, j). To obtain the same effect, we must add the following constraints
for each l in (CCE):

(xi j − γli j )(x ji − γl j i ) ≥ 0

b. Cutset constraints: Let A be a subset of nodes of V and CA the corresponding cutset. If
subset A contains somehow crucial nodes for the network, the arcs in the cutset, i.e., those
with one extremity in A and the other in V \ A, may be considered bottleneck arcs as they
are the only to carry flow between nodes in A and nodes in V \ A. Thus, it may be of
interest forcing the subset A to be connected to the other nodes by at least one expanded
arc. This is modelled in (DCE) by the constraint

∑
e∈CA

yle ≥ 1, which is equivalent in
(CCE) to:

max
e∈CA

xe

γle
≥ 1

Observe that both constraints derived in a. and b. define polyhedral nonconvex regions of Rm .
Such a situation could not be treated in the following approach, that requires convexity to assure
global optimality.

3 GLOBAL OPTIMIZATION STRATEGY

In this section, we follow the exposition provided by Geoffrion [13] to describe the applica-
tion of an implicit enumeration algorithm to solve the capacity expansion and flow assignment
problem. Geoffrion [13] presents, including his own developments, an unified approach of the
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works of Balas [1] and Glover [16] on the implicit enumeration scheme. See also Balas [2]. We
consider that each arc e is expandable from an installed capacity c0e to a capacity c1e, although
the procedure can be generalized to deal with more than one possibility of expansion.

The implicit enumeration algorithm combines information from both discrete and continuous
models. A partial solution S defines the capacities of a subset Ē of arcs. Here, the discrete model
is used to assign capacities to the arcs of Ē . According to the notational convention introduced
in [13], for each discrete variable associated to an arc in Ē , the symbol e (resp. −e) denotes
ye = 1 (resp. ye = 0). The discrete variables associated to arcs not in Ē are called free. As an
example, suppose a small network with five arcs and a partial solution St = {1, 3, −5}. In this
example, y1 = 1, y3 = 1, y5 = 0, and y2 and y4 are free. A completion of a partial solution S is
defined as a solution that is determined by S together with a binary specification of the values of
the free variables. It is said to be a feasible completion if the assignment of values to the binary
variables leads to a feasible solution. The four possible completions for St in the above example
are {1, 3, −5, 2, 4} where the free variables assume y2 = 1 and y4 = 1; {1, 3, −5, −2, 4} where
y2 = 0 and y4 = 1; {1, 3, −5, 2, −4} where y2 = 1 and y4 = 0; and {1, 3, −5, −2, −4} where
y2 = 0 and y4 = 0.

A key feature of implicit enumeration is the ability to generate information that can be used to ex-
clude all the completions of a partial solution S from further consideration. Here, the continuous
model is used either to provide a lower bound on the value of the best feasible completion of S,
i.e., a feasible completion that minimizes the objective function among all feasible completions
of S, or to show that S has no feasible completion. To do this, we solve a convex multicommodity
flow problem PS :

Minimize zS =
∑

e∈Ē

[8(c0e + δe ȳe, xe) + πe ȳe]

+
∑

e∈E\Ē

conv(min{8(c0e, xe),8(c1e, xe) + πe})

subject to x ∈ M(T )

xe ≤ c0e + δe ȳe, ∀e ∈ Ē

(6)

where ȳe, e ∈ Ē , is fixed at partial solution S and conv( fe(xe)) is the convex envelope of
function fe(xe), c.f., Figure 1. Any efficient algorithm designed for convex multicommodity
flow problems (see [24] for instance) can be employed to solve PS . The value z∗

S of the optimum
solution of PS is a lower bound on the value of the best completion of S.

An upper bound is always possible to be derived if PS has an optimum solution. Let x̄ be an
optimum solution of PS , then

z̄S =
∑

e∈Ē

[
8(c0e + δe ȳe, x̄e) + πe ȳe

]
+

∑

e∈E\Ē

min
{
8(c0e, x̄e),8(c1e, x̄e) + πe

}

is an upper bound. Remark that for feasible problems, an upper bound is derived even if S = ∅.
We store the best upper bound z̄ found during the search as the incumbent. If a partial solution
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S leads to an upper bound that improves upon the incumbent, then it replaces the latter as the
new incumbent. If the lower bound z∗

S is greater than or equal to z̄ or PS is infeasible, then S is
fathomed. And in this case all completions of S have been implicited enumerated as they can be
excluded from further consideration.

A partial solution is said to be nonredundant if it cannot generate a completion equal to one gener-
ated with a previous solution that was fathomed. Geoffrion [13] gives a procedure for generating
nonredundant partial solutions that terminates fathoming all feasible solutions. By starting with
Ē = ∅, i.e., S0 has no capacity previously assigned to any arc, PS0 gives a lower bound z∗

S0

to the optimum value and a first upper bound z̄S0 taken as the incumbent z̄. Then, the proce-
dure augment the partial solution by assigning a capacity to an arc at a time. Now suppose a
partial solution St is fathomed. Nonredundancy is achieved by having at least one element of
subsequent partial solutions complementary to St . The last element that was added to St−1 to
generate St is then underlined and changed to its complement. In the above example, the se-
quence would be S1 = {1}, S2 = {1, 3}, S3 = {1, 3, −5}. If S3 could be fathomed, then the next
partial solution in the sequence would be S4 = {1, 3, 5}, which means change capacity assigned
to arc 5 from c0,5 in S3 (y5 = 0) to c1,5 in S4 (y5 = 1). If S4 could also be fathomed, then
S5 would be S5 = {1, −3}. Otherwise, S5 would be generated by assigning a value to a free
variable and by adding it to S4, for instance S5 = {1, 3, 5, −2}. After fathom a solution St , the
procedure locates the rightmost element of St that is not underlined. If there is none, then end
with the stored incumbent as being the optimal solution. Otherwise, replace this element by its
complement underlined e → −e and delete all elements that are on the right. In the example, if
S5 = {1, 3, 5, −2} and also S6 = {1, 3, 5, 2} could be both fathomed, the next solution generated
would be S7 = {1, −3}.

We now discuss some strategies to choose an arc e ∈ Ē \ E with which augment a partial solution
St that cannot be fathomed. Note we chose an arc among those such that conv( fe(x̄e)) < fe(x̄e).
Such strategies rely on the flow distribution x̄ of an optimum solution of PSt . Various strategies
have been tested:

• assign c1e to the arc e with the highest value f
′+
e (x̄e) of the right partial derivative of arc

cost function fe with respect to x̄e.

• assign c0e to the arc e with the lowest value f
′−
e (x̄e) of the left partial derivative of arc cost

function fe with respect to x̄e.

• the arc inducing the highest value of z∗
S when PS is defined for Ē ∪ {e} assigning c0e to e

if x̄e ≤ γe and c1e otherwise;

• the arc with the highest flow value;

The last rule was found to be the most efficient, and was adopted.

We employ algorithms proposed in [7], which have guaranteed performance, to find a good
initial upper bound z̄0. Those algorithms find a feasible solution and then gradually reduce the
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objective value of the obtained solution until no better solution can be found. They are based
in two phases: a common first phase where a multicommodity flow problem taking the convex
envelope of arc cost functions is solved and a lower bound is found; and a second phase where
the obtained routing is used as starting point for switching methods between capacity assignment
and the application of a local search algorithm until no more improvement occurs.

The pseudo-code of the implicit enumeration algorithm is as follows:

Implicit enumeration procedure

Step 1 – Initialize with S0 = ∅. Set t = 0 and z̄ = z̄0.

Step 2 – Solve PSt to compute the lower bound z∗
St to the best completion of St . If PSt is

feasible, then obtain the respective upper bound z̄St and check to update z̄.

Step 3 – If it is possible to fathom St , i.e., PSt is infeasible or z∗
St ≥ z̄, then go to Step 5. Else

go to Step 4.

Step 4 – Augment St by adding a free variable ye with e or −e to obtain St+1. Set t = t + 1
and return to Step 2.

Step 5 – Locate the rightmost element of St not underlined. If none exists, then stop. Else
change such element by its complement underlined e → −e and delete all elements to the
right. Set t = t + 1 and return to Step 2.

4 NUMERICAL TESTS

Numerical tests were performed to analyze the numerical behavior of the proposed algorithm and
the influence of the parameters on its performance. Three different network topologies were used
for the computational tests: the C-NET introduced in [24]; the RING introduced in [11]; and the
NTS100 generated using a special program driver [6, 7]. For the sake of illustration, Figure 2
and 3 present the topologies of networks C-NET and NTS100, respectively. Table 1 gives the
main characteristics of the three networks used in our numerical experiments. Given a root node
r , the hop-depth of a node i ∈ V \ {r} is the number of arcs in the path between r and i that has
minimum length. The hop-based diameter of the graph is the largest hop-depth among the nodes
of the network. C-NET and RING are full duplex networks, i.e., flow can be sent between two
nodes in both directions and simultaneously.

Two sets of tests were made with these topologies:

– The first set concerns the C-NET network [24]. The aim is to verify the influence of the
traffic throughput increase and the capacity expansion factor (c1e/c0e) on the number of
iterations performed by the implicit enumeration algorithm. Results are compared with the
ones obtained solving the mixed integer nonlinear formulation of the problem (DCE) using
two commercial solvers: BARON and LINDOGlobal [5, 17, 27] and modeling the problem
with GAMS [10]. The problems were solved with help of the NEOS Server [5, 17];
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– The second test set was performed on the other two topologies RING and NTS100. The
aim is to assess the effectiveness of the proposed implicit enumeration algorithm to solve
the capacity expansion problem with different scenarios of larger networks and heteroge-
neous traffic requirement demands.

The computation of the lower bound was performed by a specialized Flow Deviation algorithm
for the convex multicommodity flow problem. That algorithm has been shown to be efficient
since the early work of Fratta et al. [9], but it is generally known to become very slow when the
algorithm approaches the optimal solution (see [3] for instance). To accelerate its convergence, a
parallel tangent procedure (PARTAN, see [8]) was introduced in the direction finding step. The
algorithm was coded in C.

Figure 2 – The C-NET network with 19 nodes and 34 arcs.

Table 1 – Characteristics of the test networks.

Network
nodes arcs OD-pairs

aver. node hop-based

ID degree diameter

n m K 2m/n

C-NET 19 34 38 3.36 4

RING 32 60 496 3.75 6

NTS100 100 187 2000 3.74 11

The following notations were used:

• φ∗ is the global optimal value;

• φ̈ optimal value of the convexified problem;

• φpg is the solution obtained by the performance guaranteed algorithms [7];
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Figure 3 – NTS100 network topology.

• φBaron is the solution obtained with BARON [27];

• φLG is the solution obtained with LINDOGlobal [5, 17];

• Nggo is the number of partial solutions enumerated to guarantee the global optimality;

• No is the number of partial solutions enumerated until the optimal solution is found be not
necessarily proven to be optimal;

• NBaron is the number of visited nodes made by the Baron solver;

• NLG is the number of visited nodes made by the LINDOGlobal solver;

• α = φ∗

φ̈
;

• αpg = φpg

φ̈
.

4.1 First test set

In these experiments, the congestion cost is derived from the Kleinrock’s average delay function
for M/M/1 queueing networks and defined by ρ xe

ce−xe
. We fix ρ = 1, see [11]. All arcs have the

same initial capacity. And the expansion cost π1e, for each arc e ∈ E , is given, for each value of
the parameter γ = γ0e

c0e
equal to 0.7 and 0.9, by

π1e = ργ c0e
(c1e − c0e)

(c0e − γ c0e)(c1e − γ c0e)
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Tables 2 to 5 present the results for the C-NET network varying traffic requirement demands,
parameter γ and the available capacity for expansion.

The results show that the algorithm is rather sensitive to the capacity expansion factor. When
c1e = 4c0e the number of iterations increase significantly, as observed for Nggo and No in Ta-
bles 4 and 5 in contrast with Nggo and No in Tables 2 and 3. Increasing γ affects the efficiency
of the algorithm. Both effects can be illustrated by the values of α and αpg .

Table 2 – Network C-NET, problem D38510.70.

φ̈ φ∗ φpg α αpg Nggo No Demand

13.64 13.75 13.86 1.01 1.01 26 24 0.50

37.68 39.21 39.43 1.04 1.05 206 178 1.00

68.78 70.59 71.54 1.02 1.04 152 66 1.50

181.94 184.19 184.99 1.01 1.02 146 110 2.00

Number of commodities 38, c0 = 5, c1 = 10, γ = 0.70.

Table 3 – Network C-NET, problem D38510.90.

φ̈ φ∗ φpg α αpg Nggo No Demand

13.64 13.75 13.86 1.01 1.02 0 0 0.50

56.45 56.91 59.67 1.01 1.06 18 16 1.00

135.06 140.21 144.10 1.04 1.07 92 27 1.50

291.38 301.38 304.86 1.03 1.05 208 112 2.00

Number of commodities 38, c0 = 5, c1 = 10, γ = 0.90.

Table 4 – Network C-NET, problem D38520.70.

φ̈ φ∗ φpg α αpg Nggo No Demand

13.64 13.75 13.86 1.01 1.02 168 161 0.50

24.77 31.54 34.99 1.27 1.41 2893 272 1.00

37.38 45.01 49.35 1.21 1.32 6194 968 1.50

50.82 59.60 63.02 1.17 1.24 8026 2048 2.00

Number of commodities 38, c0 = 5, c1 = 20, γ = 0.70.

Table 5 – Network C-NET, problem D38520.90.

φ̈ φ∗ φpg α αpg Nggo No Demand

13.64 13.75 13.86 1.01 1.02 4 2 0.50

42.05 49.31 54.41 1.19 1.29 286 268 1.00

75.52 95.14 112.54 1.26 1.49 2672 2248 1.50

110.08 133.57 151.42 1.22 1.37 2944 317 2.00

Number of commodities 38, c0 = 5, c1 = 20, γ = 0.90.

As the efficiency of the algorithm depends on the quality of the lower bound to exclude comple-
tions of a partial solution from further consideration, the weakest is the convexification bound,
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the biggest is the number of solutions enumerated. Observe that the global optimal solution was
reached in many instances, some of them well before Nggo � No.

Table 6 shows the results obtained solving the mixed integer nonlinear formulation of the prob-
lem (DCE) using two commercial solvers: BARON and LINDOGlobal [5, 17] and the results
of the proposed algorithm. The Baron and the LINDOGlobal solvers were not able to guarantee
the optimality of the results within the adopted time limits and or the number of iterations limits.
They were not able to obtain the guaranteed global optimum of the C-NET problem. The LIN-
DOGlobal solver uses linear approximations of the original problem which explains the large
number of iterations within the limits of runtime.

Table 6 – Network C-NET, continuous versus discrete formulations results.

c0 c1 γ φ̈ φ∗ φBaron φLG Nggo NBaron NLG Demand

5 10 0.70 13.64 13.75 13.75 13.75 26 1000 16744566 0.50

5 10 0.70 37.68 39.21 39.61 40.45 206 1000 8920413 1.00

5 10 0.70 68.78 70.59 70.60 71.50 152 1000 12103300 1.50

5 10 0.70 181.94 184.19 186.54 186.77 146 1000 8069258 2.00

5 10 0.90 13.64 13.75 13.75 13.75 0 1000 16890727 0.50

5 10 0.90 56.45 56.91 56.91 57.80 18 1000 8103096 1.00

5 10 0.90 135.06 140.21 140.21 140.21 92 1000 12034430 1.50

5 10 0.90 291.38 301.38 301.82 312.33 208 1000 8303808 2.00

5 20 0.70 13.64 13.75 13.75 13.75 168 10000 14855559 0.50

5 20 0.70 24.77 31.54 31.54 34.35 2893 10000 5799308 1.00

5 20 0.70 37.38 45.01 45.01 47.07 6194 10000 6564114 1.50

5 20 0.70 50.82 59.60 59.60 62.03 8026 10000 8239060 2.00

5 20 0.90 13.64 13.75 13.75 13.75 4 10000 16982685 0.50

5 20 0.90 42.05 49.31 49.31 57.20 286 (7200s) 6236884 1.00

5 20 0.90 75.52 95.14 101.01 127.01 2672 (7200s) 5670491 1.50

5 20 0.90 110.08 133.57 133.57 151.41 2944 (7200s) 7664995 2.00

Number of commodities 38, c0 = 5, c1 = 20, γ = 0.90.
For the problems with c1 = 10, NBaron ≤ 1000, for the problems with c1 = 20, NBaron ≤ 10000.
Maximum time available to solve the problems using BARON was 7200 seconds, and using LINDOGlobal was
4000 seconds.
All problems were solved in less than 3600 seconds using the proposed algorithm.

4.2 Second set of tests

The second set of tests concern the RING and the NTS100 topologies with heterogeneous traffic
requirement demands. The congestion costs, as in the precedent set of experiments, is given by
ρ xe

ce−xe
. The following scheme was adopted for all these experiments:

– An initial feasible solution is computed using algorithms proposed in [7].

– The initial demand between each OD-pair was fixed to 10 for the RING network and to 3
for the NTS100 network. The installed capacities are given in Table 7.
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• In a first set of instances, the demand is uniformly multiplied by a throughput factor of
20%, 40%, 60%, 80% and 100% until capacity expansion becomes economically interest-
ing.

– In the second set, the demand increase is no more uniform: half of the demands receive
the same throughput factor, but 25% receive 50% more, and 25% receive 25% less. The
results are exposed in Tables 8 to 11.

– An initial distribution of the increase of demand between the OD-pairs was defined ran-
domly and fixed for each instance.

– The parameter ρ used to compute congestion costs is set to 500, 1000, 5000, and 10000.

Table 7 – Available capacities and costs.

Capacity Installation cost Distance cost

c Sc Dc

2 1750 40

10 2800 50

34 4800 55

155 10000 80

300 14000 90

622 21000 120

922 35000 210

πc = Sc + Dcti j .

A small number of iterations was needed to solve the proposed instances. Considering the com-
plexity of the studied problem (CNET = 234 = 17,179,869,184 solutions, RING = 260 solutions,
NTS100 = 2187 solutions), one can evaluate the effectiveness of the proposed method. The sec-
ond set of test problems was easier to be solved. This can be explained by noting that for these
instances, the quality of the lower bound obtained by solving the problem with the convex enve-
lope of the integrated function of congestion and expansion costs, c.f., Figure 1, is very good.

At each iteration of the implicit enumeration algorithm a convex multicommodity flow problem
is solved. A convex multicommodity flow problem can be difficult, especially if feasibility prob-
lems appear when an arc flow is close to the arc capacity. The decision to apply the Partan was
primarily due to the gain in speed in solving problems is adequate for a precision of about 1% or
better. Each multicommodity flow subproblem spent from a second fraction to several minutes.

All test problems have many local optima with objective function value close or equal. The
implicit enumeration depth search approach has modest memory requirements. It needs to store
only the path from the root node to the leaf node in the search tree. As the problem has many
solutions, the depth search has a good chance of finding an optimal solution after exploring a
small portion of the entire search space. The proposed algorithm can be parallelized and we
believe that a good scalability can be get.
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Table 8 – RING network and uniform demand increase.

ρ
φ̈ φ∗ φpg

α αpg
Aver. increase

[$] × 106 [$] × 106 [$] × 106 of demand %

1000 3.69 3.71 3.71 1.00 1.00 10

1000 3.84 3.91 3.92 1.01 1.02 20

1000 4.05 4.11 4.15 1.01 1.02 40

1000 4.35 4.39 4.49 1.01 1.01 60

1000 4.70 4.76 4.76 1.01 1.01 80

1000 5.13 5.13 5.13 1.00 1.00 100

5000 4.22 4.26 4.26 1.01 1.01 10

5000 4.47 4.50 4.50 1.00 1.00 20

5000 4.79 4.84 4.84 1.01 1.01 40

5000 5.17 5.23 5.23 1.01 1.01 60

5000 5.62 5.68 5.69 1.01 1.01 80

5000 6.31 6.35 6.37 1.01 1.01 100

10000 4.61 4.62 4.62 1.00 1.00 10

10000 4.95 5.00 5.00 1.01 1.01 20

10000 5.36 5.42 5.42 1.01 1.01 40

10000 5.84 5.87 5.87 1.00 1.00 60

10000 6.38 6.42 6.42 1.00 1.00 80

10000 7.03 7.08 7.10 1.01 1.01 100

Table 9 – RING network and heterogeneous demand increase.

ρ
φ̈ φ∗ φpg

α αpg No Nggo
Aver. increase

[$] × 106 [$] × 106 [$] × 106 of demand %

500 3.70 3.82 3.85 1.01 1.02 32 138 25

500 4.06 4.14 4.27 1.025 1.05 84 98 50

500 4.88 4.93 4.93 1.01 1.00 2 4 100

1000 3.89 3.97 3.97 1.01 1.02 4 265 25

1000 4.21 4.33 4.33 1.01 1.02 1 2 50

1000 5.08 5.12 5.13 1.00 1.01 1 2 100

5000 4.01 4.02 4.03 1.01 1.00 5 555 25

5000 4.97 5.02 5.02 1.01 1.01 1 2 50

5000 6.30 6.37 6.37 1.01 1.01 1 2 100

10000 4.87 4.91 4.92 1.01 1.01 6 365 25

10000 5.59 5.64 5.64 1.01 1.01 3 1 50

10000 7.06 7.07 7.07 1.00 1.01 5 1 100

The proposed algorithm can be further specialized if more information about the problems are
considered. For example, in real scenarios budget and operational constraints may restrict the
set of candidate arcs for expansion. The proposed procedure can also be used for capacity reduc-
tion problems.
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Table 10 – RING network and heterogeneous demand increase.

ρ No Nggo
Aver. increase

of demand %

500 32 138 25

500 84 98 50

500 2 4 100

1000 4 265 25

1000 1 2 50

1000 1 2 100

5000 5 555 25

5000 1 2 50

5000 1 2 100

10000 6 365 25

10000 3 1 50

10000 5 1 100

Table 11 – NTS100 network and heterogeneous demand increase.

ρ
φ̈ φ∗ φpg

α αpg No Nggo
Aver. increase

[$] × 106 [$] × 106 [$] × 106 of demand %

500 3.70 3.82 3.85 1.01 1.02 32 138 25

500 4.06 4.14 4.27 1.025 1.05 84 98 50

500 4.88 4.93 4.93 1.01 1.00 2 4 100

1000 3.89 3.97 3.97 1.01 1.02 4 265 25

1000 4.21 4.33 4.33 1.01 1.02 1 2 50

1000 5.08 5.12 5.13 1.00 1.01 1 2 100

5000 4.01 4.02 4.03 1.01 1.00 5 555 25

5000 4.97 5.02 5.02 1.01 1.01 1 2 50

5000 6.30 6.37 6.37 1.01 1.01 1 2 100

10000 4.87 4.91 4.92 1.01 1.01 6 365 25

10000 5.59 5.64 5.64 1.01 1.01 3 1 50

10000 7.06 7.07 7.07 1.00 1.01 5 1 100

5 CONCLUSION

We have applied successfully an adapted implicit enumeration scheme to a mixed-integer non-
linear model for the capacity expansion and flow assignment in multicommodity networks. The
key fact to explain the good performance of the method is the use of a reliable bounding proce-
dure at each node of the enumeration tree, which is based on the convex hull of the equivalent
continuous objective function.
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The literature has scarce approaches to find exact solution of the discrete capacity expansion
and flow assignment problem. Basically two lines of approaches have been adopted: Benders
decomposition [20] and methods based on difference of convex functions – DC programming
[21]. Recently a conic quadratic formulation was proposed [26]. The results show that the implicit
enumeration algorithm proposed here can be considered as an alternative available to solve to
global optimality such large scale problems.

Future research is to be done on the extension of the proposed approach to deal with multiple
choices of available capacities for expansion on each arc. It remains to show that lower bounds
obtained with the convex envelope of the integrated function of expansion and congestion costs
remain sharp in the presence of multiple expansions.
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