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ABSTRACT. The two-dimensional cutting problem has a direct relationship with industry problems. There
are several proposals to solve these problems. In particular, solution proposals using metaheuristics are the
focus of this research. Thus, in this paper, we present a specialized biased random key genetic algorithm.
Several tests were performed using known instances in the specific literature, and the results found by
the metaheuristics proposed were, in many cases, equal or superior to the results already published in
the literature. Another comparison of results presented in this paper is related to the results obtained by
specialized metaheuristics and the results found by a mathematical model using commercial software. Once
again, in this case, the genetic algorithm presented results equal to or very close to the optimum found by the
mathematical model. In addition, the optimization proposal was extended to two-dimensional non-guillotine
cutting without parts orientation.

Keywords: Genetic algorithm, metaheuristics, two-dimensional cutting problem.

1 INTRODUCTION

In the stage of globalization which the markets currently are, products with competitive prices
have been increasingly sought by industries. For that reason, we have invested in optimizing
industrial processes to achieve the necessary competitiveness. Several types of problems arise
when it comes to optimizing production processes, among them, there is the two-dimensional
non-guillotine cutting problem.

The problem was introduced in literature by Gilmore and Gomory (1961). According to Alvarez-
Valdes et al. (2007), it consists of cutting rectangular pieces from a larger rectangular plate, made
of steel, cloth, paper, glass, or wood, or even placing advertisements on the pages of newspapers
and magazines to maximize the total value of the pieces cut, or to minimize material waste if
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2 IMPROVED BIASED RANDOM KEY GENETIC ALGORITHM

the value of a part is taken to be proportional to its area (Hadjiconstantinou; Christofides, 1995),
where only two dimensions are considered by the problem under study in which the laser cutting
technique is used.

Often, what is observed in the industry are pieces with high added value that must be cut from
a plate, but these isolated pieces are not the product ready to be delivered. For the product to
be finished by the industry, this high-value piece should interact with other parts whose value is
smaller, but no less important for the delivery of the final product. Thus, the raw material cutting
industry is forced to cut the pieces of lesser value, and from such an impasse, the lower and
upper bounds applied to the quantity of each piece to be cut arise. Although it is interesting for
the industry to cut the most valuable parts, the constraints of the two bounds must be respected.

Among the cutting problems, there are those that are guillotined and those that are non-
guillotined. In several industries, the cutting equipment operates in such a way that any cut made
on a rectangle should be performed in a straight line from one edge of the plate to another. This
type of cut is referred to as a guillotine cut (Lai, Chan, 1997). However, in some applications,
the guillotine cut is not the most suitable one, making it possible to use another cutting technique
called laser-cut, allowing non-guillotine cutting.

This paper aims to identify the application of a metaheuristic in the resolution of the two-
dimensional non-guillotine cutting problem. Particularly, as a comparative basis, the papers an-
alyzed were the ones by Alvarez-Valdes et al. (2007), in which the tabu search metaheuristic
was used, by Lai and Chan (1997), in which the simulated annealing metaheuristic was chosen,
and by Gonçalves and Resende (2013), in which the genetic algorithm metaheuristic was ap-
plied to solve the problem. As a specific objective, this work proposed to apply metaheuristics
to solve the problem, which is the biased random key genetic algorithm (BRKGA), proposed
by Gonçalves and Resende (2013), adding significant improvements to its implementation, and
therefore to formulate a proposal that is better performing. A secondary objective is to show the
performance of the optimization solver to solve the mathematical model of the problem.

There are several additional proposals in the specialized literature that address the two-
dimensional non-guillotined cutting problem. Arenales and Morabito (1995) address the uncon-
strained problem using a branch and bound strategy by using AND/OR logic and using additional
heuristic rules to reduce the search space. In Leung et al. (2001), the unconstrained problem is
approached by using the genetic algorithm and simulated annealing metaheuristics for the prob-
lem with fixed orientation and by performing tests using eight instances. In Beasley (2004), the
constrained problem without rotation is approached by using a population heuristic which is a
modified genetic algorithm. In Baldaci and Boschetti (2007), a two-level proposal is presented in
which a subset of parts to be allocated is selected at the first level, and the possibility of finding
feasible solutions is verified at the second level. The proposal can improve the upper bounds of
several complex instances. In Ayadi et al., a new implementation version of the particle swarm
optimization (PSO) metaheuristics is proposed which incorporates a heuristic strategy existing in
the specialized literature. In Wei et al. (2018), a proposal based on the best-fit branch and bound
method is presented. This proposal is supported by a greedy heuristic to generate complete solu-
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tion proposals from a partial solution within the branch and bound structure. Due to the diversity
of variants used in tests, only a comparative analysis with some of these proposals is presented
in the testing phase.

This paper is organized into sections: section 2 presents the mathematical model of the problem;
section 3 describes the specialized BRKGA to optimize the two-dimensional non-guillotine cut-
ting problem; in section 4, the results found in this work are presented and analyzed; section 5
describes the conclusions and final considerations of the paper.

2 MATHEMATICAL MODEL

Hadjiconstantinou and Christofides (1995) describe the mathematical model for the two-
dimensional, orthogonal, non-guillotine, part-oriented, and constrained related to the upper
bound problems in the following way:

Let A0 = (α0,β0) be a rectangular plate with length α0 and height β0, and let R be a set of
m smaller rectangular pieces R1,R2, . . .,Rm with dimensions (α1,β1), (α2,β2),..., (αm,βm)

and with corresponding values v1,v2, . . .,vm for each piece of R. The objective is to build a
non-guillotine cutting pattern for A0 with the highest total value using no more than Qi copies
of each piece Ri for all i = 1, . . .,m. There is also a minimum requirement of Pi copies of each
piece Ri to be used in the cutting pattern.

Hadjiconstantinou and Christofides (1995) assumed the following hypotheses: (i) All dimensions
(αi,βi), for i = 0, ...,m, are assumed to be integers, therefore, cuts on the plates must be made in
whole steps along the axes x or y. This limitation is not considered serious by the authors, since
the real dimensions can be extended in practice; (ii) The orientation of the pieces is considered
fixed, that is to say, a piece of length e and height f is different from a piece of length f and
height e; (iii) Each piece should be cut with its edges parallel to the edges of the plate (orthogonal
cuts).

To formulate the problem as a binary programming problem, the following was defined

Li = {x|0≤x≤α0−αi,xinteger}

as the set of all possible points x along the length of A0, so that any piece Ri of the set R can
be cut from A0 with its height parallel to the axis y and the cut piece has its lower-left corner
in any x∈Li. In the same way, the authors defined the following:

Wi = {y|0≤y≤β0−βi,yinteger}.

The sets Li and Wi are defined for i = 1, . . .,m. In addition, it is defined that:

xijp =


1, if the jth copy of the piece i is cut with its lower-left corner at x-position p
where j =1,. . . , Qi and p ∈ Li,
0,otherwise.
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4 IMPROVED BIASED RANDOM KEY GENETIC ALGORITHM

yijq =


1, if the jth copy of the piece i is cut with its lower-left corner at y-position q
where j =1,. . . , Qi and q ∈ Wi.□
0,otherwise.

zrs = 1if thepoint (r,s) ∈ A0,wherer = 0, . . .,α0−1∧ s= 0, . . .,β0−1, was not cut by any piece of
the set R.

The mathematical formulation of Hadjiconstantinou and Christofides (1995) takes the following
form:

maximize Z =
m

∑
i=1

vi

Q

∑
j=1

∑
p∈L

xijp (1)

subject to

q+β1−1

∑
s=q

p+α1−1

∑
r=p

zrs≤(2− xijp− yijq)αiβi, i = 1, . . .,m, j = 1, . . .,Qi p∈Li,q∈Wi, (2)

∑
p∈Li

xijp≤1, i = 1, . . .,m, j = 1, . . .,Qi, (3)

∑
p∈Li

xijp = ∑
q∈Wi

yijq, i = 1, . . .,m, j = 1, . . .,Qi, (4)

m

∑
i=1

βi

Qi

∑
j=1

r

∑
p=r−α1+1,p∈Li

xijp +
β0−1

∑
s=0

zrs = β0,r = 0, . . .,α0−1, (5)

m

∑
i=1

αi

Qi

∑
j=1

s

∑
q=s−β1+1,q∈Wi

yijq +
α0−1

∑
r=0

zrs = α0,s = 0, . . .,β0−1, (6)

xijp,yijq∈{0,1} , i = 1, . . .,m, j = 1, . . .,Qi, p∈Li,q∈Wi, (7a)

zrs∈{0,1} ,r = 0, . . .,α0−1,s = 0, . . .,β0−1. (7b)

Constraint (2) ensures that any point in A0 be cut in one piece at most. Constraints (3) and (4)
express the fact that any piece is cut at most once in A0. Constraint (5) ensures that not all pieces
of the set R, whose sum of heights exceeds β0, can be cut in A0 with the same length, having
the left lower corners of each piece as the origin. Likewise, constraint (6) ensures that if the sum
of the lengths of the pieces exceeds α0, then not all of these pieces can be cut into A0 with the
same height, having its lower-left corners as origin.

This model is a complete formulation of the two-dimensional cutting, orthogonal, non-
guillotined problem involving approximately constraints and integer variables in the following
way:

Nc = 2
m

∑
i=1

Qi +
m

∑
i=1

Qi |Li| |Wi|+α0 +β0 (8)
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and

Nv =
m

∑
i=1

Qi (|Li|+ |Wi|)+α0β0. (9)

According to Hadjiconstantinou and Christofides (1995), the size of this formulation depends on
the total number of pieces in R and the maximum number Qi of copies of each piece that can be
used for cutting. A sequence of cuts in R is called the cutting pattern.

According to Alvarez-Valdes et al. (2007), depending on the values of the lower bound, Pi, and
the upper bound, Qi, of the pieces Ri to be cut on the plate R, three types of problems can
be distinguished: unconstrained, constrained, and doubly constrained. The first problem is called
unconstrained, in which there are no lower and upper constraints that must be met, the only
constraint is related to respecting the boundaries of the plate area R. In the constrained problem,
there is only one constraint related to the upper bound. In this problem, all pieces Ri to be cut in
R, do not have a minimum number of copies to be cut, but there is a constraint on the maximum
number of copies for any Ri pieces. The upper bound indicates that up to Qi copies of pieces
Ri can be cut into a plate R. If the sum of the areas of the Qi copies of the piece Ri is smaller
than the area of the plate R, and all copies of the piece Ri have already been used in cutting
the plate, even if there is a possibility of cutting more copies of this piece Ri, it cannot be done,
because the upper bound has been reached and this constraint must be respected. Similarly, if
the sum of the areas of Qi pieces Ri is greater than the area of the plate R, not all copies of
this part will be used, so the constraint continues to be respected but without using all the copies
available through the upper bound.

The latter type of problem is doubly constrained when there are lower and upper bounds that
must be respected by any Ri pieces to be cut on the plate R. Therefore, it is possible to cut a
number of copies of the part ranging from the value of its lower bound to the value of its upper
bound, in a way that the two constraints imposed by the latter problem are respected.

3 SPECIALIZED BIASED RANDOM KEY GENETIC ALGORITHM

The BRKGA was proposed by Gonçalves and Resende (2013) and brings some differences in
relation to the traditional genetic algorithm. However, to understand its operation, it is necessary
first to define the random key genetic algorithm (RKGA).

3.1 Random Key Genetic Algorithm

Introduced by Bean (1994), the RKGAs have their chromosomes represented by vectors with n
elements, which assume values generated randomly in the real interval [0,1]. For that reason, a
proposed solution is depicted in encoded form and must be decoded using a decoder.
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6 IMPROVED BIASED RANDOM KEY GENETIC ALGORITHM

The decoder is a deterministic algorithm that uses a chromosome as input, associating it with
a solution of the combinatorial optimization problem, for which a target value or fitness can be
calculated (GONÇALVES; RESENDE, 2013).

According to Gonçalves and Resende (2013), an RKGA generates a population of random key
vectors during a number of generations. The initial population consists of p vectors of n random
keys. Each component of the solution vector, or random key, is independently and randomly
generated in the real interval [0,1]. After the fitness of each individual is calculated by the
decoder in the generation g, the population is partitioned into two groups of individuals: a small
group of pe elite individuals, in other words, those with the best fitness values, and a group
formed by the rest of the population, set of p – pe non-elite individuals. To evolve from
generation g to generation g+ 1, a new generation of individuals is produced. The RKGA
algorithm uses elitism. All the elite individuals of the population of generation g are copied
unmodified to the population of generation g+1. Two other strategies are used by the RKGAs
to complete the formation of generation g+1, that is, the mutation and recombination operators.

The RKGAs implement mutation by introducing mutants into the current population. A mutant
is created as a vector of random keys, generated in the same way as an element of the initial pop-
ulation. With each generation, a small number of mutants pm is introduced into the population.
Mutants replace the mutation strategy used in the traditional genetic algorithm (GONÇALVES;
RESENDE, 2013).

The population of the next generations will be composed of elite individuals ( pe), mutant indi-
viduals ( pm), and individuals produced by the recombination process. With pe+ pm individuals
representing the population of the g+1, p− pe− pm , additional individuals need to be generated
to complete the p individuals that make up the population of the g+ 1. This is accomplished
by producing p− pe− pm solutions through the recombination process.

In the RKGA, as in the BRKGA, there is no conventional selection operator. This is exactly
where the two random key algorithms differ.

3.2 Biased Random Key Genetic Algorithm

In the BRKGA proposed by Gonçalves and Resende (2013), each descendant is generated by
combining an individual randomly selected from the elite partition of the current population. For
the selection of the second individual, there are two strategies: in the first strategy, the second
individual is obtained by selecting it from the non-elite partition of the current population; and in
the second strategy, the second individual is obtained by selecting it from the current population,
which includes both the elite and the non-elite partitions. It should be noted that the selection
operator is implicitly present.

The word biased in the BRKGA, incorporated by Gonçalves and Resende (2013), is used to
show that recombination is not purely random. That is, one of the generating solutions must
necessarily be an elite (biased), as opposed to the original proposal, in which the two generating
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solutions can be of the population as a whole. The other biased component appears when a single
descendant is generated.

It should be noted that each recombination is performed independently and, therefore, one indi-
vidual can produce more than one descendant in the same generation. As in RKGAs, BRKGAs
implement parameterized uniform recombination (SPEARS; DEJONG, 1991).

In this type of recombination, there is the probability qe which will serve as a flag parameter to
know if the component n, of the descending vector C, will be inherited from parent A or parent
B. It is important to remember that n denotes the number of components in a solution vector of
an individual. For i = 1, ...,n, the ith component of c(i) of the downstream vector C assumes the
value of the ith component a(i) of elite parent A with probability qe or value of ith component
b(i) of parent B from the population with probability 1 −qe.

The value used for qe is high and is typically chosen qe= 0,7. Thus, in each case, there is a
probability of 0,7 for the value stored in A to be copied into the descending C being generated.
This strategy allows most of the elements copied in C to be elements stored in the elite solution,
making the reasons why only one descendant is generated clear.

When the next population is generated, the values of fitness of these individuals are calculated
using the decoder, and the population is partitioned into elite and non-elite individuals to start a
new generation until the stopping criterion is satisfied.

3.3 Specialized Genetic Algorithm

The specialized algorithm was based on the BRKGA proposed by Gonçalves and Resende
(2013), but it considers some processes that were necessary to improve the performance when
solving the problem under consideration.

3.3.1 Functioning of the Specialized BRKGA

Next, in Algorithm 1, we have a description of the operation of the specialized BRKGA.
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8 IMPROVED BIASED RANDOM KEY GENETIC ALGORITHM

Algorithm 1 - Specialized Biased Random Key Genetic Algorithm

1: set the initial population size p.
2: while (stopping criterion)
3: for (i = 1; i≤p; i++) do
4: decode (individuali)
5: end for
6: for (i = 1; i≤p; i++) do
7: cutting pattern(i) ← CHA (individuali)
8: end for
9: for (i = 1; i≤p; i++) do
10: fitness calculation (cutting patterni)

11: end for
12: elite ← best cutting pattern
13: non-elite ← cutting pattern - elite
14: create mutants
15: crossover ( elite,nonelite)
16: current population ← next generation
17: end while
18: return incumbent

In Algorithm 1, it is noticed that the specialized genetic algorithm maintains some characteristics
of the traditional genetic algorithm, such as the initial population generation, fitness calculation,
recombination, mutation, and stopping criterion. Only a few phases were added, such as the de-
coding of each individual (solution proposal), the transformation of these individuals into cutting
patterns, and the use of the elite group in the recombination.

In Algorithm 2, there is the description of the CHA sub-algorithm.

Algorithm 2 - Constructive Heuristic Algorithm (CHA)

1: set freerectangles(1, . . ., j), piecesavailable(1, . . .,m),
2: for (i = 1; i≤m; i++) do
3: choose piece i
4: create a block with the samples of the piece i(quantity of pieces i of the block≤Qi)

5: while (blockarea≤freearea( j))
6: cut block from step 4 closest to the plate origin (lower-left corner)
7: update the list of free rectangles and the list of pieces available
8: end while
9: end for
10: return cutting pattern
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It can be seen in Algorithm 2 that the CHA determines how and where each piece is cut on the
plate, picking the plate and the free rectangle to cut from it.

3.3.2 Formation of blocks

In the algorithm proposed in this paper, the block with equal parts is constructed. This procedure
of grouping the plates into blocks was not used in the BRKGA proposed by Gonçalves and
Resende (2013), so it is an improvement applied to the specialized RKGA proposed in this paper.

Pieces pi are placed side by side until no more space is available within the free rectangle chosen
to allocate more pieces, or until the availability of the pieces pi is exhausted. Only after pieces
pi are placed next to each other, and if more pieces of the same type are available to be used in
the block construction, pieces pi are to be allocated above the pieces pi already allocated in the
free rectangle, so it will occur successively until the quantity of pieces pi used in the construction
of the block is ≤Qi. Consequently, a block with a rectangular or square geometric shape is
guaranteed.

3.3.3 Scanning Free Rectangles

During the research, it was found that the identification of free rectangles on the plate is important
for the success of the algorithm because identifying free rectangles makes it possible to choose
which rectangle to use in the next cut inside the plate.

The purpose of this paper is to trace the plate by mapping the spaces that are available for further
cuts. The procedure works as a scanner by mapping the board from top to bottom and from left
to right. This is another improvement, proposed in this paper, to be applied to the specialized
BRKGA, and it is also an unprecedented contribution of this work since the type of scanning
done on the plate is different from those found in the specialized literature.

When a space is identified as free, it is added to it all the free and sequential spaces that are just
below it. Then, following the same procedure, the free spaces to the right are added, obeying the
height delimitation performed by the first column of the scan, thus originating a free rectangle.
Using this logic, scanning is performed from top to bottom.

In the same way, scanning from left to right is used. When a space is identified as free, all the
free and sequential spaces that are to its right are added to it.

After obtaining the free rectangles, the process of difference and elimination proposed by Lai
and Chan (1997) is applied.

Pesquisa Operacional, Vol. 42, 2022: e260406
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4 RESULTS AND DISCUSSION

4.1 Tests

The test instances were obtained from the OR-Library website (2017). The OR-Library (2017)
set of tests is composed of 21 cases extracted from the specialized literature, 12 instances of
Beasley (1985), 2 instances of Hadjiconstantinou and Christofides (1995), 1 instance of Wang
(1983), 1 instance of Christofides and Whitlock (1977), and 5 instances of Fekete and Scheppers
(1997).

The algorithm was run using a laptop with an Intel Core i7 processor, 8GB of RAM, and the
FORTRAN programming language was used. The time required for processing did not increase
substantially in the different test cases, reaching an average execution time of 5 seconds.

As a comparison, the test cases were also submitted to the mathematical model proposed by
Hadjiconstantinou and Christofides (1995) to solve the two-dimensional non-guillotine cutting
problem with fixed orientation pieces. The model was programmed and tested in AMPL, using
the solver CPLEX version 12.6.3 as the solver. In the execution of AMPL, it was used a Dell
PowerEdge T430, with Linux Operating System (Debian distribution), with two 12 Cores/24
Threads Intel® Xeon® Processors E5-2650 v4 2.2GHz and 64 GB of RAM. The first 14 cases
had an execution time of 1 to 10 seconds, but the last 6 cases had execution time greater than 24
hours.

To perform a fair comparison with the results obtained by the mathematical model tested in
AMPL, the specialized algorithm proposed in this paper also considered the pieces with fixed
orientation. In addition, in the specialized literature, both metaheuristic algorithms and exact
methods also consider only this type of orientation.

Therefore, the 21 cases were tested with two algorithms, which are:

System I - The mathematical model, programmed in the AMPL proposed by Hadjiconstantinou
and Christofides (1995) to solve the two-dimensional non-guillotine cutting problem with fixed
orientation of the pieces.

System II - Specialized random key genetic algorithm with fixed orientation of the pieces.

System III - Specialized random key genetic algorithm with free orientation of the pieces which
are tests that cannot be compared with other optimization proposals.

4.2 Analysis and Discussion of Results

The specialized algorithms proposed in this work were able to solve the two-dimensional non-
guillotine cutting problem. The results are shown in Table 1, where it is possible to analyze
the results obtained by this paper, comparing them with the results of works that are already
published and taken as references in the specialized literature.

When analyzing the data contained in Table 1, the following are shown: in the second column,
the data obtained by Beasley (1985) are presented using an exact method as a solution technique;
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Table 1 – Comparison of Computational Results Considering Fixed and Free Orientation.

Fixed Orientation Free Orientation
Test Case Beasley 1 GRASP 2 Tabu Search3 System I System II System III

1 247 247 247 247 234 259
2 230 230 230 230 230 250
3 164 164 164 164 156 193
4 358 358 358 358 358 370
5 268 268 268 268 268 268
6 289 289 289 289 289 298
7 834 834 834 834 828 856
8 430 430 430 430 430 430
9 924 924 924 924 924 924

10 1688 1688 1688 1688 1688 1786
11 1178 1178 1178 1178 1178 1272
12 1801 1865 1865 1865 1865 1932
13 1452 1452 1452 1452 1452 1452
14 1270 1270 1270 1270 1270 1431
15 2721 2726 2726 2726 2667 2793
16 1720 1860 1860 1860 1820 1840
17 27486 27589 27718 27718 27539 28090
18 21976 21976 22502 22502 22502 22852
19 23743 23743 24019 24019 24019 24811
20 31269 32893 32893 32893 32893 32893
21 26332 27923 27923 27923 27923 27983

Source: 1Found by Beasley (1985). 2Found by Alvarez-Valdes et al. (2005). 3Found by Alvarez-Valdes et al. (2007).

the third column shows the results obtained by Alvarez-Valdes et al. (2005) in which the GRASP
metaheuristics to solve the problem under study were used; the fourth column shows the results
obtained by Alvarez-Valdes et al. (2007) in which the Tabu Search metaheuristics to solve the
same problem were used; the fifth column presents the results obtained by System I by using the
mathematical model proposed by Hadjiconstantinou and Christofides (1995), and the problem
was solved using CPLEX; the following columns show the results obtained by System II with
a specialized algorithm using fixed orientation of parts, and by System III with the specialized
algorithm using free orientation of parts.

Comparing the results, System I presented better solutions in relation to Beasley (1985), which
compares two exact methods applied to solve the same problem with the same tested instances.
The results obtained by System I are considered optimal solutions and were used as comparison
parameters to evaluate specialized metaheuristics.

The results presented by the GRASP metaheuristic of Alvarez-Valdes et al. (2005) are very close
to the optimal results of System I; only in three test cases the results were inferior (cases 17, 18,
and 19).

Pesquisa Operacional, Vol. 42, 2022: e260406



12 IMPROVED BIASED RANDOM KEY GENETIC ALGORITHM

The results presented by the tabu search metaheuristics of Alvarez-Valdes et al. (2007) are
identical to the results found by System I.

In terms of the results obtained by System II proposed in this work, using specialized metaheuris-
tics, it was also found that the results are close to the optimal solutions of System I, so they are
good-quality results; still, there were six test cases with results lower than optimal (cases 1, 3, 7,
15, 16, 17).

Comparing the results of the test cases of Alvarez-Valdes et al. (2005) with the results obtained
by System II proposed in this work, the algorithm of Alvarez-Valdes et al. (2005) was better in
smaller instances such as 1, 3, 7, 15, and 16. In these cases, the plates have dimensions ranging
from 10 x 10 to 40 x 70, and the number of types of parts varies from 5 to 20. These instances
are considered small and medium-sized instances.

In cases 18 and 19, which are considered to be large, with plates of 100 x 100 dimensions and
number of types of pieces reaching 30 different types, Systems II proposed by the author was
better than the algorithm of Alvarez-Valdes et al. (2005), presenting, therefore, its contribution
and improvement for the resolution of the two-dimensional non-guillotine cutting problem.

As previously mentioned, a specialized BRKGA was proposed for the two-dimensional non-
guillotined cutting problem with free orientation of parts (System III). This way, a problem with
search space larger than the problem with fixed orientation is analyzed. For this reason, our
results with fixed orientation of parts cannot be compared directly with the results considering
free orientation of parts. But the comparison is valid if it is observed that the results of System
III should be greater than or equal to the results of System II.

5 CONCLUSIONS

This paper used a specialized metaheuristic, that is, the biased random key genetic algorithm,
to solve the two-dimensional non-guillotine cutting problem considering the alternatives with
and without orientation of parts. In the alternative with a smaller search space, the proposal
was compared with results obtained by other optimization proposals. In the case of optimization
considering free orientation, it was not possible to compare it with other proposals since these
proposals are not found in the specialized literature. The specialized algorithm uses specific
strategies to address the problem: the first strategy is the formation of blocks using the same type
of parts, and the second strategy was the scanning of free rectangles on the plate.

The algorithm proposed in this work is considered contributes to the specialized literature
because it presents combinations of strategies not yet tested to solve the problem under study.

A mathematical model was programmed in AMPL and solved using the CPLEX solver to aid
in the comparisons between the results from the exact method and the results obtained by the
specialized algorithm proposed by the current work, in addition to comparing the latter and the
results obtained by works already published and used as a reference in the literature, making it
simpler to check the quality of each one of the results. When comparing the results obtained by
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the specialized genetic algorithm proposed in this work with the results available in the literature
and found in Table 1 of this paper, it is concluded that the proposed algorithm surpassed in two
test cases the results already published, giving another novelty to the current work. Finally, a
specialized algorithm was tested which was configured to turn the parts, if need be. The results
of the twenty-one tests, in this case, were equal to or better than those already published in the
literature but considering the fixed orientation parts.

As suggestion for future work, there is the possibility of extending the problem resolution to
three dimensions, using the specialized algorithm developed in this work and implementing other
metaheuristics, such as the variable neighborhood search algorithm, for the resolution of the
two-dimensional non-guillotine cutting problem.

5.1 Supplementary Materials

The part and plate size data used to support the findings of this study are included in the
supplementary information file.
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GONÇALVES JF & RESENDE MGC. 2013. A Biased Random-Key Genetic Algorithm for a 2D
and 3D Bin Packing Problem. International Journal of Production Economics, 145: 500-510.

HADJICONSTANTINOU E & CHRISTOFIDES N. 1995. An exact algorithm for general, orthog-
onal, two-dimensional knapsack problems. European Journal of Operational Research, 83:
39-56.

LAI KK & CHAN JWM. 1997. Developing a Simulated Annealing Algorithm for the Cutting
Stock Problem. Computers & Industrial Engineering, 32: 115-127.

LEUNG TW, YUNG CH & TROUTT MD. 2001. Application of genetic search and Simulated
Annealing to the two-dimensional non-guillotine cutting stock problem. Computers & Industrial
Engineering, 40: 201-214.

OR-LIBRARY. 2017. Operations Research (OR) problems. Online. http://people.brunel.ac.uk/
mastjjb/jeb/info.html. Access on: 20 Apr. 2017.

SPEARS WM & DEJONG KA. 1991. On the virtues of parameterized uniform crossover. Inter-
national Conference on Genetic Algorithms, 4., San Diego. Proceedings. San Diego: University
of California, p. 230-236.

WANG PY. 1983. Two algorithms for constrained two-dimensional cutting stock problems.
Operations Research, 31(3): 573–586.

WEI L, HU Q, LIM A & LIU Q. 2018. A best-fit branch and bound heuristic for the un-
constrained two-dimensional non-guillotine cutting problems. European Journal of Operational
Research, 270: 448–474.

How to cite
OLIVEIRA EV & ROMERO R. 2022. Improved biased random key genetic algorithm for

the two-dimensional non-guillotine cutting problem. Pesquisa Operacional, 42: e260406. doi:

10.1590/0101-7438.2022.042.00260406.

Pesquisa Operacional, Vol. 42, 2022: e260406



ELIANE VENDRAMINI DE OLIVEIRA and RUBÉN ROMERO 15

APPENDIX A

Research data obtained from the OR-LIBRARY (2017).

For a better understanding of the data from Table A1 through Table A21, the column headers are
described below.

R = (lengthxheight): are the length and height dimensions of the board for each test case.

Pieces: Represents the types of parts available in each test case;

Ci: length of the piece i;

Ai: height of the piece i;

Pi: lower part limitation i;

Qi: upper limit of the pieces i, where Qi also represents the quantity of pieces i; available for
cutting;

Vi: value of the pieces i;

Table A1 – Pieces data and test case plate 1.

R = (10x10)
Pieces Ci Ai Pi Qi Vi

1 3 2 0 2 7
2 7 2 0 3 20
3 4 5 0 2 60
4 4 1 0 2 9
5 1 10 0 1 14
6 8 4 0 1 79
7 4 2 0 2 11
8 3 7 0 3 52
9 6 2 0 3 13

10 9 1 0 2 21

Table A2 – Pieces data and test case plate 2.

R = (10x10)
Pieces Ci Ai Pi Qi Vi

1 1 10 0 3 28
2 5 3 0 2 40
3 9 3 0 3 63
4 6 1 0 3 13
5 3 8 0 3 31
6 4 1 0 1 10
7 6 3 0 2 44
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Table A3 – Pieces data and test case plate 3.

R = (10x10)
Pieces Ci Ai Pi Qi Vi

1 3 7 0 2 35
2 8 2 0 2 40
3 10 2 0 1 27
4 5 4 0 3 23
5 2 9 0 2 43

Table A4 – Pieces data and test case plate 4.

R = (15x10)
Pieces Ci Ai Pi Qi Vi

1 10 3 0 2 34
2 9 3 0 1 48
3 12 2 0 3 72
4 11 3 0 1 91
5 12 3 0 3 37
6 11 1 0 3 15
7 2 10 0 1 36

Table A5 – Pieces data and test case plate 5.

R = (15x10)
Pieces Ci Ai Pi Qi Vi

1 15 2 0 2 34
2 7 3 0 1 27
3 9 1 0 1 14
4 8 3 0 1 71
5 12 2 0 2 61

Table A6 – Pieces data and test case plate 6.

R = (15x10)
Pieces Ci Ai Pi Qi Vi

1 2 9 0 1 50
2 10 2 0 3 29
3 2 4 0 1 11
4 2 8 0 2 30
5 3 8 0 1 46
6 4 1 0 1 7
7 6 4 0 3 32
8 10 3 0 1 74
9 11 2 0 1 48

10 4 5 0 1 32
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Table A7 – Pieces data and test case plate 7.

R = (20x20)
Pieces Ci Ai Pi Qi Vi

1 15 3 0 1 110
2 6 6 0 3 93
3 13 1 0 2 38
4 8 7 0 2 144
5 18 5 0 3 185
6 12 4 0 1 78
7 8 3 0 1 25

Table A8 – Pieces data and test case plate 8.

R = (20x20)
Pieces Ci Ai Pi Qi Vi

1 1 9 0 3 26
2 16 3 0 1 113
3 18 3 0 1 127
4 20 2 0 1 104
5 3 1 0 2 4

Table A9 – Pieces data and test case plate 9.

R = (20x20)
Pieces Ci Ai Pi Qi Vi

1 14 2 0 1 45
2 1 5 0 1 10
3 20 4 0 2 139
4 12 3 0 3 92
5 11 8 0 2 145
6 11 6 0 2 123
7 7 9 0 1 166
8 17 5 0 1 252
9 7 14 0 2 161

10 1 7 0 3 12

Table A10 – Pieces data and test case plate 10.

R = (30x30)
Pieces Ci Ai Pi Qi Vi

1 3 23 0 3 118
2 29 5 0 1 244
3 21 2 0 3 81
4 17 11 0 3 371
5 14 7 0 2 254
6 8 5 0 2 78
7 21 8 0 1 293
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Table A11 – Pieces data and test case plate 11.

R = (30x30)
Pieces Ci Ai Pi Qi Vi

1 12 21 0 1 450
2 17 21 0 1 570
3 6 6 0 1 49
4 9 15 0 1 166
5 5 12 0 1 69
6 16 6 0 1 92
7 5 4 0 1 17

Table A12 – Pieces data and test case plate 12.

R = (30x30)
Pieces Ci Ai Pi Qi Vi

1 16 6 0 1 132
2 24 1 0 3 29
3 6 28 0 3 351
4 8 23 0 3 275
5 5 1 0 3 10
6 6 26 0 2 259
7 2 30 0 2 110
8 9 11 0 3 240
9 4 30 0 1 265

10 16 13 0 1 507

Table A13 – Pieces data and test case plate 13.

R = (30x30)
Pieces Ci Ai Pi Qi Vi

1 1 30 0 3 75
2 25 7 0 1 279
3 27 9 0 3 409
4 30 2 0 3 65
5 26 7 0 3 235
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Table A14 – Pieces data and test case plate 14.

R = (30x30)
Pieces Ci Ai Pi Qi Vi

1 22 21 0 1 828
2 12 21 0 1 450
3 11 18 0 1 335
4 17 21 0 1 570
5 8 21 0 1 268
6 9 17 0 1 236
7 5 18 0 1 128
8 6 6 0 1 49
9 9 15 0 1 166

10 1 19 0 1 22
11 5 12 0 1 69
12 22 21 0 1 530
13 5 6 0 1 33
14 16 6 0 1 92
15 5 4 0 1 17

Table A15 – Pieces data and test case plate 15.

R = (70x40)
Pieces Ci Ai Pi Qi Vi

1 17 9 0 1 153
2 11 19 0 4 209
3 12 21 0 3 252
4 14 23 0 4 322
5 24 15 0 3 360
6 25 16 0 4 400
7 27 17 0 2 459
8 18 29 0 3 522
9 21 31 0 3 651

10 32 22 0 2 704
11 23 33 0 3 759
12 34 24 0 2 816
13 35 25 0 2 875
14 36 26 0 1 936
15 37 27 0 1 999
16 38 28 0 1 1064
17 39 29 0 1 1131
18 41 30 0 1 1230
19 43 31 0 1 1333
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Table A16 – Pieces data and test case plate 16.

R = (40x70)
Pieces Ci Ai Pi Qi Vi

1 31 43 0 4 500
2 30 41 0 2 480
3 29 39 0 4 460
4 28 38 0 4 440
5 27 37 0 3 420
6 26 36 0 4 410
7 25 35 0 3 400
8 24 34 0 4 380
9 33 23 0 4 360

10 22 32 0 3 340
11 31 21 0 3 320
12 29 18 0 3 300
13 17 27 0 2 280
14 15 24 0 2 240
15 16 25 0 4 260
16 15 24 0 1 240
17 23 14 0 4 220
18 21 12 0 3 180
19 19 11 0 4 160
20 9 17 0 1 140

Table A17 – Pieces data and test case plate 17.

R = (100x100)
Pieces Ci Ai Pi Qi Vi

1 4 90 0 5 838
2 22 21 0 2 521
3 22 80 0 3 4735
4 1 88 0 5 181
5 6 40 0 5 706
6 100 9 0 5 2538
7 46 14 0 3 1349
8 10 96 0 1 1685
9 70 27 0 3 5336

10 57 18 0 1 1775
11 10 84 0 1 1131
12 100 1 0 5 129
13 2 41 0 5 179
14 36 63 0 2 6668
15 51 24 0 4 3551
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Table A18 – Pieces data and test case plate 18.

R = (100x100)
Pieces Ci Ai Pi Qi Vi

1 8 81 0 1 953
2 5 76 0 1 389
3 42 19 0 1 1668
4 6 80 0 1 676
5 41 48 0 1 3580
6 6 86 0 1 1416
7 58 20 0 1 3166
8 99 3 0 1 537
9 9 52 0 1 1176

10 100 14 0 1 3434
11 7 53 0 1 676
12 24 54 0 1 1408
13 23 77 0 1 2362
14 42 32 0 1 4031
15 17 30 0 1 1152
16 11 90 0 1 2255
17 26 65 0 1 3570
18 11 84 0 1 1913
19 100 11 0 1 1552
20 29 81 0 1 4559
21 10 64 0 1 713
22 25 48 0 1 1279
23 17 93 0 1 3989
24 77 31 0 1 4850
25 3 71 0 1 299
26 89 9 0 1 1577
27 1 6 0 1 12
28 12 99 0 1 2116
29 33 72 0 1 2932
30 21 26 0 1 1214
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Table A19 – Pieces data and test case plate 19.

R = (100x100)
Pieces Ci Ai Pi Qi Vi

1 3 98 0 1 756
2 34 36 0 1 2712
3 100 6 0 1 1633
4 49 26 0 1 2332
5 14 56 0 1 2187
6 100 3 0 1 470
7 10 90 0 1 1569
8 23 95 0 1 4947
9 10 97 0 1 2757

10 50 47 0 1 4274
11 41 45 0 1 4347
12 13 12 0 1 396
13 19 68 0 1 3866
14 50 46 0 1 5447
15 23 70 0 1 2906
16 28 82 0 1 6032
17 12 65 0 1 1799
18 9 86 0 1 929
19 21 96 0 1 5186
20 19 64 0 1 2120
21 21 75 0 1 1629
22 45 26 0 1 2059
23 19 77 0 1 2583
24 5 84 0 1 953
25 16 21 0 1 1000
26 23 69 0 1 2900
27 5 89 0 1 1102
28 22 63 0 1 2234
29 41 6 0 1 458
30 76 30 0 1 5458

Pesquisa Operacional, Vol. 42, 2022: e260406



ELIANE VENDRAMINI DE OLIVEIRA and RUBÉN ROMERO 23

Table A20 – Pieces data and test case plate 20.

R = (100x100)
Pieces Ci Ai Pi Qi Vi

1 48 48 0 1 5145
2 6 85 0 2 874
3 100 14 0 1 2924
4 17 85 0 1 3182
5 69 20 0 1 2862
6 12 72 0 1 1224
7 5 48 0 3 531
8 1 97 0 3 249
9 66 36 0 2 6601

10 15 53 0 1 1005
11 29 80 0 3 6228
12 19 77 0 1 3362
13 97 7 0 1 907
14 7 57 0 2 473
15 63 37 0 2 6137
16 71 14 0 1 1556
17 3 76 0 3 313
18 34 54 0 1 4123
19 5 91 0 2 581
20 14 87 0 1 1999
21 62 28 0 3 5004
22 6 7 0 3 2040
23 20 71 0 1 3143
24 92 7 0 1 795
25 10 77 0 2 1460
26 99 4 0 3 841
27 14 44 0 2 1107
28 100 2 0 3 280
29 56 40 0 2 5898
30 86 14 0 1 2096
31 22 93 0 1 4411
32 13 99 0 3 3456
33 7 76 0 3 1406
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Table A21 – Pieces data and test case plate 21.

R = (100x100)
Pieces Ci Ai Pi Qi Vi

1 8 81 0 3 953
2 5 76 0 4 389
3 42 19 0 4 1668
4 6 80 0 4 676
5 41 48 0 1 3580
6 6 86 0 5 1416
7 58 20 0 5 3166
8 99 3 0 5 537
9 9 52 0 5 1176

10 100 14 0 4 3434
11 7 53 0 5 676
12 24 54 0 1 1408
13 23 77 0 1 2362
14 42 32 0 5 4031
15 17 30 0 5 1152
16 11 90 0 4 2255
17 26 65 0 2 3570
18 11 84 0 3 1913
19 100 11 0 1 1552
20 29 81 0 1 4559
21 10 64 0 2 713
22 25 48 0 1 1279
23 17 93 0 4 3989
24 77 31 0 1 4850
25 3 71 0 5 299
26 89 9 0 4 1577
27 1 6 0 5 12
28 12 99 0 2 2116
29 21 26 0 5 1214
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