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ABSTRACT. This research addresses a lot sizing and scheduling problem inspired by a real-world produc-
tion environment where the customers make advanced orders and the industry need to decide which orders
will be accepted with the aim of maximizing the profit respecting the production capacity constraints. Or-
ders are composed of different types of items which must be delivered within a given time interval and,
moreover, such orders cannot be split. A mixed integer programming (MIP) model is proposed to repre-
sent the problem and a MIP-based heuristic is also proposed to deliver good solutions at an acceptable
computational time. The heuristic is composed of three phases (construction, deterministic improvement
and stochastic improvement phases) and combines relax-and-fix, fix-and-optimize, and iterative MIP based
neighborhood search procedures. Computational tests are presented in order to study the efficiency of the

proposed approaches.

Keywords: Lot sizing and scheduling, order acceptance, MIP-based heuristics.

1 INTRODUCTION

Nowadays, global market is becoming more competitive, so it is essential for industries to have
more efficient production plans. In many industries, the integrated lot sizing and scheduling
problem (LSP) is crucial since it deals with the determining of the size of the production lots and
the sequence of these lots in several production units with limited resources aiming to provide a
production plan that minimizes the costs incurred in the production process (Almada-Lobo et al.
(2015),Guimardes et al. (2014),Copil et al. (2017)).
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472  CAPACITATED LOT SIZING AND SCHEDULING

Usually, lot sizing and scheduling problems are represented by mixed integer optimization mod-
els and they are ./ #?-hard in the strong sense. Therefore, researchers have proposed customized
exact and heuristic methods to find good feasible solutions for large sized test instances, some-
times based on real-world applications of the LSP, at acceptable computational time (see Akar-
tunali et al. (2016) and Brahimi et al. (2017)). The most important approaches to deal with the
LSP and its variations are reviewed in Brahimi et al. (2017) and Copil et al. (2017).

In this paper, we deal with a LSP based on a Brazilian food industry that produces an extensive
catalogue of manufactured products in a single production line. In this type of industry, we can
observe the following main characteristics:

i) significant inventory holding costs, since items have to be stored in places with monitored
temperature;

ii) sequence dependent setup costs and times, i.e., changeovers between different items cause
costs associated with loss of production time and the times and the incurred costs depend
on the sequence of production of the items;

iii) demand choice flexibility: the customers make advanced orders composed of various types
of items. Usually, due to production capacity constraints, the company cannot satisfy all
customers’ orders, and then the decision makers need to decide whether each order will be
accepted or not with the aim of maximizing the obtained profit. Not accepted orders are
lost;

iv) indivisible orders: customers are not willing to receive their orders partially, i.e., if an order
is accepted, all of its items have to be delivered at the same time;

v) delivery time windows: the accepted orders must be delivered in a time window composed
by some adjacent production periods.

Usually, literature addressing LSP problems is able to deal with the first two characteristics (see
Guimaries et al. (2014); Oliveira & Santos (2017)). However the last three features are not com-
mon in literature and, to the best of our knowledge, there is no research in the literature simultane-
ously addressing all of the five characteristics considered in paper (the related works are detailed
in Section 2). In this article we describe, model, and propose specific solution approaches to
deal with the lot sizing and scheduling problem considering demand choice flexibility, delivery
time window, and indivisible orders (LSP-DTI). The main contributions of this paper are the
following:

¢ we extend the model introduced in Haase (1996) (and reformulated in Oliveira & Santos
(2017)) to deal with the LSP-DTI,

* we propose a MIP based heuristic procedure, composed of three phases (construction,
deterministic improvement, and stochastic improvement), to provide good solutions for
the LSP-DTI at an acceptable computational time.
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The researches presented in Furtado (2012), Sereshti & Bijari (2013), and da Silva et al. (2014)
describe production environments that consider some of the characteristics addressed in this
paper, for example, foundry industry, moquette weaving industry, and baking industry. Therefore,
we believe that the model and methods proposed in this paper can be easily adapted for a range
of industries, such as those previously mentioned.

The paper is organized as follows: In Section 2, we present the literature review emphasizing the
works that addressed similar problems and we detail the description of the addressed problem,
while in Section 3 we present a mixed integer programming model for the LSP-DTI and study its
computational complexity. In Section 4 we propose a MIP based heuristic procedure to deliver
good solutions for the studied problem and the computational results to study the efficiency of
the proposed approaches (model and heuristic) are presented in Section 5. Finally, in Section 6 it
is presented some conclusions and various research directions are appointed as future studies.

2 RELATED RESEARCHES AND PROBLEM DESCRIPTION

The lot sizing and scheduling problem (LSP) consists in simultaneously determining how many
of each product must be produced and the sequence in which the products are produced in each
production period of a finite planning horizon. The aim of the problem is to ensure the fulfillment
of the customer demands and minimizing the costs incurred in the production process usually
represented by inventory holding and setup costs.

Traditionally, researches addressing the LSP adopt the assumption that customers’ demands
should be fully met. However, as observed in Sereshti & Bijari (2013), in a business with a goal of
maximizing profit, satisfying all potential demands may not be an optimal solution. Therefore,
Sereshti & Bijari (2013) addressed a LSP considering the demand choice flexibility assump-
tion. In this problem, the industry can decide which demands should be accepted in each period
with the aim of maximizing the profit obtained with the accepted demands discounting the in-
ventory holding and sequence dependent setup costs. The authors proposed two mixed integer
programming models for an appropriate selection of demands to be met. This problem differ of
the problem addressed in this paper, because the inventory is controlled “item by item”, i.e., pos-
sible customers’ orders containing various types of items are disaggregated by type of item (the
indivisible orders assumption is not considered). Besides that, the time windows assumption is
also not considered.

In Aouam et al. (2018), a production planning problem with demand choice flexibility and un-
certain demand was addressed. In this problem, the orders are indivisible and the authors present
two operational reasons for potentially rejecting an order in environments with limited production
capacity:

* economies of scale: it might be more profitable for the company to reject an order if it

requires high setup cost and cannot be aggregated with additional orders to justify the
production setup; and
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* congestion effects on the production lines: the authors argue that the lead time depends on
the workload. Therefore, the more orders are accepted the higher are the production lead
times, resulting in the possibility of missing customers due dates.

In Aouam et al. (2018), the scheduling part of the problem was not addressed, but the demand
choice flexibility was integrated with lot sizing decisions and with the load-dependent lead times
problem in two different models. The problems were formulated as mixed integer programming
models and relax-and-fix and fix-and-optimize heuristics were applied to provide good solutions
for the problems.

Supithak et al. (2010) addressed a lot sizing and scheduling problem with earliness, tardiness and
setup penalties. In this problem, customers make indivisible orders and the industry must produce
and deliver such orders. Each order has its own due date, but the industry can deliver the orders
after the due date through a penalty in the objective function. Besides that, Supithak et al. (2010)
adopted the follow assumptions: i) each order is composed by only one type of item; ii) in each
period just one item can be produced; iii) the customers’ demands are given in integer number of
production batches. We highlight that the assumptions (i), (ii), and (iii) are so restrictive for our
considered production environment (food industry), so that, the problem addressed in this paper
can be viewed as a generalization of the problem addressed in Supithak et al. (2010). Moreover
that, Supithak et al. (2010) do not consider the demand choice flexibility assumption.

Yang et al. (2017) also addressed a lot sizing and scheduling problem with indivisible orders. In
this problem, all orders have to be produced (demand choice flexibility is not considered) and the
aim is to minimize the completion time. It was not considered setup times and costs. A mixed
integer programming model was presented and four heuristic solution approaches commonly
used for solving the bin packing problem were adapted to solve the problem. Computational
results showed that finding optimal solutions for instances with more than 60 orders may be
challenging from computational perspective. Jaruphongsa & Lee (2008) consider a lot sizing
problem with delivery time windows, container-based transportation costs and no decisions about
the production sequence. They showed that the problem is NP-hard if each demand must be
satisfied by exactly one delivery.

Regarding the solution methods used in this paper, in order to solve the studied problem, we high-
light the paper Toledo et al. (2015) that has combined relax-and-fix (RF) and fix-and-optimize
(FO) heuristics to obtain high quality feasible solutions for multi-level lot sizing problems
(MLP). In Toledo et al. (2015) these heuristics were tested in a large number of test instances
from the literature for the MLP and the computational results have indicated that the combina-
tion of RF with FO is very efficient and competitive, outperforming some genetic algorithms.
Moreover, the authors have proposed a (novel) general and efficient way to define the RF and FO
heuristics. Besides that, recently, Soler et al. (2019) proposed a RF heuristic to solve a lot sizing
and scheduling problem on parallel machines that it is able to provide competitive dual bounds
for the problem and high quality feasible solutions. In the procedure introduced in Soler et al.
(2019) the set of binary variables was decomposed considering the particular structure of the
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problem. Firstly, the decisions regarding the lot sizing aspect were taken into account together
with decisions about which production lines to assemble. Secondly, fixing the decisions about the
assembled production lines, the lot sizing aspect is newly taken into account, but now, together
with the scheduling decisions.

In this paper, we address the integration of the demand choice flexibility (or order acceptance)
with the simultaneous lot sizing and scheduling problems considering two additional features:
indivisible orders and delivery time windows. This problem is an extension of some problems
addressed in the literature as we have reported in the beginning of this section and it is based in a
production system usually adopted by food industries, more specifically companies that produce
meat products.

In these companies, the catalogue of products is very extensive including meat from several types
of animals. In order to avoid contamination, it is necessary to perform some procedures when
there is exchange of products in the production line. These procedures depend of the sequence in
which the products are produced in the line, i.e., there are sequence dependent setup times and
costs. Besides that, the items need to be stored in places with monitored temperature implying in
significant inventory holding costs.

Usually, customers are restaurants and supermarkets. These clients make advanced orders com-
posed by several types of products and they are not willing to receive their orders partially,
because they need to ensure that their menu/catalogue is completely available all the time. Each
order has its due date that consists of some adjacent production periods. Sometimes, the company
needs to reject customers’ orders due to capacity constraints. Note that the capacity constraints
are complicated by the sequence dependent setup times.

3 MATHEMATICAL FORMULATION AND COMPLEXITY OF THE PROBLEM

In this paper, we extend the CLSD model proposed in Haase (1996) to represent the LSP-DTI.
The reformulation of the CLSD model presented in Oliveira & Santos (2017) is also incorporated
in order to obtain a stronger formulation.

The LSP-DTI consists in determining simultaneously: i) the customers’ orders that will be ac-
cepted, ii) the period (in the respective time window) in which each accepted order will be deliv-
ered, iii) the sequence in which the lots will be produced in each period; and iv) the size of the
production lots. The aim is to maximize the profit obtained by the accepted orders discounting
the costs incurred by inventory holding and sequence dependent setups.
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The parameters and variables are described in Table 1 and the proposed model (CLSD-DTI)
consists in maximizing the objective function (1) subject to constraints (2) to (9). The proposed
CLSD-DTI model is, then, given by:
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The objective function (1) consists in maximizing profit obtained by the accepted orders dis-
counting the sum of inventory holding and setup costs. Constraints (2) are the inventory balance
constraints, and Constraints (3) ensure that the orders are delivered at most once within its time
windows. Constraints (4) are capacity constraints, while Constraints (5) ensure that a product can
only be produced if the respective production is set up. Constraints (6) ensure that all produced
items are sequenced in the respective period, and Constraints (7) establish that exists only one
first produced item by period. Constraints (8) ensure the flow balance for the sequencing of lots,
and (9) are the MTZ constraints to eliminate sub-tours.

Note that, by Constraints (3) each order can be met or not within its time windows given us the
demand choice flexibility. On the other hand, Constraints (2) ensure that if an order is accepted,
then the amount of each item that composes this order need to be available, hence we obtain the
indivisible orders assumption. Finally, the delivery time windows assumption is obtained when
we define the variables ¥, only fort € {F,,...,L,} together with Constraints 3.

In Aouam et al. (2018), it shown that the integration of the order acceptance flexibility in the lot
sizing problem results in a .4 &?-hard problem. The LSP-DTT is also ./ Z-hard as stated in the
Proposition 1.

Proposition 1. The LSP-DTI is . &7-hard.
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Table 1 — Parameters and variables.

Parameters

N,T Number of orders (indexed by n) and number of periods (indexed by 7)
J  Number of items (indexed by i and j)

F,,L,, First and last periods of the delivery time window of order n
P, Profit of order n in period ¢ € {F,,...,L,}
O; Set of orders that can be delivered on period ¢, i.e., O; = {n|F, <t < L,}

qjn,C;  Amount of item j in order n and production capacity of period ¢

hj,a; Unitary inventory holding cost and unitary processing time of item j

scij,stij  Setup cost and setup time for changeover from product i to j

Variables

Yur € {0,1} 1 if order n is delivered in period t € {F,,...,L,}, and O otherwise

wj; € {0,1}  lifitem jis produced in period ¢, and O otherwise

vjir €{0,1} 1ifitem j is the first item produced in period ¢, and 0 otherwise

zijy € {0,1} 1 if there is change of production from item i to item j in 7, and O otherwise
xj; >0  Amount of item j produced in period ¢
Ij; >0 Inventory of item j by the end of period ¢
Viy >0  Variables to represent the order of production of item j in period ¢

Proof. In order to show that the LSP-DTI is .4 &?-hard, we will show that every instance of
the traditional lot-sizing and scheduling problem with sequence dependent setup times and costs
(LSP) can be described as an instance of the LSP-DTI.

Let B be an instance of the LSP, where d; indicates the demand of the product j due to the period
¢t and the other necessary parameters to describe  (setup costs and times, inventory holding
costs, number of products and periods, capacity, and processing times) are the same indicated
in Table 1. With the aim of defining an instance [3/ of the LSP-DTI, we will fix the additional
parameters (number of orders, time windows of the orders, products that compose each order,
and profit of the orders) as follows:

e N =T. The number of orders is the number of periods;

e F,=L,=nVne{l,....N} ={1,...,T}. Each order is due to only one period that
coincides with the number of the order. Therefore, we also have that O, = {r},Vt =
1,...,T;

* gin=djn,Vj,ne{l,...,N} ={1,...,T}. Each order is composed by the demand of the
corresponding period;
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e P, =0,Vn,t. The profit of each order is equal to zero, i.e., we just want to minimize the
incurred production costs.

Moreover, we fix ¥, = 1,Vn and t € {F,,...,L,} = {n} to indicate that every order must be
met in its due date. Under these conditions, solving the instance 8 of the LSP is equivalent to
solving the instance ﬁl of the LSP-DTI. Therefore, as the LSP is .4 ?-hard (Fleischmann &
Meyr (1997)), the LSP-DTI is also .4 #-hard. O

4 MIP HEURISTIC PROCEDURES

Computational results observed in the literature regarding simpler problems than the LSP-DTI
(e.g., Sereshti & Bijari (2013)) indicate that Branch-and-Cut algorithms from commercial solvers
are not able to provide good solutions at an acceptable computational time. This fact is confirmed
for the LSP-DTI by the results presented in Section 5. Therefore, we propose a heuristic proce-
dure to solve the LSP-DTI. The proposed solution approach is composed of three phases. The
first phase consists of a relax-and-fix procedure to quickly construct an initial feasible solution.
The second phase consists of a deterministic fix-and-optimize procedure to improve the solutions
constructed in the first phase. Finally, in the third phase we apply a stochastic improvement pro-
cedure, that consists of an Iterative MIP based Neighborhood Search - INS (proposed in James
& Almada-Lobo (2011)) to scape of possible bad local optima solutions.

4.1 First phase: a relax-and-fix procedure

Relax-and-fix heuristics (RF) have been extensively used in the literature to build solutions
for production planning problems (see Ferreira et al. (2009) James & Almada-Lobo (2011),
Guimaraes et al. (2013), Sel & Bilgen (2014), Toledo et al. (2015), and Aouam et al. (2018)). In
each iteration of a RF heuristic a small MIP problem is solved where: (i) some binary variables
have their values fixed in the incumbent values (obtained from the previous iterations); (ii) some
binary variables are linearly relaxed; and (iii) only few of the binary variables are enforced to be
integer.

A detailed framework for the relax-and-fix heuristic can be found in Toledo et al. (2015). In order
to build initial feasible solutions for the LSP-DTI, we investigate RF algorithms that decompose
the set of the binary variables of the problem by periods. Next, we present our RF procedure
using the framework introduced in Toledo et al. (2015).

Let ® = (6,0,,...,0r) be a vector of length T where each entry 6; is the set of binary variables
associated with period ¢, i.e.,

61 = (?’lm---77Nt7W1t;---7WJt7y1t,---7)’Jt,let;---7ZIJt>---711117---aZ]Jt)-

Moreover, let window be the set of contiguous periods in which the binary variables associated
with them are enforced to be integer, windowSize the number of periods inside the window,
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overlap the overlap rate of periods that are re-optimized in each iteration, and timeLimit the
maximum running time of the RF procedure.

Initially, all binary variables in the RF solution (sol.®) are linearly relaxed. A window is defined
as a set that includes a fixed amount (windowSize) of contiguous periods. In the first RF iteration,
the binary variables referring to the periods inside the window are enforced to be integer (set
®u1p), while the others binary variables are kept linearly relaxed (set ®zp). The resulting MIP
is then solved and sol.® is updated. Next, in the second iteration, a new window is defined and
the subset of binary variables that left the (previous) window are fixed in the incumbent values
(set Oy;y), while the another variables are kept in the set ®p. The resulting subproblem is then
solved and sol.® is updated. The algorithm continues processing this way until all variables are
fixed, i.e., the algorithm is interrupted when @;, = ©.

In each iteration, the window is updated moving step periods forward with step = (1 — overlap) *
windowSize, where overlap € [0,1]. Figure 1 presents the framework of our RF heuristic
considering T = 5, windowSize = 2, overlap = 0.5, and step = 1.

Opurp 0p
. . RF parameters:
1 61 6, 03 0, 0 windowSize = 2
overlap = 0.5
9f:x MIP GLLP step=1
MIP Op Ofix =0
[ . |
(] fix M P Feasible solution
GMIP

Figure 1 — Framework of the RF heuristic considering T = 5, windowSize = 2, overlap = 0.5, and
step = (1 —overlap) * windowSize = 1.

‘We highlight that the demand choice flexibility assumption ensures that our relax-and-fix heuris-
tic can always find a feasible solution for the problem, once the orders can be rejected, if nec-
essary. In Section 5 we present computational results setting different values for parameters
windowSize, overlap, and timeLimit.

Pesquisa Operacional, Vol. 39(3), 2019



480 CAPACITATED LOT SIZING AND SCHEDULING

4.2 Second phase: a deterministic fix-and-optimize procedure

The second phase of the proposed heuristic consists of a fix-and-optimize procedure. This heuris-
tic starts with an initial feasible solution on hand and in each iteration a subproblem is solved
optimizing just a subset of the binary variables of the original problem (and all possible contin-
uous variables), while the other binary variables have their values fixed in the incumbent value.
The incumbent solution is updated only when a better solution is found.

In our heuristic framework we use the initial feasible solution obtained on phase I to start the
fix-and-optimize (FO) - phase II. As phase I builds solutions (successively) optimizing binary
variables referring to adjacent periods, in the phase II we propose a different criterion to choose
the periods to be optimized on each iteration, in order to diversify the search strategy.

More specifically, we propose a fix-and-optimize heuristic named FOTO (fix-and-optimize with
total options of two periods combinations) that consists in optimizing, in each iteration, the binary
variables regarding to two production periods, so that at the end of the procedure, all possible two
periods combinations are tested. In the first iteration, we optimize the binary variables referring
to the periods t = 1 (set @) and ¢t = 2 (set ®,), while the other binary variables are fixed in the
incumbent value. In the second iteration, we optimize the binary variables in the sets ®; and O3
(referring to the periods + = 1 and # = 3) and so on until iteration & = T — 1 where the binary
variables referring to the periods t = 1 and r = T are optimized. Thereafter, in the iteration & =T,
we optimize the variable referring to the periods = 2 and f = 3 and so on. In this way, the FOTO

(r-1)
2

procedure is composed by a iterations. However, we highlight that the user can specify a

maximum running time timeLimit for the FOTO heuristic and then the algorithm is interrupted

(T-1)
2

when the running time exceed timeLimit (sometimes, before reaching r iterations). The

continuous variables x;;,V};,Vj,t, and I;;,Vj,t are optimized in all iterations.

The design of the FOTO heuristic is motivated by two main facts:

i. Small subproblems. In general, a subproblem that considers only the binary variables re-
ferring to two production periods can be quickly solved as shown in the computational
results presented in Section 5;

ii. Flexibility to change the set of orders that are meet in an initial feasible solution. For ex-
ample, letnj,ny € {1,...,N} be two different customer orders with delivery time windows
Fas...,Ly, and F,,, ..., Ly, , respectively. Moreover, suppose that F,, > L,, + 1. Now, con-
sider an incumbent feasible solution (sol.®) in which the customer order n; is meet but
ny is not meet. In this case, with the aim of to find a better feasible solution, it can be
interesting to evaluate the possibility of meet the order n; rather than n; (i.e., to use the
production capacity to produce order n; instead n1). However, if a fix-and-optimize heuris-
tic optimizes only binary variables from two adjacent periods this possibility can not be
evaluated. Hence, in our FOTO procedure, we consider all two periods combinations.

Algorithm 1 presents a pseudo-code for the FOTO heuristic. The heuristic is interrupted if all pos-
sible two periods combinations have been optimized or if the maximum running time timeLimit

Pesquisa Operacional, Vol. 39(3), 2019



WILLY A. DE O SOLER, KELLY C. POLDI and MARISTELA O. SANTOS 481

has been reached. In the line 8 of the Algorithm 1, the function solve(-) solves the incumbent sub-
problem optimizing just the binary variables in the set ®7p (and all continuous variables), while
the binary variables from the set ®y;, are fixed in the incumbent values (according to sol.®).
The solution obtained solving the subproblem is represented by new.®. The solution new.® is
accepted as the new incumbent solution only if its profit is higher than the incumbent profit.

Algorithm 1 Phase II - FOTO heuristic

1: Given an initial solution sol.®;

2: Set time = 0;

3: Settl 1

4: while time < timeLimit and t1 < T do

5: fort2=t1+1,....,T do

6: Ouip =0, UB,;
7: ®fix = ®\®M1P§
8
9

solve(sol.0, Ourp, O fix, new.0);
: if f(new.®) > f(s0l.®) then
10 S0l.® < new.O;

11 end if
12: Update time;

13:  end for
14:  tl<t1+41;
15: end while
16: return sol.®;

4.3 Third phase: a stochastic MIP procedure

The Iterative MIP-based Neighborhood Search (INS) heuristic was proposed in James &
Almada-Lobo (2011) with the aim of solving a lot sizing and scheduling problem with sequence
dependent setup times and costs. Just as RF and FOTO, the INS heuristic also decomposes the
problem into smaller subproblems that can be more easily solved by using mathematical pro-
gramming techniques, and just as variable neighborhood search (VNS) meta-heuristic, the INS
uses a set of more than one neighborhood structure. Therefore, INS procedure starts with a fea-
sible solution on hand and in each iteration a neighborhood search is performed according to a
incumbent neighborhood structure. Each iteration of the INS heuristic is composed of two main
steps:

i) neighborhood search step; and

ii) neighborhood structure update step.

As defined in James & Almada-Lobo (2011), the neighborhood search step can be viewed as a
fix-and-optimize heuristic, while the neighborhood structures consist of rules to determine the
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subset of binary/integer variables that are optimized in each iteration within the neighborhood
search step. The Algorithm 2 presents a pseudocode for the INS procedure used in this paper.

Algorithm 2 INS heuristic

1: Given m neighborhood structures NSy, ...,NSy, an initial solution sol.® and a maximum

number of iterations Ryax;
2: Set stop = false;
3: Setr <« 0;
4: while stop = false and r < Ryux do
5: Setk «+1;

6:  while stop = false and k < M do

7: s0l.® = Stochastic Fix-and-Optimize(sol.®, NS);
8 if f(s01.®") > f(s0l.®) then

9 sol.® + sol.@l;
10: k+1;
11: else
12: k< k+1;
13: end if
14: Update stop;

15:  end while
16: r<r+1;
17: end while

18: return sol.®;

In the Algorithm 2, the loop defined in lines 4 to 17 is the major iteration, and the loop defined
in lines 6 to 15 is the minor iteration. Line 7 consists of the neighborhood search step, i.e., a
fix-and-optimize heuristic in which the variables to be optimized are determined according to
the incumbent neighborhood structure (NSg) and lines 8 to 13 define the neighborhood structure
update step.

If Stochastic Fix-and-Optimize(sol.®, NS;) returns a solution s01.0 with greater profit than the
incumbent solution, then we update the incumbent solution and in the next (minor) iteration the
first neighborhood structure is explored. Otherwise, in the next (minor) iteration, we explore the
next neighborhood structure (if possible).

A new major iteration is started when all available neighborhood structures have been explored.
In James & Almada-Lobo (2011), it is highlighted that the user of the INS must specify the
stop criteria and the neighborhood structures. We adopted maximum running time reached and
maximum number of major iterations performed as stop criteria.
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4.3.1 Neighborhood search step: Stochastic Fix-and-Optimize heuristic

In our INS approach, the neighborhood search step consists of a stochastic fix-and-optimize
heuristic in which the set of variables to be optimized in each iteration is randomly selected
according to the incumbent neighborhood structure. Algorithm 3 presents a pseudocode for the
Stochastic Fix-and-Optimize heuristic used in this paper. In Algorithm 3, « is the counter of
iterations, and stag is the number of consecutive iterations without improvement in the quality of
the solution.

Algorithm 3 Stochastic Fix-and-Optimize

1: Given a feasible solution sol.®, a neighborhood structure NS, and a maximum number of
iterations without improvement S;

2: Set a0 < 0;

3: Stop < False;

4: while Stop = False and stag < S do

5:  Define the set ®yp according to the neighborhood structure NS;
6 Ofix =0\ Opp;

7. Solve(®pyyp, Oyiy) obtaining a solution sol.0%;
8. if f(s0l.O%) > f(s0l.0) then

9: s0l.® « s0l.0¢%;

10: stag < 0;

11:  else

12: stag < stag + 1;

13:  end if

14:  Update Stop;

15: a+—oa+1;
16: end while
17: return sol.Q®;

The Stochastic Fix-and-Optimize procedure is interrupted either when S consecutive iterations
are performed without finding a better solution; or when the maximum running time is reached;
or when the incumbent structure NS; has been fully exploited.

4.3.2 Neighborhood structures

We used neighborhood structures that consist in decomposing the original problem by periods
(similarly to James & Almada-Lobo (2011)) and by customers’ orders. In phase II we optimize
binary variables regarding two production periods and we probably find a local maximum so-
lution. Therefore, in phase III, we propose neighbourhood structures that allow increasing the
number of periods to be optimized in each iteration in order to escape of this possible local
maximum solution.
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The number of neighborhood structures (M) depends on the number of production periods (T)
of the test instance. For the test instances proposed in Section 5, we empirically adopted M =

max{3, % }.

In general, the neighborhood structure NS,,, withm = 1,...,M — 1, consists of randomly select,
in each iteration of the neighborhood search step (Stochastic Fix-and-Optimize), a set of m + 1
consecutive periods to have their binary variables optimized, while the other binary variables
have their value fixed in the value of the incumbent solution. Initially, all sets of consecutive pe-
riods have the same probability of being selected, however, these probabilities reduce according
to the frequency in which the periods have been selected in the incumbent Stochastic Fix-and-
Optimize. Let f; be the frequency in which the set of periods ¢, + 1,...,r + (m — 1) has been
selected in the incumbent Stochastic Fix-and-Optimize, the probability of accepting the set of
periods #,t+1,...,t 4 (m— 1) in each iteration is given by e*%, where A is a greater than 1 real
parameter that was empirically determined. Furthermore, it is not allowed that a same period be
selected in two consecutive iterations.

Note that, in the INS algorithm, when a better feasible solution is found we return to explore
the first neighbourhood structure. Therefore, it is interesting that the first structure results in
subproblems that can be quickly solved, while the other structures should be able to escape of
possible local optima solutions found by the first structure. Therefore, our first neighbourhood
structure consists in optimizing the binary variables referring to only two periods, while in the
other structures we increase the number of periods to have their binary variables optimized in
each iteration.

Finally, in the structure NSj, in each Stochastic Fix-and-Optimize iteration, we randomly select a
customer order n and optimize all binary variables referring to order n’in which {Fy.. Ly} C
{F,,...,Ly}. Similarly to other neighborhood structures, the probability of selecting the order
n in each Stochastic Fix-and-Optimize iteration is given by eigll, where g, is the frequency in
which the order n has been selected in the incumbent Stochastic Fix-and-Optimize.

We observe that the NSy, structure usually provides subproblems larger than the ones obtained by
the other proposed structures. On one hand, NSy, structure can be able to escape from possible
local optima solutions found by the previous structures; on the other hand, it requires greater
computational effort to be solved. Therefore, this is the last structure to be considered in the
solution process.

5 COMPUTATIONAL RESULTS
5.1 Test data and test environment

In order to evaluate the effectiveness of the proposed approaches, we propose a set of 100 test
instances with a broad range of scenarios. As the real-world data cannot be disclosed due to con-
fidentiality reasons, we randomly generated the test instances combining the parameter settings
we observed in technical visits with the approach in Sereshti & Bijari (2013).
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Using the notation p € U [al,az] to indicate that the value of the parameter p was randomly
selected in the set {a',... ,a’}, the test instances were generated according to the following
characteristics:

* Number of periods: T € {5,10,15}. In practice, demands are known from one to three
weeks in advance, hence we use T € {5,10, 15} considering that the companies we have
visited operate five days per week;

* Number of orders: N € {30,50,60,100,150}. The number of considered orders depends
on the length of the planning horizon and the size of the industry. Large sized industries can
supply about 10 customer orders in each production period, while small sized industries
can meet about 6 customer orders in each period;

* Number of items: J € {15,30,45}. Companies producing meat from various animals (beef,
pork and poultry) have product catalogues with about 45 items, while industries specialised
in meat from one (or two) animals have a product catalogue with around 15 (or 30) items;

*» Setup times: st;; € U[2,10], and Setup costs: scij = 500st;;. The setup costs (sc;;) are
proportional to the setup times (st;;) as stated in the literature (Sereshti & Bijari (2013));

* Processing times: a; = 1. In the meat industry, the processing time does not significantly
vary;

* Inventory holding costs: i; € U[2,9]. Meat products require monitored temperature stor-
age, therefore there exist inventory holding costs mainly associated with the consumption
of electric energy. Some products for exportation need to be stored at lower temperatures
(about -25° Celsius). Hence, the unitary inventory holding cost can reach R$9, while sea-
soned meat produced for national consumption are refrigerated (not frozen) and they need
to be stored at about 5° Celsius, implying in lower unitary inventory holding costs (about
R$2);

* Profit of the orders: Py =} ; p’ qjn, Where p’ is the sale price of the item j, with p/ €
U[50,100]. Note that, the total profit of an order is the sum of the individual sale prices
of the products that make up the order. Each product consists of about 1 to 5 kilograms
of a type of packaged meat and the (wholesale) prices in Brazil ranges from R$ 50 (a
package with 5 kilograms of sausages or seasoned chicken meat) to R$ 100 (a package
with 2 kilograms of a noble beef);

* Maximum time window: tw™* = max{3, ng }, and Minimum time window: 0. Usually,
the customers are supermarkets and restaurants. The restaurants need to ensure the avail-
ability of all items on their menu all the time, hence these customers require a restric-
tive delivery time window composed of few periods. On the other hand, the supermarkets
accept delivery time windows composed of various periods;
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* First and last periods of the time windows of the orders: F,, € U[1,T —tw,] and L, =
F, +tw, — 1, where twy, is the size (in periods) of the time window of order n, with tw,, €
U [0, rw™];

¢ Each order is composed by O,, € U [1, L%H different items that were randomly selected;

* Quantity of each item in the orders: ¢;, € U[5,15], if item j makes up the order n and
qjn = 0, otherwise;

0.8

* Production capacity: C; = —— %
thax

Z Za iq jn- The available production capacity
ne{n|Fy<t<Ln} J
allows that at maximum 80% of the customer orders could be accepted.

The proposed test instances were grouped into 10 classes (each class with 10 test instances) ac-
cording to the parameter choices as presented in Table 5, where the notation N30J15T5 is used
to indicate the class of instances with N = 30, J = 15, and T = 5, for example. The proposed
model and the heuristic procedure were implemented in C++ language using the Concert Tech-
nology tool of the commercial solver Cplex 12.6. The MIP subproblems obtained by the proposed
heuristic procedure were solved by the Branch-and-Bound algorithm of the Cplex solver using
default settings. We ran the tests on a two Intel Xeon processors desktop with 2.8 GHz and 128
GB DDR3 RAM memory. For each instance, we captured the best feasible solution (z)) and the
best dual (upper) bound (z¢) found. The deviation of the best feasible solution from the upper
bound (GAP) was computed as GAP = 100 x (Zd’dzf

Z

The proposed test instances and the C++ files containing the implementation of the proposed
approaches are available at https://inma.ufms.br/docentes/willy-alves-de-oliveira/willy/PO2019.

5.2 Numerical tests
5.2.1 Relax-and-fix heuristic

In this section we present computational results regarding the RF heuristic (phase I of our
heuristic framework). The aim of this section consists of determining values for the parameters
windowSize and overlap in order to obtain an efficient RF heuristic.

Table 2 presents the results obtained by fixing timeLimit = 900 and varying the parameter
windowSize in the set {1,2,3} and the parameter overlap in the set {0, 1,1, 2}. Different val-
ues for the parameters windowSize and overlap imply in different number of iterations. The
maximum running time of 900 seconds was equally distributed between the iterations. For
example, if windowSize = 1 and overlap = 0, then the RF heuristic is composed by 7T itera-
tions. Therefore, we have fixed the maximum running time to solve the subproblems related to
each RF iteration in @. Table 2 shows that the running time (RT) significantly increases when
the parameters windowSize or overlap increase, so that, the faster procedure is obtained when
windowSize = 1 and overlap = 0. On the other hand, better feasible solutions were obtained

when windowSize = 2 and overlap = % as indicated by the average GAPs (AG).
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Table 2 — Results of phase I - RF heuristic. The parameter windowSize is denoted by W S.
The obtained average GAPs are reported in the columns AG (in %), while the running times
are presented in the columns RT (in seconds).

Phase I: RF heuristic - timeLimit = 900 seconds

wS=1 wSs=2 WS=3 wSs=2 WS =3
overlap =0 | overlap = % overlap = % overlap =0 | overlap = %
Class AG RT AG RT AG RT AG RT AG RT

N30J15T5 21.81 2 8.16 13 4.26 63 | 17.89 8 5.71 50
N30J30T5 24.46 20 | 14.03 152 | 1229 659 | 21.36 118 | 12.88 375
N30J45T5 26.47 99 | 16.85 488 | 1791 916 | 2549 348 | 17.96 579
N50J15T5 13.51 3 6.39 20 | 412 137 | 12.22 12 | 446 108
N50J30T5 18.36 28 | 10.62 415 | 10.81 885 | 15.86 274 | 10.64 561
N50J45T5 18.17 215 | 12.62 766 | 14.19 920 | 17.24 385 | 1449 607
N60J45T10 | 28.41 207 | 2273 823 | 2732 902 | 2499 577 | 26.86 788
N100J30T10 | 22.56 52 | 16.08 680 | 17.71 905 | 17.98 402 | 16.65 749
N100J45T10 | 21.88 319 | 19.25 909 | 22.38 903 | 18.52 760 | 21.33 853
N150J30T15 | 25.80 169 | 23.21 808 | 25.73 905 | 2436 640 | 24.85 790
Average 22.14 112 | 1499 507 | 15.67 719 | 19.59 352 | 1558 546

Since the feasible solution obtained in phase I will be improved in the next phases, it is desirable
that the RF heuristic could able to quickly build it ensuring that the improvement procedures
could have plenty running time to find a good solution. Hence, we have adopted windowSize = 1
and overlap = 0 in our heuristic framework.

However, we also highlight that the results presented on Table 2 suggest that adopting the parame-
ters values windowSize = 3 and overlap = % can be a good strategy if the maximum running time
(timeLimit) could be increased (note that this procedure consumed the maximum running time
in the classes N50J45T5, N60J45T10, N100J30T10, N100J45T10, and N150J30T15). There-
fore, on Table 3 we present the results obtained using windowSize = 3 and overlap = % and
timeLimit = 3600 (an hour). As in the previous computational experiments, the maximum run-
ning time was equally distributed between the RF iterations. Table 3 also reports the objective
function value obtained by the same heuristic using ¢timeLimit = 900 seconds in order to identify
the impact generated by increased running time.

5.2.2 Efficiency analysis of the proposed heuristic

In this section, we present computational experiments in order to study the efficiency of the pro-
posed heuristic. Firstly, we present results regarding the performance of the heuristic. Secondly,
we compare our heuristic with the Branch-and-Bound algorithm of the Cplex solver.

e Performance of the proposed heuristic:
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Table 3 — Results obtained using windowSize = 3, overlap = %, and timeLimit = 3600
in the RF heuristic. The obtained average GAPs are reported in the columns AG (in %),
while the best and worst GAPs are reported in the columns (BG) and (WG) in %, respectively.
The running times are presented in the columns RT (in seconds).

timeLimit 3600 sec 900 sec
Class FO WG BG AG RT FO
N30J15T5 48573 11.52 0.01 3.77 64 48573
N30J30T5 88041 13.48 8.18 10.77 1582 87591
N30J45T5 101358 20.87 11.38 15.28 3129 99176
N50J15T5 96776 5.04 0.70 3.09 139 96776
N50J30T5 163029 12.02 7.59 9.16 3121 | 161056
N50J45T5 224837 14.23 991 12.09 3539 | 220222
N60J45T10 | 225050 27.11 1749 22.02 3600 | 210559
N100J30T10 | 307122 17.30 13.84 15.33 3572 | 299127
N100J45T10 | 423607 23.13 15.62 18.35 3600 | 403293
N150J30T15 | 371402 26.02 1945 22.64 3600 | 357640

Average 204979 17.07 1042 1325 2595 | 198401

Table 4 presents the results obtained on each phase of the proposed heuristic considering the
maximum running time of one hour. In this computational experiment, we have fixed the maxi-
mum running of the phases I and II in 900 and 1200 seconds, respectively. The residual running
time of each instance (until 3600 seconds) were allocated to the phase III. The maximum running
time to solve the subproblems regarding phases II and III was fixed in 300 seconds. We can ob-
serve, for example, that in class N30J15T5, the first phase of the proposed heuristic spent about
2 seconds to construct initial solutions with average GAP of 21.81%, while in the second phase,
the FOTO heuristic spent about 7 seconds and it found solutions with average GAP of 7.69%. Fi-
nally, in the third phase, the INS heuristic spent the residual time (3524 seconds) to find solutions
with average GAP of 1.44%. Since the heuristic approach is not able to provide dual bounds, the
reported GAPs were calculated using the dual bounds found by the Branch-and-Bound algorithm
of the Cplex solver.

‘We note that in the instances considering 15 products and 5 periods the heuristic spent (in aver-
age) only 2.5 seconds to build an initial feasible solution (phase I) and only 90.5 seconds with
the deterministic improvement (phase II), leaving a great residual time for the phase 3. There-
fore, better solutions were found for these classes presenting an average GAP of about 2.13%.
Moreover, we highlight that both improvement phases were able to improve the quality of the
solutions for all classes of instances. In general, phase I consumed about 112 seconds to pro-
vide solutions with average GAPs of about 22.14%, while phase II spent about 406 seconds to
provide solutions with average GAPs of about 14.67% (representing a reduction of about 7.47%
with respect the initial solutions), and finally, phase III consumed the residual running time of
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Table 4 — Objective function value (FO), average GAP (AG - in %), and running time (RT - in seconds)
obtained on each phase of the proposed heuristic
with (total) maximum running time fixed in 3600 seconds.

Phase I - RF Phase II - FOTO Phase III - INS
Class FO AG RT FO AG RT FO AG RT
N30J15T5 39847 21.81 2 46676 7.69 7 49547 1.44 3524

N30J30T5 75371  24.46 20 85754 14.19 32 88738 9.83 3527
N30J45T5 89207 26.47 99 99778 17.61 97 | 105892 12.81 3305
N50J15T5 87544  13.51 3 93868 7.02 174 96903 2.82 3420
N50J30T5 147399  18.36 28 | 160087 11.31 346 | 162944 8.99 3197
N50J45T5 210843  18.17 215 | 225756 12.17 526 | 229170 10.53 2587
N60J45T10 | 207436 28.41 207 | 226982 21.62 533 | 233444 19.13 2652
N100J30T10 | 282599 22.56 52 | 303618 16.53 222 | 309002 15.03 3326
N100J45T10 | 406477 21.88 319 | 434819 16.29 1115 | 440365 15.18 2166
N150J30T15 | 357549 25.80 169 | 374371 22.26 433 | 377925 2149 2998
Average 190427 2214 112 | 204171 14.67 406 | 209393 11.72 3182

about 3182 seconds to provide final solutions with average GAPs of about 11.72% (representing
a reduction of about 2.95% with respect the solutions found on phase II).

The results reported on Table 4 are also represented on Figure 2. In this Figure, the x-axis rep-
resents the consumed running time (and it is defined in logarithmic scale), while the y-axis
represents the obtained average GAPs.

As observed in Section 4, the number of iterations performed in the FOTO procedure depends
of the number of periods considered in the test instance. More specifically, when T =5, T = 10,
and T = 15, we have a total number of iterations of 10, 45, and 105, respectively. As reported on
Table 4, the FOTO procedure consumed in average 197 seconds (when T =5), 623 seconds (when
T = 10), and 433 seconds (when T = 15). We note that the average running time when T = 10
was higher than when T = 15, because the number of products (J) considered in the test instance
also significantly impacted on the running time of the FOTO heuristic. For example, the running
time observed for the class N100J45T10 was 1115 seconds, while for the class N150J30T15 was
only 433 seconds.

We highlight that we have fixed the maximum running time of the FOTO procedure in 1200
seconds and this maximum running time was reached only for three test instances from class
N100J45T10. In these three test instances, phase II was interrupted before test all possible two
periods combinations. In the others 97 test instances, the FOTO procedure tested all possible two
periods combinations without to reach the running time of 1200 seconds.

o Comparing the heuristic approach with the Branch-and-Bound algorithm of the Cplex solver:

On Table 5 we compare the performance of the proposed heuristic approach with the Branch-
and-Bound algorithm of the Cplex solver fixing the maximum running time within 20 minutes
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Figure 2 — Performance of the heuristic in each phase. The first node in each curve indicates the consumed
time (in seconds) and the GAP (in %) obtained in the first phase (RF) of the heuristic. The second node
presents the consumed time and the GAP obtained in the second phase (FOTO) and the third node
indicates the consumed time and the GAP obtained for the INS procedure (third phase).

The x-axis is presented in logarithmic scale.

(1200 seconds) and within 1 hour (3600 seconds). The column WG presents the worst GAP
(in %), while in the column BG we present the best GAP observed for each class. Table 5 also
presents the average GAPs (AG) and the average running times (RT).

We observe that the proposed heuristic performs better than the Cplex solver within the consid-
ered maximum running times. Such heuristic provided a better WG for all classes with exception
for classes N30J15T5 and N30J45T5 when the maximum running time was fixed in 1200 sec-
onds, and a better WG for all classes when the maximum running time was fixed in 3600 seconds.
Considering the BG, the heuristic provided best results for all classes with exception for class
N50J15T5 when the maximum running time was fixed in 1200 seconds, and for all classes when
the maximum running time was fixed in 3600 seconds. In the average performance (AG), the
heuristic did not overcome the Cplex solver only in classes N30J15T5 and N50J45T5 in both
considered maximum running times, but the results obtained were competitive (mainly with the
maximum running time of 3600 seconds).

The developed heuristic provided greater gains for the test instances with 45 products (specially
considering 100 customer orders). For some of these classes, the GAP of the solutions provided
by the Cplex solver exceeded 100%), i.e., the model provided a solution with negative profit. This
fact occurred because Constraints 7 require that the production line remains set up for production
all the time. Therefore, the solution that consists of not producing anything (with costs equal to
zero) is not feasible for the problem.
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Table 5 — Results of the proposed heuristic and of the Branch-and-Cut algorithm (Cplex solver).

Maximum time of 1200 seconds

Cplex Heuristic
Class WG BG AG RT WG BG AG RT
N30J15T5 4.61 0.01 1.26 1073 992  0.01 2.48 771

N30J30T5 20.08 11.75 1531 1200 | 13.62 8.46 10.54 981
N30J45T5 20.08 16.93 2548 1200 | 21.03 9.67 1443 887
N50J15T5 6.42 0.36 325 1200 | 5.69 1.29 3.66 918
N50J30T5 19.12  10.87 13.58 1200 | 11.61 7.85 9.46 927
N50J45T5 24.11  15.76 19.54 1200 | 13.55 898 11.39 761
N60J45T10 | 102.05 73.86 97.31 1200 | 23.62 1536 20.04 1200
N100J30T10 3490 23.64 2733 1200 | 18.01 13.79 1563 1169
N100J45T10 | 101.55 98.97 100.47 1200 | 21.55 13.97 16.70 1200
N150J30T15 | 100.25 32.72 73.96 1200 | 26.61 2030 2225 1176

Average 4332  28.49 37.75 1187 | 16.52 9.97 12.66 999
Maximum time of 3600 seconds

Class WG BG AG RT WG BG AG RT

N30J15T5 4.61 0.01 1.06 2095 3.76 0.01 1.44 3536

N30J30T5 17.29 9.95 13.01 3600 | 13.07 8.26 9.83 3600
N30J45T5 29.32  15.20 23.53 3600 | 18.79 9.01 12.81 3600
N50J15T5 5.06 0.11 2.67 3600 5.10 0.01 2.82 3600
N50J30T5 13.86 9.42 11.17 3600 | 10.82 7.81 8.99 3600
N50J45T5 23.04 15.02 17.80 3600 | 12.64 8.76 10.53 3543
N60J45T10 55.38 3947 47.17 3600 | 23.68 14.75 19.13 3600
N100J30T10 2534 17.73 2097 3600 | 16.70 1339 15.03 3600
N100J45T10 | 101.35 36.58 86.00 3600 | 2043 12.08 15.18 3600
N150J30T15 51.38 36.24 42.04 3600 | 25.31 1841 2149 3600
Average 32.66 1797 26.54 3450 | 15.07 932 11.72 3587

The running times observed were close for both approaches, because the maximum running
time was reached for most instances. This fact evidences that real-based test instances for the
addressed problem are very challenging from a computational perspective.

The RF heuristic was able to quickly build feasible solutions (RT = 112 sec) with reasonable
quality (AG =22.14%). Therefore, in order to compare our heuristic framework with the Branch-
and-Bound algorithm, we have performed a computational experiment that consists of starting
the Branch-and-Bound with the feasible solution found by the RF procedure. This experiment
was performed using the MIP Start methodology of the Cplex solver and the results are reported
on Table 6.

From the results presented on Table 6, we can see that the utilization of the RF solutions was able
to significantly improve the solutions found by the Branch-and-Bound algorithm for all classes of
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instances, mainly for classes N60J45T10, N100J45T10, and N150J30T15. However, in general,
it was not able to overcome our three phases heuristic framework as presented on Table 5.

Table 6 — Objective function value (FO), dual bound (DB), worst GAP (WG), best GAP (BG), average
GAP (AG), and running time (RT) obtained starting the Branch-and-Bound algorithm with the feasible
solution found by the RF procedure.

Starting the Branch-and-Bound with the RF solutions
Class FO DB WG BG AG RT
N30J15T5 49846 50129 386 0.0l 0.57 1734
N30J30T5 87005 97994 1486 847 1132 3600
N30J45T5 98895 118809 2221 12.69 17.31 3600
N50J15T5 97415 100674  5.21 0.01 241 3600
N50J30T5 160749 179425 12.87 8.76  10.50 3600
N50J45T5 222958 254532 1396  9.73 1242 3600
N60J45T10 | 211466 288888 30.56 21.61 27.02 3600
N100J30T10 | 300007 362904 19.27 15.64 17.42 3600
N100J45T10 | 410060 517329 27.81 17.03 21.15 3600
N150J30T15 | 364738 481677 28.79 22.09 2440 3600
Average 200314 245236 1794 11.60 1445 3413

5.2.3 Quality of the obtained bounds

In this Section, we present computational results to study the evolution of the bounds’ quality
over the time. In the first experiment, we used the Branch-and-Bound algorithm of the Cplex
software to solve the instances from a small sized class (N30J15T5) and from a large sized class
(N150J30T15) successively fixing the running time in 600, 1200, 3600, and 7200 seconds. For
each considered running time, we observed the value of the primal and the dual bounds. The
results are presented in Figure 3, where the x-axis presents the running times, while the y-axis
presents the value of the bounds.

Considering the class N30J15T5, we can see that the value of the primal bound presented just a
slight variation over the time (with a total variation of about 0.7% between 600 seconds and 7200
seconds), while the dual bound presented a variation of around 4.3%. The initial GAP was about
5.6% and the final GAP was approximately only 0.8%. Therefore, we can see that for small sized
instances, the Cplex tends to find a good solution quickly (before 600 seconds), but it spent a
long time to find a strong dual bound.

On the other hand, considering class N150J30T15 we observed a significant variation of the
primal bound value (about 72% between 600 seconds and 7200 seconds), while the value of the
dual bound presented a slight variation of about 2.3%. The initial GAP was approximately 81%,
while the final GAP was about 30%. In this case, considering the large sized test instances, we
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can see that the Cplex can significantly improve the quality of the primal bound over the time,
while it presents difficulties to find a good dual bound at acceptable computational time.

Primal and dual bounds
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Figure 3 — Evolution of the bounds in the Branch-and-Cut algorithm of the Cplex solver.

In order to conclude this Section, in the Figure 4, we present the evolution of the primal and
dual bound values obtained by the Cplex solver over a running time of 10 hours for an instance
randomly selected from class N150J30T15. In the same graphic, we include the primal bounds
obtained by the proposed heuristic approach over the same time horizon.

We can see that the quality of the solutions obtained by the heuristic overcame the solutions
obtained by the Cplex solver all the time. Additionally, Cplex could not significantly improve the
quality of dual bound over the considered running time. The GAP from the last solution obtained

by the Cplex solver to the best dual bound is about 25.70%, while the GAP from the best solution
found by our heuristic is about 17.87%.

6 CONCLUSIONS AND FUTURE PROPOSALS

In this research, we addressed a lot sizing and scheduling problem inspired by a real-world
production environment with non-traditional characteristics: demand choice flexibility, delivery
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Figure 4 — Evolution of the primal and dual bounds over a running time of 10 hours.

time windows and indivisible orders. Firstly, we extended a MIP model from the literature to
represent the problem, and secondly, we developed a MIP based heuristic procedure in order
to find good feasible solution at an acceptable computational time. The proposed heuristic is
composed by three phases: construction (that consists of a relax-and-fix procedure), determinis-
tic improvement (a fix-and-optimize heuristic), and stochastic improvement (a INS procedure).
Computational experiments were conducted with a set of 100 test instances that were generated
combining information obtained in some technical visits with parameter settings described in
the literature for related problems. The results showed that the proposed heuristic is able to pro-
vide good feasible solutions for the problem overcoming the Branch-and-Bound algorithm of the
Cplex solver, mainly for large sized test instances. There are a number of directions for potential
future research. First of all, we highlight that the computational experiments performed in this
paper suggest that the dual bounds obtained by the Branch-and-Bound algorithm are far from
the optimal solutions. Therefore, in the future researches we can investigate some exact meth-
ods (as Lagrangian relaxation and/or Dantzig-Wolfe decomposition) with the aim of obtaining
good dual bounds. Besides that, it can be interesting to develop methods which combine these
exact approaches with the heuristic proposed in this paper. On the other hand, as largely sug-
gest on the literature, the simultaneous consideration of different production and logistic aspects
in a same mathematical model can provide greater gains for the supply chain management. In
this perspective, we are planning to study the integration of the problem described in this paper
with the distribution/routing problem. We note that, the distribution and routing decisions can
significantly impact on the set of orders that are accepted for production.
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