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ABSTRACT. One of the strategies used to optimize production processes is to define the best layout. For
this, the relative positioning of the various equipment, areas, or functional activities inside the company is
studied. Proper arrangement of facilities will result in shorter process times and higher productivity. In gen-
eral, the objective function of the facility layout problem (FLP) is to reduce the total material handling cost.
Although over six decades have been passed since the first work on FLP modeling was published, research
on many aspects of this problem is still in an early stage and needs to be further explored, which motivated
this study. In this paper, the unequal area of rectangular blocks with fixed dimensions and input/output
points are considered for FLPs. Four new mixed-integer programming (MIP) models based on previous re-
search formulations are developed. Then, a mathematical optimization approach based on the linearization
of the models is applied. An algorithm that solves the linearized MIP model by CPLEX setting a time limit
for the solution obtained excellent results for different test problems when compared to those reported in
the literature.

Keywords: facilities planning and design, unequal area facility layout problem, mixed integer
programming.

1 INTRODUCTION

In an increasingly competitive global market, guaranteeing the optimization of results inside a
company is essential. Maximizing productivity is one of the main objectives of the industrial
production sector. To reach this potential, the most adequate physical arrangement for each sit-
uation should be analyzed to speed up the production processes. In the industrial context, the
execution of a product goes through several stages that can be characterized by facilities, such as

*Corresponding author
1ICT, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil – E-mail:
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installations, machines, equipment, sectors, or departments. In times past, facilities planning was
primarily considered to be a science, but today, it is a strategy (Tompkins et al., 2010).

An arrangement or layout can be defined as the relative positioning of the various facilities within
an enclosure. In manufacturing perspective, the facility layout design instructs how to arrange
the physical layout of manufacturing facility systems to provide the best support for production
(Leno et al., 2018). Organizing the layout can improve the use of available space, reduce the ma-
terial handling distances, services, and people, increase the production, and lower indirect costs
and manufacturing time, since the disposition of the facilities directly influences the time spent
on activities and processes. Hence the Facility Layout Problem (FLP) is one of the main issues
in the Management of Production and Industrial Engineering literature, attracting the attention
of many researchers in the field of statical and dynamic layouts (Hosseini-Nasab et al., 2018).

Production systems and services must be operated with optimized planning and well-done oper-
ational practices to reach their potential. Moreover, defining a good installation layout ensures
that the whole system acts in a more efficient way (Hosseini-Nasab et al., 2018). This physical
arrangement question is very important and can impact the viability of the long-term manu-
facturing process; thus, it should be contemplated in the initial phase of the project. A poorly
designed layout will result in reduced productivity, more work in progress, more manufacturing
time, cluttered material handling, and so on (Pillai et al., 2011).

Inside the operations research, layout optimization, considering the more diverse situations of
process and demand, is sought to minimize the production time and use the existing space in the
most efficient possible way. The general problem designs the positioning of the factory instal-
lations, intending to determine the more efficient disposition in agreement with some criteria or
objectives, under certain constraints (Garcı́a-Hernández et al., 2013).

Conventionally, the objective function of the layout of the installations problem consists of the
reduction of the Total Material Handling Cost (TMHC), an expense without aggregate value for
the materials flows and the distances between facilities. It is estimated that efficient planning
installations can reduce the TMHC by up to 30% (Jung et al., 2017), thus decreasing the total
operational cost of the project. In contrast, research shows that more than 35% of the efficiency
of the system could be lost by applying incorrect localization designs (Izadinia & Eshghi, 2016).

Although the facility layout problem has been widely addressed in the literature, several pecu-
liarities deserve attention, such as the facilities in the form of rectangular blocks of unequal areas
and input and output locations of processes in the blocks. The study of these issues is justified, as
they exacerbate the complexity of the challenge within the reality found in the production sector.

This work aims to study different models for optimization of layouts found in the literature and,
from them, develop new mathematical models for specific situations, as well as implement the
models in recognized programming language. The paper is organized into five sections. Section 2
explores concepts related to FLPs. Section 3 presents the mathematical models developed for the
problem. Section 4 describes the resolution approach used. Section 5 shows the results obtained
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and a comparison with those found in the literature. Finally, Section 6 brings the conclusions and
some directions for future research.

2 LITERATURE REVIEW

2.1 General Facility Layout Problem

When the flow of materials between installations is a parameter that does not change with time,
the problem is known as a static facility layout problem and, in a simple form, can be formu-
lated as a Quadratic Assignment Problem (QAP) (Emami & Nookabadi, 2013). The classical
optimization model, introduced by Koopmans & Beckmann (1957), is defined as follows. The
notation used in the formulation are shown in Table 1.

Table 1 – Notation used in the general FLP model.

Indices and input data
N total number of facilities/locations
i e j index for facilities = (1,...,N)
r e s index for locations = (1,...,N)
drs distance between locations r and s
fi j material flow between facilities i e j
Decision variables
xir 1 if facility i is located in r, 0 cc.

min
N

∑
i=1

N

∑
j=1

N

∑
r=1

N

∑
s=1

fi jdrsxirx js (1)

subject to

N

∑
r=1

xir = 1 ∀i (2)

N

∑
i=1

xir = 1 ∀r (3)

xir ∈ {0,1} ∀i,r (4)

In the QAP formulation for layouts, every facility has the same area, and the floor space is divided
into N locations with the same size, where each installation is assigned to exactly one location
and vice versa (Konak et al., 2006). The objective is to minimize the summation of Material
Handling Costs (MHCs) between each pair of installations, the MHC being a product of the flow
of materials between two facilities by the distance between them. The constraints ensure that
each facility will occupy a single location (2) and that each location will be occupied by a single
facility (3).
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4 A MATHEMATICAL OPTIMIZATION APPROACH BASED ON LINEARIZED MIP MODELS

In this basic model, the distances are measured between the centroids of the blocks and can be
Euclidean (diagonal) or rectilinear (sum of horizontal and vertical), according to Figure 1. The
rectilinear distances are also called rectangular or Manhattan distances (Zheng, 2014).

Figure 1 – Representation of Euclidean (d = D) and rectilinear (d = H +V ) distances.

Although the diagonal represents the actual distance between the centroids, the rectilinear dis-
tance is more used because it better represents a real situation of displacement that would occur
through the aisles between facilities.

2.2 Unequal Area Facility Layout Problem

In a real situation, it is unlikely that the several facilities of a company will have all the same
area. One particularly interesting FLP, due to its direct application in real cases, is known as the
Unequal Area Facility Layout Problem (UAFLP) (Garcı́a-Hernández et al., 2019).

When departments have different areas, the problem can no longer be solved by assigning de-
partments to n distinct centroids localizations and distances become variables. The additional
complications of the requisites of unequal areas, with continuous department positions that can
be anywhere in a rectangular area and varying areas (width and height), make the FLP extremely
difficult to solve (Castillo & Westerlund, 2005).

The UAFLP is studied in many aspects. To begin with, the form of the facilities can be described
as regular (e.g., rectangular blocks) or irregular (usually polygons). The dimensions of a facility
can be represented by fixed measurements of height and width (rigid block) or by a fixed area
(with an aspect ratio). According to Hosseini-Nasab et al. (2018), for the configuration, FLPs
are classified into seven categories distinguished by the shape of their material handling path,
namely: single-row, multi-row, double-row, parallel-row, loop, open-field, and multifloor lay-
outs. Still according to them, most of the authors in the field of layouts consider in their studies
facilities with regular form, fixed dimensions, and open-field system. This leads to the belief that
such circumstances have good relevance in the practical context.

The unequal area block placement problem was first reported by Armour & Buffa (1963) more
than 50 years ago. Over time, several authors have studied static UAFLP, e.g.: Bazaraa (1975) di-
vided the total area into small units formulating the problem as a quadratic set covering the prob-
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lem and solving it with a Branch and Bound (B&B) approach; Tate & Smith (1995) presented a
restrictive version of the slicing tree (ST) formulation known as flexible bay structure (FBS) and
solved the problem by genetic research; and Konak et al. (2006) created a new formulation for
the Mixed-Integer Programming (MIP) model for FBS.

In the last decade, several authors have proposed resolution methods to address UAFLPs:
Kulturel-Konak (2012) used linear programming and tabu search (TS) for the FBS situation
providing significant reduction in MHC although the relaxed-FBS representation was more re-
strictive compared to the general representation used in many exact formulations; Chang & Ku
(2013) represented a ST and developed a heuristic solution that found optimal or near-optimal so-
lutions for most problems as long as they had fewer than 20 departments; Gonçalves & Resende
(2015) solved the problem by using a biased random-key genetic algorithm (BRKGA) gener-
ating high-quality solutions in relatively small computing times with the unconstrained version
of the approach, but not so good with the constrained one; Palomo-Romero et al. (2017) made
an island model genetic algorithm as an alternative approach, which helped to avoid premature
convergence and excessive execution time; and Garcı́a-Hernández et al. (2019) used a coral reefs
optimization (CRO) algorithm that showed excellent performance when considering exclusively
FBS representation, but not so good when considering both ST structure and FBS.

Furthermore, these authors also found excellent solutions with their approaches: Liu &
Liu (2019) applied the multi-objective ant colony optimization (ACO) algorithm; Moradi &
Shadrokh (2019) considered bi-objective function and solved the problem with SA; Garcı́a-
Hernández et al. (2020) created a novel island model based on CRO; and Liu et al. (2020) de-
veloped a heuristic that combines Pareto optimization and niche technology for a multi-objective
problem.

2.3 Facility Layout Problem with Input/Output Points

The constraints considered for FLPs are of the most diverse, but among these, those that define
input and output points of the blocks are of great importance. When it comes to facilities, the
flow of materials, products, and/or people is expected to arrive by a certain location and leave by
a certain location (which may or may not be the same location). In the traditional FLPs models,
the input and output locations of the facilities are not considered, but are determined after the
obtention of a block layout (Kim & Kim, 2000).

In literature, these facilities are called by different names such as input/output points (I/O); pick-
up/drop-off or delivery stations (P/D); and load/unload locations. In articles written in recent
years, priority has been given to using the term I/O points, thus, they will be referred by this.

The I/O points can be fixed (predetermined) or variable with constraints, depending on the type
of facility being addressed in the problem. When the facilities, for example, are machines or
equipment that have defined input and output locations, i.e., that cannot be altered, it is interesting
to consider fixed points. On the other hand, in a situation with departments, whose room doors
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could be positioned with more flexibility in the project, it is possible to consider variable points
in the model (in this case, with the constraint of being located on the edges of the blocks).

O’brien & Abdel Barr (1980) were the first to consider I/O points in the input data required by
their procedure. Since then, many authors have proposed method of resolution for the I/O points
situation in the FLP: Das (1993) suggested a four-step heuristic that combines variable partition-
ing and integer programming methods for flexible manufacturing system (FMS) with fixed I/O
points; Welgama & Gibson (1993) used a construction algorithm considering fixed I/O points;
Rajasekharan et al. (1998) found good results for the problem through GA considering the for-
mulation of Das (1993); Kim & Kim (2000) treated blocks of fixed dimensions and developed
a MIP model that they solved with a two-phase (construction and improvement) heuristic algo-
rithm; Dunker et al. (2003) proposed a coevolutionary algorithm for a MIP model; Rajagopalan
et al. (2004) approached Lagrangian relaxation for AGV flowpath projects; Deb & Bhattacharyya
(2005) used random search techniques and solutions with GA, SA and hybrid algorithm; and Hu
et al. (2007) developed a GA for the situation of free I/O points at the edges.

Other examples of methodologies aimed at I/O points can be cited: Xiao et al. (2013) suggested a
two-phase heuristic with interconnected zone and SA besides a reduced MIP to further improve
the solution with better results than those provided by existing algorithms; Leno et al. (2018)
created a MIP model and an elitist strategy hybrid GA-SA algorithm (ESHGA) that generated
good layouts compared to reported result; Park & Seo (2019) suggested a two-phase constructive
heuristic that produced good results within a much shorter time than previous research.

3 MATHEMATICAL MODELS

When some or all variables of an optimization problem belong to the set of integers, it is repre-
sented using an Integer Programming model. When all the variables are integers, the model is
denominated Pure Integer Programming; otherwise, it is denominated Mixed-Integer Program-
ming (Hillier & Lieberman, 2013). Though producing solutions for integer programs may seem
easy, the solution is an NP-hard problem.

One of the first Mixed-Integer Programming formulations to solve problems of the continu-
ous layout was introduced by Montreuil (1991). Afterward, several authors formulated Facility
Layout Problems in continuous surfaces as Mixed-Integer Programming models.

For this work, four Mixed-Integer Programming models were formulated for the Unequal Area
Facility Layout Problems with Input and Output locations with the following characteristics:

• Rectilinear Distance Metric (as seen in Figure 1);

• Regular facility shape (rectangular), with fixed dimensions of height and width and subject
to an open-field system; and

• Fixed and variable input and output locations.
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The models proposed by Hu et al. (2007) and Leno et al. (2018) were used as a basis for the MIP
models developed for this research.

Although the four models developed in this work are similar, each represents a particular situa-
tion. The difference between them is in the location of the input and output points, as explained
below:

1. Model 1 (UAFLPfixed) – Fixed I/O locations (at any point on the block, be it in the
centroid, at some other point on the inside, or in the edges);

2. Model 2 (UAFLP1) – Variable I/O locations restricted to the middle points of the edges;

3. Model 3 (UAFLP2) - Variable I/O locations restricted to the corner points;

4. Model 4 (UAFLP3) Variable I/O locations restricted to any point on the edges.

Figure 2 illustrates the three possibilities for variable I/O points.

Figure 2 – Departments with candidate locations for I/O points: a) four possibilities located on middle of
the edges of the block; b) four options located on the corners of the block; and c) can assume infinite

positions around on the boundaries of the block.

As the models have an identical objective function and several constraints, they were divided
into two parts, one common and one unique and presented in five topics. The first topic provides
exactly the objective function and the equations that repeat for all the models and can be con-
sidered the first part of any of the four models individually. The other subsequent topics provide
the second part of each model separately because, at this point, the equations are different and
characterize specific conditions of the location of the input and output stations. The notations,
valid for all models, are shown in the Table 2.
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Table 2 – Notation used in the Models 1, 2, 3 and 4.

Indices, input data and markers
N total number of facilities
i e j index for facilities = (1,...,N)
fi j material flow between facilities i and j
W width of the floor space
H height of the floor space
w original width of facility i
h original height of facility i
Ixi, Iyi original coordinates x and y of the input of facility i
Oxi,Oyi original coordinates x and y of the output of facility i
A,B,C,D sides of facilities (bottom, left, top and right)
Decision variables
di j rectilinear distance between the output of facility i and the input of facility j
wri real width of facility i (considering the rotation)
hri real height of facility i (considering the rotation)
xi,yi coordinates x and y of lower left corner of facility i
xsi,ysi coordinates x and y of upper right corner of facility i
xI

i ,y
I
i coordinates x and y of the input of facility i

xO
i ,y

O
i coordinates x and y of the output of facility i

mI
i ,n

I
i perimeter position in directions x and y of the input of facility i

mO
i ,n

O
i perimeter position in directions x and y of the output of facility i

li j (relative position) 1 if facility i is placed totally to the left of j, 0 cc.
bi j (relative position) 1 if facility i is placed totally below j, 0 cc.
ui,vi (0,0) if facility i is in its original orientation; (1,0) if facility i is rotated 90◦

clockwise; (0,1) if facility i is rotated 180◦ clockwise; (1,1) if facility i is rotated
270◦ clockwise

pI
i ,q

I
i defines on which side the input of facility i is located: (0,0) if on side A; (1,0)

if on side B; (0,1) if on side C; (1,1) if on side D
pO

i ,q
O
i defines on which side the output of facility i is located: (0,0) if on side A; (1,0)

if on side B; (0,1) if on side C; (1,1) if on side D

First part of Models 1, 2, 3 and 4

min
N

∑
i=1

N

∑
j=1

fi jdi j (5)
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subject to

wri = (1−ui)wi +uihi ∀i (6)

hri = (1−ui)hi +uiwi ∀i (7)

xsi = xi +wri ∀i (8)

ysi = yi +hri ∀i (9)

li j + l ji +bi j +b ji ≥ 1 ∀i, j; i < j (10)

xsi ≤ li jx j +W (1− li j) ∀i, j (11)

ysi ≤ bi jy j +H(1−bi j) ∀i, j (12)

di j =
∣∣∣xO

i − xI
j

∣∣∣+ ∣∣∣yO
i − yI

j

∣∣∣ ∀i, j (13)

di j,wri,hri,xi,yi,xsi,ysi,x
I(O)
i ,yI(O)

i ,mI(O)
i ,nI(O)

i ≥ 0 ∀i (14)

ui,vi, pI(O)
i ,qI(O)

i ∈ {0,1} ∀i (15)

li j,bi j ∈ {0,1} ∀i, j (16)

Second part of Model 1 (UAFLPfixed)

mI(O)
i = nI(O)

i = pI(O)
i = qI(O)

i = 0 ∀i (17)

xI(O)
i = xi +(1−ui)(1− vi)I(O)xi +ui(1− vi)I(O)yi

+(1−ui)vi(wi− I(O)xi)+uivi(hi− I(O)yi) ∀i
(18)

yI(O)
i = yi +(1−ui)(1− vi)I(O)yi +ui(1− vi)(wi− I(O)xi)

+(1−ui)vi(hi− I(O)yi)+uiviI(O)xi ∀i
(19)

Second part of Model 2 (UAFLP1)

mI(O)
i =

wri

2
∀i (20)

nI(O)
i =

hri

2
∀i (21)

xI(O)
i = xi +(1− pI(O)

i )mI(O)
i + pI(O)

i qI(O)
i wri ∀i (22)

yI(O)
i = yi + pI(O)

i nI(O)
i +(1− pI(O)

i )qI(O)
i hri ∀i (23)

Second part of Model 3 (UAFLP2)

mI(O)
i = 0 ∀i (24)

nI(O)
i = 0 ∀i (25)

xI(O)
i = xi + pI(O)

i wri ∀i (26)

yI(O)
i = yi +qI(O)

i hri ∀i (27)
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Second part of Model 4 (UAFLP3)

mI(O)
i ≤ wri ∀i (28)

nI(O)
i ≤ hri ∀i (29)

xI(O)
i = xi +(1− pI(O)

i )mI(O)
i + pI(O)

i qI(O)
i wri ∀i (30)

yI(O)
i = yi + pI(O)

i nI(O)
i +(1− pI(O)

i )qI(O)
i hri ∀i (31)

The objective function of the models (expression 5) seeks to minimize the TMHC which is equal
to the sum of the material flows by the distances between the output of one facility and the input
of another. The constraints (6) and (7) define the configuration of the facilities. If ui = 0, then
the facility continues in its original configuration; if ui = 1, then the block is rotated 90◦, so the
real width (i.e., the width of the block in the layout defined by the model) becomes the original
height and the real height becomes the original width. Figure 3 illustrates both situations.

Figure 3 – Block orientations.

The equalities (8) and (9) delimit the blocks using the coordinates xi, yi of the lower left corner
and xsi, ysi of the upper right corner. The inequalities (10), (11), and (12) guarantee that there
will be no overlapping of parts because a block will always be, at least, or totally to the left, or
totally to the right, or totally above, or totally below some other block. Furthermore, (11) and
(12) delimit the blocks to the total space available for the layout, both in width and height. In
Leno et al. (2018), constraint (10) is presented as an equation, which generates undesired results
for the model, so in this work it was written as an inequality as in the model formulation of Hu
et al. (2007).

The measure adopted for the proposed models was the Rectilinear Distance Metric (RDM). Al-
though, in the case of considering Euclidean distance, the constraint (13) could be exchanged by
the following one:

Pesquisa Operacional, Vol. 42, 2022: e261044
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di j =

√[
xO

i − xI
j

]2
+
[
yO

i − yI
j

]2
∀i, j (32)

Another option would be to consider Perimeter Distance Metric (PDM), or Contour Distance
(a concept very well presented by Leno et al. (2018) and reproduced in the sequence), which
seeks to better represent a real situation in which it is not possible to transport materials through
departments, but only through aisles or empty areas. To calculate this distance, a graph that
represents the viable flow paths must be constructed. To do this, first, a grid is constructed in
which the horizontal and vertical lines cross all the points of the corners as well as input and
output points of the blocks. The intersection of each horizontal and vertical line defines the grid
points. The points that appear inside the departments are removed from the original grid point
set and the rest forms the V set of vertices or nodes for the graph. The grid lines that touched
removed points are also extinguished; the others form the E set of edges for the graph (connecting
all adjacent points). To each edge, a weight corresponding to the length of the edge in question
(which is the actual distance) is assigned. Given that graph G = (V,E), the shortest distance di j

from the output station of the i facility to the input station of the j facility (and between all pairs of
departments) is calculated using the Dijkstra algorithm created to solve shortest-paths problems.
The algorithm developed by Dijkstra (1959) is widely known in the field of computer science
and is well explained in Cormen et al. (2009), which served as the basis for the programming in
this part of our work. Figure 4 provides the representation of a grid (graph generator) for a layout
with three departments and shows the shortest path between two points.

Figure 4 – Grid with feasible flow paths for a problem with three facilities and contour distance d1,3

between the output of block 1 and the input of block 3 highlighted.

In (14), (15), and (16), the types of variables are defined, whether positive, continuous, or binary.

In Model 1, the I/O points are fixed, which justifies equation (17), because the variables m, n, p,
and q are not necessary. Constraints (18) and (19) define the coordinates of the I/O points of the
blocks based on how these were rotated to form the final layout (90◦, 180◦, 270◦ or not rotated).
If the I/O points of the problem are fixed in the centroids of the blocks, these constraints could
be replaced by the following:

Pesquisa Operacional, Vol. 42, 2022: e261044



12 A MATHEMATICAL OPTIMIZATION APPROACH BASED ON LINEARIZED MIP MODELS

xI(O)
i = xi +

wri

2
∀i (33)

yI(O)
i = yi +

hri

2
∀i (34)

In Model 2, the I/O points must be allocated to the midpoints of the block edges. Equations (20),
(21), (22), and (23) guarantee the positioning in one of the four possible locations. In Model 3,
equations (24), (25), (26), and (27) establish that the I/O points will be allocated to one of the
four corners of the corresponding blocks. Constraints (22), (23), (26) and (27) were modeled
differently from the one presented in Leno et al. (2018).

Finally, in Model 4, the constraints (28), (29), (30), and (31) ensure that the I/O points will
be positioned somewhere on the boundaries of the blocks. It is interesting to note that Model
4 has two equations similar to Model 2. The constraints that define mI(O)

i and nI(O)
i are what

differentiates the models, because while Model 2 has equalities that force these variables to be
equal to half of the real dimensions, Model 4 has inequalities that provide freedom for the value
of mI(O)

i and nI(O)
i as long as they are smaller than the real dimensions. In the model presented

in Hu et al. (2007), the equations that define xI(O)
i and yI(O)

i are different from (30) and (31) and
similar to equations (18) and (19) considered in this work for the fixed UAFLP. The UAFLP3
case is not addressed in Leno et al. (2018).

4 PROPOSED APPROACH

In order to solve the Unequal Area Facility Layout Problem with Input/Output Points, we use a
mathematical optimization approach based on the linearization of the models.

Linearization is a technique used to obtain a linear model, from the equivalent nonlinear model,
to provide equal or approximate solutions to those of the original problem. There are programs
specifically developed to solve linear (at most quadratic) problems using exact method algorithms
such as simplex, interior-point barrier and branch-and-bound. As, depending on the case, they
may stand out from programs for nonlinear problems, one of the intentions of linearization is
precisely to adapt the modeling to the application of these solvers in the search for better and/or
faster results. Considering this, the Mixed-Integer Programming models previously presented
were linearized and thus transformed into Mixed-Integer Linear Optimization (MILO) models.

As a reference, the linearization technique of Glover & Woolsey (1974) presented by Mauri
& Lorena (2009) in the application for Binary Quadratic Problems was consulted. Adapting
the technique to the Facility Layout models, the quadratic terms li jxi, bi jyi, uivi, pI(O)

i mI(O)
i ,

pI(O)
i nI(O)

i , pI(O)
i wri and qI(O)

i hri, and cubic terms pI(O)
i qI(O)

i wri and pI(O)
i qI(O)

i hri (which are
nothing more than multiplications of variables that appear in the original models) have been
replaced by the continuous variables lxi j, byi j, uvi, pI(O)mI(O)

i , pI(O)nI(O)
i , pI(O)wri, qI(O)hri,

pI(O)qI(O)wri and pI(O)qI(O)hri, and by constraints that ensure equality between each term and
its corresponding variable.
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For instance, consider the inequality (11) from the nonlinear model where xsi ≤ li jx j +W (1− li j)

∀i, j; i < j. In order to linearize the quadratic term preserving the rules of the original model, the
inequality can be replaced by these constraints:

xsi ≤ lxi j +W (1− li j) ∀i, j; i < j (35)

lxi j−Wli j ≤ 0 ∀i, j (36)

lxi j− x j ≤ 0 ∀i, j (37)

W (li j−1)+ x j− lxi j ≤ 0 ∀i, j (38)

Constraints (36), (37) and (38) ensure that when li j = 0 or x j = 0, then lxi j = 0, and when li j = 1
and x j > 0, then lxi j = x j. Therefore, lxi j in (35) is guaranteed to be equal the product li jx j.

For the constraint (13), a common technique to linearize modules was used. Thus, the modules of
the differences between xO

i and xI
j and between yO

i and yI
j were converted to equivalent constraints

by creating the variables dxi j and dyi j, whose sum results in di j.

The linearized models are presented next in four topics, in a format close to that adopted pre-
viously for the MIP models, with the difference that the second part of Models 2 and 4 was
condensed as being very similar. The notations are the same as those in Table 2, along with the
additional notations created in Table 3.

Table 3 – Additional notations used in Models 1, 2, 3 and 4 linearized.

Decision variables

dxi j auxiliary variable that replaces the nonlinear binomial
∣∣∣xO

i − xI
j

∣∣∣
dyi j auxiliary variable that replaces the nonlinear binomial

∣∣∣yO
i − yI

j

∣∣∣
lxi j auxiliary variable that replaces the nonlinear term li jxi

byi j auxiliary variable that replaces the nonlinear term bi jyi

uvi auxiliary variable that replaces the nonlinear term uivi

pI(O)mI(O)
i auxiliary variable that replaces the nonlinear term pI(O)

i mI(O)
i

pI(O)nI(O)
i auxiliary variable that replaces the nonlinear term pI(O)

i nI(O)
i

pI(O)wri auxiliary variable that replaces the nonlinear term pI(O)
i wri

qI(O)hri auxiliary variable that replaces the nonlinear term qI(O)
i hri

pI(O)qI(O)wri auxiliary variable that replaces the nonlinear term pI(O)
i qI(O)

i wri

pI(O)qI(O)hri auxiliary variable that replaces the nonlinear term pI(O)
i qI(O)

i hri

First part of Models 1, 2, 3 and 4 linearized

min
N

∑
i=1

N

∑
j=1

fi jdi j (39)
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subject to

wri = (1−ui)wi +uihi ∀i (40)

hri = (1−ui)hi +uiwi ∀i (41)

xsi = xi +wri ∀i (42)

ysi = yi +hri ∀i (43)

li j + l ji +bi j +b ji ≥ 1 ∀i, j; i < j (44)

xsi ≤ lxi j +W (1− li j) ∀i, j (45)

ysi ≤ byi j +H(1−bi j) ∀i, j (46)

lxi j−Wli j ≤ 0 ∀i, j (47)

lxi j− x j ≤ 0 ∀i, j (48)

W (li j−1)+ x j− lxi j ≤ 0 ∀i, j (49)

byi j−Hbi j ≤ 0 ∀i, j (50)

byi j− y j ≤ 0 ∀i, j (51)

H(bi j−1)+ y j−byi j ≤ 0 ∀i, j (52)

di j = dxi j +dyi j ∀i, j (53)

dxi j ≥ xO
i − xI

j ∀i, j (54)

dxi j ≥ xI
j− xO

i ∀i, j (55)

dyi j ≥ yO
i − yI

j ∀i, j (56)

dyi j ≥ yI
j− yO

i ∀i, j (57)

di j,wri,hri,xi,yi,xsi,ysi,x
I(O)
i ,yI(O)

i ,mI(O)
i ,nI(O)

i ,

lxi j,byi j,dxi j,dyi j,uvi, pI(O)mI(O)
i , pI(O)nI(O)

i ,

pI(O)qI(O)wri, pI(O)qI(O)hri, pI(O)wri,qI(O)hri ≥ 0 ∀i

(58)

ui,vi, pI(O)
i ,qI(O)

i ∈ {0,1} ∀i (59)

li j,bi j ∈ {0,1} ∀i, j (60)
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Second part of Model 1 linearized (UAFLPfixed)

mI(O)
i = nI(O)

i = pI(O)
i = qI(O)

i = 0 ∀i (61)

xI(O)
i = xi +uvi(hi− I(O)yi)+(1−ui− vi +uvi)I(O)xi

+(ui−uvi)I(O)yi +(vi−uvi)(wi− I(O)xi) ∀i
(62)

yI(O)
i = yi +uviI(O)xi +(1−ui− vi +uvi)I(O)yi

+(ui−uvi)(wi− I(O)xi)+(vi−uvi)(hi− I(O)yi) ∀i
(63)

uvi−ui ≤ 0 ∀i (64)

uvi− vi ≤ 0 ∀i (65)

ui + vi−uvi ≤ 1 ∀i (66)

Second part of Models 2 and 4 linearized (UAFLP1 and 3)

mI(O)
i ≤ wri (i f mI(O)

i =
wri

2
, we have UAFLP1) ∀i (67)

nI(O)
i ≤ hri (i f nI(O)

i =
hri

2
, we have UAFLP1) ∀i (68)

xI(O)
i = xi +mI(O)

i − pI(O)mI(O)
i + pI(O)qI(O)wri ∀i (69)

yI(O)
i = yi + pI(O)nI(O)

i +qI(O)hri− pI(O)qI(O)hri ∀i (70)

pI(O)mI(O)
i − (wi +hi)pI(O)

i ≤ 0 ∀i, j (71)

pI(O)mI(O)
i −mI(O)

i ≤ 0 ∀i, j (72)

(wi +hi)(pI(O)
i −1)+mI(O)

i − pI(O)mI(O)
i ≤ 0 ∀i, j (73)

pI(O)nI(O)
i − (wi +hi)pI(O)

i ≤ 0 ∀i, j (74)

pI(O)nI(O)
i −nI(O)

i ≤ 0 ∀i, j (75)

(wi +hi)(pI(O)
i −1)+nI(O)

i − pI(O)nI(O)
i ≤ 0 ∀i, j (76)

qI(O)hri− (wi +hi)q
I(O)
i ≤ 0 ∀i, j (77)

qI(O)hri−hri ≤ 0 ∀i, j (78)

(wi +hi)(q
I(O)
i −1)+hri−qI(O)hri ≤ 0 ∀i, j (79)

pI(O)qI(O)wri− (wi +hi)pI(O)
i ≤ 0 ∀i, j (80)

pI(O)qI(O)wri− (wi +hi)q
I(O)
i ≤ 0 ∀i, j (81)

pI(O)qI(O)wri−wri ≤ 0 ∀i, j (82)

(wi +hi)(pI(O)
i +qI(O)

i −2)+wri− pI(O)qI(O)wri ≤ 0 ∀i, j (83)

pI(O)qI(O)hri− (wi +hi)pI(O)
i ≤ 0 ∀i, j (84)

pI(O)qI(O)hri− (wi +hi)q
I(O)
i ≤ 0 ∀i, j (85)

pI(O)qI(O)hri−hri ≤ 0 ∀i, j (86)
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(wi +hi)(pI(O)
i +qI(O)

i −2)+hri− pI(O)qI(O)hri ≤ 0 ∀i, j (87)

Second part of Model 3 linearized (UAFLP2)

mi = 0 ∀i (88)

ni = 0 ∀i (89)

xI(O)
i = xi + pI(O)wri ∀i (90)

yI(O)
i = yi +qI(O)hri ∀i (91)

pI(O)wri− (wi +hi)pI(O)
i ≤ 0 ∀i, j (92)

pI(O)wri−wri ≤ 0 ∀i, j (93)

(wi +hi)(pI(O)
i −1)+wri− pI(O)wri ≤ 0 ∀i, j (94)

qI(O)hri− (wi +hi)q
I(O)
i ≤ 0 ∀i, j (95)

qI(O)hri−hri ≤ 0 ∀i, j (96)

(wi +hi)(q
I(O)
i −1)+hri−qI(O)hri ≤ 0 ∀i, j (97)

After linearization, the mathematical models were transposed to a proper programming language
and solved using specialized software. The entire phase of implementation and instance testing
was performed in the mathematical programming language AMPL using a Notebook with an
Intel Core i7 Processor, 8GB RAM and Windows 10 operating system. For resolution, two math-
ematical software were used: the Baron solver (version 19.7.13), specialized in solving nonlinear
optimization problems and the CPLEX solver (version 12.10.0.0), high performance for linear
programming, effective for the case of linearized models developed for this work.

The Baron solver was found to be insufficient to provide optimal solutions in a timely manner
for the tested instances. Even for minor problems (of N = 6) and leaving the program running
for some days, the solver failed to achieve a proven optimal result (in one case it achieved a
result already known in the literature as optimal but could not prove that it was optimal and thus
continued trying to improve the solution indefinitely). For major problems, the results proved to
be bad even after the program ran for many hours.

Because of that, instance tests from the implementation of linearized models were prioritized,
with the help of the CPLEX solver.

5 COMPUTATIONAL RESULTS AND DISCUSSIONS

Developing, or even improving, mathematical models that portray real-world problem situations
as faithfully as possible is extremely important, but so is finding solutions for these models. In
this work, as previously explained, a mathematical optimization approach was used to solve op-
timization problems. The results were obtained for several instances found in the literature. The
instances were selected to cover both simpler problems and larger ones that are, consequently,
more difficult to solve computationally.
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Table 4 shows the ten tested instances, with their respective referenced articles, the position of
the I/O points according to the input data, number of facilities (directly related to the size of the
problem), and the code used to refer to each instance in this paper.

Table 4 – Features of the instances available in the literature.

Reference Data type Size Code

Das (1993) fixed I/O points 4 Das93N4
6 Das93N6
8 Das93N8

10 Das93N10
12 Das93N12

Welgama & Gibson (1993) fixed I/O points 6 Wel93N6
12 Wel93N12

Deb & Bhattacharyya (2005) without previous I/O points 12 Deb05N12
18 Deb05N18

Dunker et al. (2003) I/O points in the centroids 62 Dun03N62

As shown in the table, some problems previously define the position of the I/O points in the
blocks and others do not present this information. In the latter case, the I/O points can be
considered variables, and their location is defined in the solution of the problem.

As previously mentioned, an algorithm was implemented to solve layout problems, which con-
sists in solving the linearized MIP models by CPLEX solver with a time limit of two hours. A
time limit was established for standardization purposes and this was defined after some perfor-
mance tests. In the case of CPLEX, for the largest instance, the program had a memory overflow
error when running for a long time, so t = 2h was set.

The analysis of the results was divided into two subsections, the first referring to the initial fixed
I/O points situation contemplated by Model 1 and the second referring to the situation of variable
I/O points treated in Models 2, 3, and 4. Although some of the results compared in this paper
date from a long time, they are still the best found in the literature for each situation.

5.1 Fixed I/O points

From the ten instances presented in Table 4, notice that two do not have initial input and output
coordinate data; therefore, in this subsection, the results for eight instances found by Das (1993),
Dunker et al. (2003), Rajasekharan et al. (1998), and Welgama & Gibson (1993) were evaluated.
The objective function values of the authors were compared with those found by the approach
proposed in this work. For that, the distance metric adopted was the same: rectilinear distance.
The data compilation is shown in Table 5.

The results found with the linearization of the models and use of CPLEX were the best for almost
all instances, the exception being the largest one with 62 facilities.
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Table 5 – Comparative results for fixed I/O points.

Best solution in literature Our
Instance Reference Algorithm method Solution approach

Das93N4 RAJ1998 Genetic algorithm 1393.61 1393.61

Das93N6 2612.7 25561

Das93N8 DUN2003 Coevolutionary algorithm 8778.31 8778.31

Das93N10 15694.5 15222.9
Das93N12 37396.1 36622.8
Wel93N6 WEL1993 Construction algorithm 421.5 398.51

Wel93N12 5903 5458.5
Dun03N62 DUN2003 Coevolutionary algorithm 3939362 5484080
1Optimal solution.

For the minor instances (with N ≤ 8), our approach was able to return the optimal result of the
problem before the time limit. Figure 5 presents representation of the optimal results achieved as
well as the time spent solving the problems.

Figure 5 – Optimal layouts generated for fixed I/O points.

5.2 Variable I/O points

For the variable I/O points case, even instances initially proposed with fixed I/O points can be
tested, because these coordinates can be disregarded in the problem input data.

The literature results of two articles referring to five instances were evaluated for comparison
purposes, which vary as to the constraints applied to the implementation locations of the input
and output points of the departments that define the UAFLP1, UAFLP2, and UAFLP3 models
(as shown in 2).

The analysis of the results can be seen in the tables below. Table 6 refers to the values found by
Deb & Bhattacharyya (2005), who used the GA-SA method of random search associated with
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a hybrid algorithm that integrates genetic algorithm and simulated annealing. Leno et al. (2018)
developed the ESHGA method, a hybrid genetic algorithm based on an elitist strategy that uses
simulated annealing as local search, and their results are in Table 7.

Table 6 – Comparative results for variable I/O points - Part I.

Best solution in literature1

Model Instance Metric Solution Our approach

UAFLP1 Deb05N12 rectilinear distance 21142 11504
Deb05N18 62902 37382

UAFLP3 Deb05N12 19892 6924
Deb05N18 61756 27092

1Reference: Deb & Bhattacharyya (2005); Method: GA-SA.

Table 7 – Comparative results for variable I/O points - Part II.

Best solution in literature1

Model Instance Metric Solution Our approach

UAFLP2 Deb05N12 rectilinear distance 8676 6804
Deb05N18 440124 27780

UAFLP1 Wel93N6 contour distance 325 2372

Wel93N12 5750 5288
Deb05N12 37894 12404
Deb05N18 72451 40754

UAFLP2 Wel93N6 266 1152

Wel93N12 5454 2889
Deb05N12 16404 7028
Deb05N18 58324 28540
Dun03N62 4921320 3972940

1Reference: Leno et al. (2018); Method: ESHGA.
2Optimal solution.

As can be seen in the tables, the results achieved with our approach were all better than those
found in literature, highlighting their importance.

For the smaller instances (with N = 6), our approach was able to return the optimal result of
the problem before the time limit. Figure 6 contains the representation of the optimal results
achieved, as well as the time spent on solving the problems.

For visual comparison, in Figures 7 and 8, the final layouts generated by Leno et al. (2018)
with the ESHGA method and by the methodology presented in this work are represented, for the
instances Deb05N12 and Dun03N62, UAFLP2 Model.
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Figure 6 – Optimal layouts generated for variables I/O points.

Figure 7 – Layouts generated for the UAFLP2 Model - Instance: Deb05N12.

6 CONCLUSIONS

The unequal area facility layout problem with input and output locations has already been solved
in the literature with the use of the most varied methods. In most of the articles consulted during
the literature review, the authors use heuristics and metaheuristics to solve the UAFLP problem
with fixed or variable input and output locations. Heuristic methods are applied in optimiza-
tion problems to find good results in a reasonable time, which cannot always be achieved by
mathematical optimization approaches. However, with the advancement of solvers over time, the
results became more competitive and, in the case of this work, were promising. Even so, for
larger instances the challenge remains, as seen in the case of N = 62 which had a worse result
with CPLEX compared to a metaheuristic developed much earlier by Dunker et al. (2003).
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Figure 8 – Layouts generated for the UAFLP2 Model - Instance: Dun03N62.

Therefore, this paper has proved to be an excellent contribution to the subject of layouts, both
in terms of modeling in non-linear and linear formats and using mathematical software to solve
the problem. More specifically, the use of CPLEX applied to linear models showed remarkable
results.

An interesting future line of work could be to analyze, using mathematical optimization tech-
niques, other particular cases of the extensive field of layout optimization, as facilities in the
form of rectangular blocks of fixed areas but variable dimensions respecting an aspect ratio.
Furthermore, this research could be expanded taking into consideration the possibility of some
additional remarks, e.g., the inclusion of pre-fixed facilities, that already start with the problem
in places that cannot be modified during the generation of the solution. Future work could also
focus on flexible bay structures or slicing tree representations. Finally, another possible research
direction could be to treat the Dynamic Facility Layout Problem (DFLP) considering unequal
areas and I/O points.
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