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ABSTRACT. In this paper, we introduce a Bayesian analysis for a bivariate generalized exponential dis-

tribution in the presence of censored data and covariates derived from Copula functions. The generalized

exponential distribution could be a good alternative to analyze lifetime data in comparison to usual existing

parametric lifetime distributions as Weibull or Gamma distributions. We have being using standard exist-

ing MCMC (Markov Chain Monte Carlo) methods to simulate samples for the joint posterior of interest.

Two examples are introduced to illustrate the proposed methodology: an example with simulated bivariate

lifetime data and an example with a real lifetime data set.

Keywords: Bivariate generalized exponential distribution, copula function, Bayesian analysis, censored

data, covariates.

1 INTRODUCTION

In medical, engineering or other lifetime data applications, we could have more than one lifetime
associated to each unit. A special situation is the presence of two lifetimes T1 and T2 associated

to each unit. In this situation, we could consider some existing bivariate lifetime distribution that
has been introduced in the literature (see for example, Gumbel, 1960; Freund, 1961; Marshall &
Olkin, 1967; Downton, 1972; Block & Basu, 1974; Sarkar, 1987; Hawkes, 1988).

Usually these bivariate lifetime distributions generalize some popular existing univariate lifetime

distributions as exponential, Weibull, Gamma or a log-normal distribution (see for example,
Lawless, 1982).
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Other parametrical lifetime distributions could be generalized for the bivariate case. One of these

models is given by the generalized exponential distribution (see for example, Gupta & Kundu,
1999; Raqab & Ahsanullah, 2001; Raqab, 2002; Zheng, 2002; Gupta & Kundu, 2007; Sarhan,
2007). Kundu & Gupta (2009) introduced a singular bivariate Generalized Exponential (BVGE)

distribution to analyze lifetime data.

An alternative and flexible way to derive different bivariate lifetime distributions could be given
by copula functions (see, for example, Trived & Zimmer, 2005a,b; Nelsen, 2006). There are
several copula functions in the literature for construction of multivariate liftetime distributions

where the most used are Farlie-Gumbel-Morgensten (Morgensten, 1956), and the Archimedean
copulas as Clayton (1978), Gumbel (1960) and Frank (1979).

Recently, new copulas have been proposed as the class of Archimedean copulas in d-dimension
given in McNeil & Neslehová (2009). McNeil & Neslehová (2010) also generalise the Archi-

medean copulas to obtain the Liouville copula. Marshall-Olkin Copulas (see Li, 2012) and the
Generalized Farlie-Gumbel-Morgenstern copula (Bekrizadeh et al., 2012) are other examples.

Achcar & Santos (2010) construct bivariate Weibull distributions suitable for survival analysis
by using different copula functions. The bivariate Birnbaum-Saunders distribution proposed by

Kundu et al. (2010) show that it can be obtained as a Gaussian copula. More recently, Kundu
introduced the bivariate Sinh-normal distribution, which can be obtained as a bivariate Gaussian
copula.

Kundu & Gupta (2011) also derived an absolute continuous bivariate Generalized Exponential

distribution based on the Clayton copula.

In this paper, we introduce other bivariate generalized exponential distributions derived from the
Farlie-Gumbel-Morgensten to analyze lifetime data. We also investigate the performance of this
new distribution.

Inferences for these different versions of bivariate lifetime models could present some difficul-

ties using standard classical inference methods, especially in the presence of censored data and
covariates, a usual situation in applications.

In this way, we consider the use of Bayesian methods where the samples for the joint posterior

distribution of interest are simulated using MCMC (Markov Chain Monte Carlo) methods as
the popular Gibbs sampling algorithm (see for example, Gelfand & Smith, 1990; or Casela &
George, 1992) or the Metropolis-Hastings algorithm (see for example, Chib & Greenberg, 1995).

The paper is organized as follows: in Section 2, we introduce some concepts of copula functions;

in Section 3, we present the generalized exponential distribution; in Section 4, we derive a bi-
variate generalized exponential distribution from a Copula function; in Section 5, we introduce
a Bayesian analysis in the presence of censored data; in Section 6, we consider the presence of
covariates and censored data; in Section 7, we introduce two examples; finally in Section 8, we

present some concluding remarks.
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2 COPULA FUNCTIONS

Copula functions can be used to link marginal distributionswith a joint distribution. For specified
univariate marginal distribution functions F1(t1), F2(t2), . . . , Fm(tm), the function,

C(F1(t1), F2(t2), . . . , Fm(tm)) = F(t1, t2, . . . , tm) (1)

which is defined using a copula function C, results in a multivariate distribution function with
univariate marginal distributions specified as F1(t1), F2(t2), . . . , Fm(tm), (see for example, Frees

(1998) or Nelsen (1999)).

It is important to point out that any multivariate distribution function F can be written in the form
of a copula function (Sklar, 1959); that is, if F(t1, t2, . . . , tm) is a joint multivariate distribution
function with univariate marginal distribution functions F1(t1), F2(t2), . . . , Fm(tm), thus there

exists a copula function C(U1,U2, . . . ,Um) such that (1) occurs.

If every Fi is continuous, then C is unique.

In the bivariate cases, let T1 and T2 be two random variables with continuous distribution func-
tions F1 and F2.

The probability integral transform can be applied separately to the two random variables to de-

fine U = F1(t1) and V = F2(t2), where U and V have uniform (0, 1) distributions, but are
usually dependent if T1 and T2 are dependent (T1 and T2 independent, implies that U and V are
independent).

Specifying dependence between T1 and T2 is the same as specifying dependence between U

and V .

With U and V uniform random variables, the problem reduces to specifying a bivariate distribu-
tion between two uniforms, that is, a copula.

3 GENERALIZED EXPONENTIAL DISTRIBUTION

A generalized exponential distribution (see Gupta & Kundu, 1999) can be a good alternative to

the usual Gamma and Weibull distributions commonly used to analyse lifetime data (see also,
Raqab & Ahsanullah, 2001; Raqab, 2002; Zheng, 2002; Gupta & Kundu, 2007, 2008; Sarhan,
2007).

The generalized exponential distribution with two parameters has density given by,

f (t ; α, λ) = αλ[1 − exp(−λt)]α−1 exp(−λt), (2)

where t > 0, α > 0, and λ > 0, are respectively, shape and scale parameters.

The density (2) has great flexibility of fit depending on the parameter α: if α < 1, we have a

decreasing function and if α > 1, we have a unimodal function with mode given by λ−1 log α.

Observe that if α = 1, we have an exponential distribution with parameter λ.

Pesquisa Operacional, Vol. 35(1), 2015
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The survival and hazard functions associated to (2), are given, respectively, by,

S(t ; α, λ) = P{T > t} = 1 −
(

1 − exp(−λt)
)α
. (3)

and

h(t ; α, λ)= f (t ; α, λ)

S(t ; α, λ)
= αλ[1 − exp(−λt)]α−1 exp(−λt)

1 −
(

1 − exp(−λt)
)α . (4)

Observe that the hazard function h(t ; α, λ) is increasing from 0 to λ if α > 1; decreasing if α < 1
and constant if α = 1.

This behavior of the hazard function is similar to the behavior of the hazard function of the
gamma distribution.

The moment generation function for a random variable T with a generalized exponential distri-
bution with density (2) is given (see Gupta & Kundu, 2008) by,

M(s) = E[esT ] = �(α + 1)�(1 − s/λ)

�(α + 1 − s/λ)
, (5)

for s < λ; �(x) is the gamma function.

From (5), we get the moments of interest. The mean and variance of T are given, respectively,
by,

E(T ) = 1

λ

[
ψ(α + 1)−ψ(1)

]
and

var(T ) = 1

λ2

[
ψ ′(1)− ψ ′(α + 1)

]
,

(6)

where ψ(·) is the digamma function given by

ψ(x) = d

dx
log �(x) = �′(x)

�(x)
.

4 A BIVARIATE GENERALIZED EXPONENTIAL DISTRIBUTION DERIVED
FROM THE FARLIE-GUMBEL-MORGENSTERN COPULA

Different copula functions introduced in the literature could be used to obtain a bivariate gener-
alized exponential distribution.

A special case is given by the Farlie-Gumbel-Morgensten Copula (see Morgensten, 1956) given
by,

C(u, v) = [1 − eln(1−u) ][1 − eln(1−v) ]
[
1 + θ exp

(
ln(1 − u)+ ln(1 − v)

)]
(7)

where −1 ≤ θ ≤ 1, u = F1(t1) (marginal distributionfor the random variable T1) and v = F2(t2)
(marginal distribution for the random variable T2).

Pesquisa Operacional, Vol. 35(1), 2015
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Observe that θ is a parameter associated to the dependence between the random variables T1 and
T2 and related to the Spearman’s rank correlation ρS(T1, T2) (“Spearman’s rho”) and Kendall’s
rank correlation ρτ (T1, T2) (“Kendall’s tau”) by the relations,

ρS(T1, T2) = 12
∫ 1

0

[
C(u, v)− uv

]
dudv and

ρτ (T1, T2) = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1 .

(8)

From (7), we get ρS(T1, T2) = θ/3 and ρτ (T1, T2) = 2θ/9 (see for example, Nelsen, 1999).

From (8), we could use the information of experts to directly elicit a prior distribution for the
correlation (a value between −1 and 1) between T1 and T2; another possibility is to use empir-
ical Bayesian methods to choose a prior distribution for the dependence parameter θ using the
relations given by (8). Some authors introduce different methods for eliciting a prior distribution
for the correlation (see for example, Clemen, Fischer & Winkler, 2000).

Let us assume the marginal generalized exponential distributions (see (2)), given by,

u = F1(t1) = P{T1 ≤ t1} =
(

1 − exp(−λ1t1)
)α1

and

v = F2(t2) = P{T2 ≤ t2} =
(

1 − exp(−λ2t2)
)α2

(9)

From (7), the joint distribution function for T1 and T2 is given by,

F(t1, t2|, λ1, λ2, α1, α2, θ) = (1 − e−λ1t1)α1(1 − e−λ2t2)α2

×
[
1 + θ

(
1 − (1 − e−λ1t1)α1

)(
1 − (1 − e−λ2t2)α2

)] (10)

where t1 > 0 and t2 > 0.

The joint density function for T1 and T2 is given by,

f (t1, t2 | λ1, λ2, α1, α2, θ) = ∂2 F(t1, t2 )

∂t1∂ t2
(11)

That is, from (11), we have,

f (t1, t2 | λ1, λ2, α1, α2, θ) = f1(t1) f2(t2)+ θ f1(t1) f2(t2)
(

1 − 2F1(t1)
)(

1 − 2F2(t2)
)]

(12)

where f1(t1) and f2(t2) are the marginal densities for T1 and T2 with parameters (α1, λ1) and
(α2, λ2), respectively (see (2)), and F1(t1) and F2(t2) are given by (9).

Figure 1 displays the joint density f (t1, t2 | λ1, λ2, α1, α2, θ) given in (12) for five different
levels of dependence, assuming the parameters λ1 = 1, λ2 = 1.5, α1 = 2 and α2 = 3. Figures 1a
and 1b show a three-dimensional plot and a contour plot of the bivariate density, respectivelly,
when θ is 0.5. Figures 1c, 1d, 1e and 1f illustrate contour plots for different levels of dependence
parameter, θ = 0.01, 0.9, −0.5 and −0.8, respectively.

Pesquisa Operacional, Vol. 35(1), 2015
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Figure 1 – Contour plots of bivariate density with generalized exponential marginal densities.

Through the Figure 1 we can verify if the dependence condition is confirmed by θ , looking at
the contours of bivariate density f (t1, t2 | λ1, λ2, α1, α2, θ). A variable T1 is highly correlated
(positively or negatively) with other T2, then it is expected the high density values are along a
diagonal axis (see Figures 1b, d, e and f).
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Also observe that the joint bivariate survival function for the lifetimes T1 and T2 is given by,

S(t1, t2) = P{T1 > t1, T2 > t2} = 1 − F1(t1)− F2(t2)+ F(t1, t2), (13)

where F1(t1) and F2(t2) are given by (9) and F(t1, t2) is given by (10). That is,

S(t1, t2) = 1 − (1 − e−λ1t1)α1 − (1 − e−λ2t2)α2 + (1 − e−λ1t1)α1(1 − e−λ2t2)α2

×
[
1 + θ

(
1 − (1 − e−λ1t1)α1

)(
1 − (1 − e−λ2t2)α2

)] (14)

5 A BAYESIAN ANALYSIS IN THE PRESENCE OF CENSORED DATA

Suppose either T1 or T2 can be censored and that censoring is independent of the lifetimes. Let
us subdivide the n observations into four classes:

C1: both t1i and t2i are observed lifetimes, i = 1, . . . , n;

C2: t1i is a lifetime and t2i is a censoring time (that is, we only know that T2i ≥ t2i );

C3: t1i is a censoring time and t2i is a lifetime;

C4: both t1i and t2i are censoring times.

The likelihood function for a continuous model (see for example, Lawless, 1982, page 479) is
given by,

L =
∏
i∈C1

f (t1i , t2i)
∏

i∈C2

(
−∂S(t1i , t2i)

∂t1i

) ∏
i∈C3

(
−∂S(t1i , t2i)

∂t2i

) ∏
i∈C4

S(t1i , t2i) (15)

where f (t1i , t2i) is the joint probability density function for T1i and T2i ; S(t1i , t2i) is the joint

survival function; ∂S(t1i, t2i )
∂t1i

and ∂S(t1i, t2i )
∂t2i

are the partial derivatives of S(t1i , t2i) with respect to

t1i and t2i , respectively.

Let us define the indicator variables δ1i and δ2i , by,

δ j i =
{

1 if t j i is an observed lifetime

0 if t j i is a censored observation
(16)

for j = 1, 2; i = 1, . . . n, where n is the number of observations.

In this way, we rewrite the likelihood function (15) as,

L =
n∏

i=1

[
f (t1i , t2i)

]δ1i δ2i
n∏

i=1

[
−∂S(t1i , t2i)

∂t1i

]δ1i (1−δ2i)

×
n∏

i=1

[
−∂S(t1i , t2i)

∂t2i

](1−δ1i)δ2i
n∏

i=1

[
S(t1i , t2i)

](1−δ1i )(1−δ2i)

(17)

Observe that if we do not have censored data, the likelihood function (17) reduces to,

L =
n∏

i=1

f (t1i , t2i) (18)

Pesquisa Operacional, Vol. 35(1), 2015
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In (17), we replace S(t1i , t2i) by (14), f (t1i , t2i) by (12), and F1(t1i) and F2(t2i ) are given
by (9), that is,

f (t1i , t2i | λ1, λ2, α1, α2, θ) = α1α2λ1λ2(1 − e−λ1t1i )α1−1 (1 − e−λ2t2i )α2−1

× exp(−λ1t1i − λ2t2i)
[
1 + θ

(
1 − 2(1 − e−λ1t1i )α1

)(
1 − 2(1 − e−λ2t2i )α2

)] (19)

The first derivatives of S(t1i , t2i) with respect to t1i and t2i are given by,

− ∂S(t1i , t2i)

∂t1i
= f1(t1i )

{
1 − F2(t2i )

[
1 + θ

(
1 − F2(t2i )

)(
1 − 2F1(t1i )

)]}
and

− ∂S(t1i , t2i)

∂t2i
= f2(t2i )

{
1 − F1(t1i )

[
1 + θ

(
1 − F1(t1i )

)(
1 − 2F2(t2i )

)]} (20)

that is,

− ∂S(t1i , t2i)

∂t1i
= α1λ1(1 − e−λ1t1i )α1−1 e−λ1t1i

{
1 − (1 − e−λ2t2i )α2

×
[
1 + θ

(
1 − (1 − e−λ2t2i )α2

)(
1 − 2(1 − e−λ1t1i )α1

)]}
and

− ∂S(t1i , t2i)

∂t2i
= α2λ2(1 − e−λ2t2i )α2−1 e−λ2t2i

{
1 − (1 − e−λ1t1i )α1

×
[
1 + θ

(
1 − (1 − e−λ1t1i )α1

)(
1 − 2(1 − e−λ2t2i )α2

)]}
(21)

For a Bayesian analysis, let us assume the following prior distribution for λ1, λ2, α1, α2 and θ :

λ j ∼ U [a j b j ]
α j ∼ U [c j d j ]
θ ∼ U [−1, 1]

(22)

for j = 1, 2; U [a, b] denotes an uniform distribution in the interval (a, b); a j , b j , c j and d j are
known hyperparameters. We further assume prior independence among the parameters.

Other prior distributions also could be considered, as gamma priors for α j and λ j , j = 1, 2.

The joint posterior distribution for v = (λ1, λ2, α1, α2, θ)
′ is given by,

π(v | t) ∝ π(v)L(v | t) (23)

where π(v ) is the joint prior distribution for v; L(v | t) is the likelihood function (17) and t =
(t1, . . . , tn), ti = (t1i , t2i), i = 1, . . . , n is a vector of observed lifetime data.

To get the posterior summaries of interest, we simulate samples for the joint posterior distribu-
tion (23) using MCMC methods.

In this way, we could simulate samples for the joint posterior distribution (23) from the condi-
tional distributions π(λ1 | λ2, α1, α2, θ, t), π(λ2 | λ1, α1, α2, θ, t), π(α1 | λ1, λ2, α2, θ, t),

Pesquisa Operacional, Vol. 35(1), 2015
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π(α2 | λ1, λ2, α1, θ, t) and π(θ | λ1, λ2, α1, α2, t) using the Gibbs sampling algorithm or the

Metropolis-Hastings algorithm, when the conditional distributions are not identified as known
distributions that are easy to simulate.

Considering the presence of a vector X = (X1, X2, . . . , X p)
′ of covariates associated to each

bivariate lifetime T1 and T2, let us consider the following regression model:

λ1i = γ1 exp(β
′
1xi )

λ2i = γ2 exp(β
′
2xi )

(24)

where β j = (β j1, β j2, . . . , β j p)
′ is the regression parameter vector, j = 1, 2, associated to the

covariate vector xi = (x1i , x2i , . . . , x pi)
′, i = 1, 2, . . . , n.

We also assume the presence of censored observations.

For a Bayesian analysis, we assume the following prior distributions for γ j , α j , β jk and θ :

α j ∼ U [a j b j ]
γ j ∼ U [c j d j ]
θ ∼ U [−1, 1]
β jk ∼ N(0, g2)

(25)

for j = 1, 2; k = 1, . . . , p and a j , b j , c j , d j and g are known hyperparameters and N(0, g2)

denotes a normal distribution with mean zero and variance g2. We further assume prior indepen-
dence among the parameters.

6 APPLICATIONS

6.1 Simulated data sets

As a first application, let us consider four simulated data sets from the bivariate generalized
exponential distribution (10) in the presence of censored data with sample sizes n = 10 (d1 = 10,

d2 = 9); n = 20 (d1 = 18, d2 = 20); n = 30 (d1 = 27, d2 = 30) and n = 50 (d1 = 44, d2 = 47)
where d1 is the number of uncensored lifetimes t1i and d2 is the number of uncensored lifetimes
t2i , i = 1, 2, . . . , n, and the following values for the parameters of the model: λ1 = 0.001;
λ2 = 0.005; α1 = 1; α2 = 0.5 and θ = 0.5.

We assume a reparametrization for λ1 and λ2 given by γ ∗
1 = log(λ1) and γ ∗

2 = log(λ2) to get
better convergence for the Gibbs sampling algorithm using the software Winbugs (Spiegelhalter
et al., 2003) which only requires the specification of the joint distribution for the data and prior

distributions for the parameters. For all considered sample sizes, we assume the following prior
distributions:

γ ∗
1 ∼ U (−10, 0), γ ∗

2
∼ U (−10, 0), α1 ∼ U (0, 3), α2 ∼ U (0, 2) and θ ∼ U (0, 1).

The selection of the hyperparameters is made so that the prior expectation of the parameters
is close to their true values while the variances assume very small values in order to have

Pesquisa Operacional, Vol. 35(1), 2015
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informative prior distributions. Thus, a sensitivity analysis was performed to determine a final

specification of the parameters. Here we present only the best result we obtained for these priors.

In Table 1, we have the posterior summaries of interest obtained from a final simulated Gibbs
sample of size 2000 of the joint posterior distribution for the parameters of the model after
discarding the first 5000 Gibbs samples to eliminate the effect of the initial values for the Gibbs

sampling algorithm. In Table 1, we also have the maximum likelihood estimates (MLE) and the
95% confidence intervals based on the asymptotical normality of the MLE.

Table 1 – Posterior summaries (simulated data sets) and MLE estimates.

Sample size Parameter Mean
95% credible

MLE
95% confidence

interval interval

α1 1.241 (0.489; 2.334) 1.103 (–4.943; 7.149)

α2 0.672 (0.296; 1.229) 0.575 (–2.206; 3.357)

γ *
1 –6.656 (–7.656; –5.991) –6.908 (–11.770; –2.046)

n = 10 γ *
2 –5.411 (–6.663; –4.530) –5.521 (–10.957; –0.084)

λ1 0.001 (0.000; 0.002) 0.001 (–0.005; 0.008)

λ2 0.005 (0.001; 0.011) 0.004 (–0.024; 0.033)

θ 0.552 (0.035; 0.979) 0.447 (–9.652; 10.546)

α1 1.228 (0.666; 2.056) 1.138 (–1.748; 4.025)

α2 0.716 (0.399; 1.132) 0.709 (–0.929; 2.347)

γ *
1 –6.642 (–7.285; –6.128) –6.908 (–8.917; –4.389)

n = 20 γ *
2 –5.039 (–5.728; –4.432) –5.116 (–7.645; –2.547)

λ1 0.001 (0.001; 0.002) 0.001 (–0.002; 0.004)

λ2 0.007 (0.001; 0.003) 0.006 (–0.011; 0.023)

θ 0.526 (0.036; 0.976) 0.736 (–5.688; 7.160)

α1 1.057 (0.611; 1.642) 0.978 (–0.873; 2.829)

α2 0.459 (0.303; 0.666) 0.531 (–0.354; 1.415)

γ *
1 –6.827 (–7.399; –6.349) –6.908 (–8.722; –4.996)

n = 30 γ *
2 –5.170 (–5.823; –4.626) –5.116 (–7.241; –2.902)

λ1 0.001 (0.001; 0.002) 0.001 (–0.001; 0.003)

λ2 0.006 (0.003; 0.010) 0.006 (–0.008; 0.021)

θ 0.458 (0.027; 0.948) 0.300 (–3.547; 4.147)

α1 1.181 (0.789; 1.673) 1.180 (–0.477; 2.836)

α2 0.493 (0.345; 0.669) 0.539 (–0.119; 1.197)

γ *
1 –6.837 (–7.260; –6.480) –6.908 (–8.106; –5.500)

n = 50 γ *
2 –5.092 (–5.594; –4.666) –5.116 (–6.732; –3.467)

λ1 0.001 (0.001; 0.002) 0.001 (–0.0003; 0.003)

λ2 0.006 (0.004; 0.009) 0.006 (–0.004; 0.016)

θ 0.538 (0.056; 0.967) 0.568 (–2.090; 3.226)
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Figure 2 – Marginal posterior densities for each parameter with different sample sizes, n = 10, 20, 50
and 100.

From the results of Table 1, we observe that we get accurate Bayesian inferences for the param-
eters of the model, especially considering large samples sizes. The only exception is the param-

eter θ , where the 95% credible intervals are very large considering the four simulated samples
(n = 10, n = 20, n = 30 or n = 50).

Figure 2 illustrates the performance of marginal posterior densities for each parameter α1, α2,
λ1, λ2 and θ when the sample size increase, that is, for n = 10, 20, 50 and 100. From the

plots of Figure 2, we observe that as the sample size increases, we have more accurate Bayesian
inferences (see also Table 1).

To improve the Bayesian inferences for θ , we could assume a transformation, γ ∗
3

= log( θ
1−θ ),

considering θ positive an assumption usually observed for the data (0 < θ < 1), the same prior

distributions for γ ∗
1

, γ ∗
2

, α1 and α2 assumed for the results of Table 1 and a normal prior N(0, 1)
distribution for γ ∗

3
, we have in Table 2, the posterior summaries of interest.
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From the results of Table 2, we observe similar posterior summaries for the parameters α1, α2,

γ ∗
1

, γ ∗
2

, λ1 and λ2 as obtained in Table 1, but better accuracy for the Bayesian estimator for θ
as observed in the 95% credible intervals. We also observe that the accuracy of the Bayesian
intervals for θ have some improvement as the data sample sizes increases, an indication of

identifiability using the reparametrized form of θ .

Table 2 – Posterior summaries (simulated data set, logit transformation for θ).

Sample size Parameter Mean S.D. 95% credible interval

n = 10

α1 1.245 0.4819 (0.4912; 2.405)

α2 0.6802 0.2533 (0.2873; 1.287)

γ *
1 –6.65 0.4157 (–7054; –5.961)

γ *
2 –5.403 0.5508 (–6.638; –4.496)

γ *
3 0.1787 0.9878 (–1769; 2.131)

λ1 0.00139 0.000531 (0.00053; 0.00258)

λ2 0.00514 0.002536 (0.00131; 0.01115)

θ 0.5372 0.2043 (0.1456; 0.8939)

n = 20

α1 1.215 0.3578 (0.6259; 2.013)

α2 0.7132 0.2004 (0.3869; 1.145)

γ *
1 –6.644 0.298 (–7.32; –6.145)

γ *
2 –5.043 0.3358 (–5.782; –4.46)

γ *
3 0.05242 0.9548 (1-803; 1.82)

λ1 0.00136 0.000379 (0.000662; 0.002145)

λ2 0.00681 0.002169 (0.003081; 0.01156)

θ 0.5114 0.2012 (0.1415; 0.8605)

n = 30

α1 1.035 0.2526 (0.6053; 1.605)

α2 0.4629 0.0988 (0.2909; 0.6843)

γ *
1 –6.846 0.2661 (–7.422; –6.372)

γ *
2 –5.156 0.311 (4.616; 5.817)

γ *
3 –0.07513 0.9302 (–1.909; 1.779)

λ1 0.001101 0.000281 (0.00059; 0.0017)

λ2 0.00604 0.0018 (0.00297; 0.00989)

θ 0.4843 0.1963 (0.1291; 0.8556)

n = 50

α1 1.186 0.227 (0.7915; 1.683)

α2 0.4948 0.08044 (0.3451; 0.6658)

γ *
1 –6.835 0.1977 (–7.249; –6.488)

γ *
2 –5.094 0.2503 (–5.636; –4.647)

γ *
3 0.1513 0.8779 (–1.6; 1.894)

λ1 0.001097 0.000212 (0.00071; 0.001522)

λ2 0.006322 0.001533 (0.00357; 0.00959)

θ 0.5325 0.1859 (0.168; 0.8692)
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The Bayesian estimation also performs well in applications with a large number of censored

data. Table 3 shows the results of simulation studies for different sample sizes as n = 10 (d1 =
10, d2 = 5); n = 20 (d1 = 12, d2 = 20); n = 50 (d1 = 30, d2 = 20) and n = 100 (d1 = 30,
d2 = 90).

Table 3 – Posterior summaries of simulated data set with high level of censoring.

Sample size Parameter Mean S.D. 95% credible interval

α1 1.610 0.566 (0.686, 2.821)

α2 1.223 0.403 (0.476, 1.943)

γ *
1 –6.790 0.338 (–7.513, –6.198)

n = 10 γ *
2 –5.670 0.537 (–6.979, –4.834)

λ1 0.001 0.0003 (0.0005, 0.002)

λ2 0.004 0.002 (0.0009, 0.008)

θ 0.464 0.281 (0.023, 0.9660)

α1 0.875 0.279 (0.452, 1.508)

α2 0.998 0.275 (0.552, 1.627)

γ *
1 –7.254 0.415 (–8.147, –6.543)

n = 20 γ *
2 –4.397 0.295 (–5.010, –3.888)

λ1 0.001 0.0003 (0.0003, 0.0014)

λ2 0.013 0.003 (0.007, 0.020)

θ 0.445 0.281 (0.019, 0.961)

α1 1.223 0.272 (0.771, 1.855)

α2 0.698 0.142 (0.454, 0.994)

γ *
1 –6.945 0.247 (-7.479, –6.493)

n = 50 γ *
2 –5.402 0.311 (–6.091, –4.903)

λ1 0.001 0.0002 (0.0005, 0.0015)

λ2 0.005 0.0013 (0.002, 0.007)

θ 0.487 0.112 (0.271, 0.710)

α1 1.115 0.203 (0.770, 1.541)

α2 0.632 0.079 (0.491, 0.786)

γ *
1 –7.599 0.267 (–8.183, –7.127)

n = 100 γ *
2 –5.027 0.161 (–5.347, –4.746)

λ1 0.0005 0.0001 (0.0003, 0.0008)

λ2 0.007 0.001 (0.004, 0.008)

θ 0.557 0.088 (0.384, 0.716)

In summary, we observe good inferences considering the posterior mean for all the random quan-

tities, especially when the samples size increases in comparison to the real value of the param-
eters (λ1 = 0.001; λ2 = 0.005; α1 = 1; α2 = 0.5 and θ = 0.5) used to simulate the lifetimes
T1 and T2.
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Figure 3 shows a comparison of the posterior distributions of each parameter in order to analyze

the sensitivity of the estimation when the number of censored lifetime data is increased. We
consider samples of size n = 50 with (d1 = 44, d2 = 47) and (d1 = 30, d2 = 20). Despite the
high degree of censoring, the performance of the estimates are quite similar for the parameters

α1, λ1 and θ of the bivariate generalized exponential distribution. We note that the parameters
α2 and λ2 are more sensitive to censorship certainly due to the higher percentage of censorship
occurred for T2 variable, hence requiring a larger number of observations.

Figure 3 – Marginal posterior densities for each parameter with different sample sizes, n = 10, 20, 50 and

100 with high level of censoring.

6.2 Recurrence times of infection for kidney patients

In this application, we consider a survival time data set introduced by McGilchrist & Aisbett
(1991) related to kidney infection where the recurrence of infection for 38 Kidney patients, using
portable dialysis machines, are recorded. The time recorded, called infection time, is either the
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lifetime (in days) of the patient until an infection occurred and the catheter had to be removed, or

the censoring time, where the catheter was removed by other reasons. The catheter is reinserted
after some time and the second infection time is again observe or censored (data set in Table 4).

As a first analysis, let us assume the bivariate generalized exponential distribution with density
(12) not considering the presence of the covariate sex. Let us devote this model as “model 1”.

For a Bayesian analysis of “model 1”, not considering the presence of the covariate sex, let us as-

sume the same reparametrization for λ1, λ2 and θ considered in Section 6.1, that is, γ ∗
1

= log(λ1),
γ ∗

2
= log(λ2) and γ ∗

3
= log( θ

1−θ ) (from a preliminary data analysis, the sample correlation
between the lifetimes considering only the uncensored observations is given by 0.181; that

is, we are assuming 0 < θ < 1), and the following prior distributions: γ ∗
1 ∼ U (−10, 0),

γ ∗
2

∼ U (−10, 0), α1 ∼ U (0, 3), α2 ∼ U (0, 2) and γ ∗
3 ∼ U (−1, 1).

Using the WinBugs software, we simulated 2000 Gibbs samples from the joint posterior dis-
tribution of interest taking every 30th simulated sample after a “burn-in-sample” period of size

5000.

Convergence of the Gibbs sampling algorithm was monitored using standard existing methods
as traceplots for the simulated samples. The posterior densities for each parameter are shown in
Figure 4.

In Table 5, we have the posterior means, the posterior standard-deviations and 95% Bayesian
intervals for the parameters of the model. We also have the MLE estimates and their asymptotical
confidence intervals.

Often concern focusses on the survival function S(t1, t2) given in (14). For instance, by using the

priors proposed in this paper we have P(T1 > 8 days, T2 > 12 days) = 0.833 with a credible
interval (0.737, 0.914).

Figure 5 shows graphically the posterior distribution of the probability P(T1 > 8 days, T2 > 12
days).

Finally, we derive the joint density and survival functions from the (12) and (14) respectively, for

kidney infection in patients data and a plot of both functions is provided in Figure 6.

In the presence of the covariate sex, denoted by X , we assume the regression model introduced
in Section 5, that is,

λ1i = γ1 exp(β1xi )

λ2i = γ2 exp(β2xi )
(26)

where i = 1, 2, . . . , 38; Xi = 1 (male) and Xi = 0 (female) (see (24)). Let us denote this model
as “model 2”.

Also assuming the reparametrization γ ∗
3

= log( θ
1−θ ), and the prior distributions γ j ∼ U (0, 1),

β j ∼ N(0, 1), α j ∼ U (0, 3), j = 1, 2 and γ ∗
3 ∼ U (−1, 1), we have in Table 5, the posterior

summaries of interest based on 2000 simulated Gibbs samples (every 30th sample and a “burn-
in-sample” of size 5000).
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Table 4 – Recurrence times of infections in 38 kidney patients.

Patient
First Second Censoring Censoring

Sex
time time first time second time

1 8 16 1 1 1

2 23 13 1 0 2

3 22 28 1 1 1

4 447 318 1 1 2

5 30 12 1 1 1

6 24 245 1 1 2

7 7 9 1 1 1

8 511 30 1 1 2

9 53 196 1 1 2

10 15 154 1 1 1

11 7 333 1 1 2

12 141 8 1 0 2

13 96 38 1 1 2

14 149 70 0 0 2

15 536 25 1 0 2

16 17 4 1 0 1

17 185 117 1 1 2

18 292 114 1 1 2

19 22 159 0 0 2

20 15 108 1 0 2

21 152 362 1 1 1

22 402 24 1 0 2

23 13 66 1 1 2

24 39 46 1 0 2

25 12 40 1 1 1

26 113 201 0 1 2

27 132 156 1 1 2

28 34 30 1 1 2

29 2 25 1 1 1

30 130 26 1 1 2

31 27 58 1 1 2

32 5 43 0 1 2

33 152 30 1 1 2

34 190 5 1 0 2

35 119 8 1 1 2

36 54 16 0 0 2

37 6 78 0 1 2

38 63 8 1 0 1
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α1 α2 λ1

λ1 λ2 λ3

θ

Figure 4 – Marginal posterior densities for each parameter of “model 1”.

From the results of Table 6, we observe that zero is included in the 95% credible intervals for β1

and β2, but zero is very close to the inferior credible limit for β1, that is, we have an indication

that the lifetime T1 is affected by the covariate sex.
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Table 5 – Bayesian summaries (“model 1” not considering the covariate sex).

Parameter Mean
95% credible

MLE
95% confidence

interval interval

α1 0.766 (0.490; 1.125) 0.724 (–0.286; 1.733)

α2 1.130 (0.695; 1.712) 0.974 (–0.503; 2.451)

γ *
1 –5.139 (–5.724; –4.685) –5.116 (–6.757; –3.570)

γ *
2 –4.851 (–5.455; –4.366) –4.962 (–6.528; –3.336)

γ *
3 0.067 (–0.939; 0.959) 0.364 (–11.574; 12.300)

λ1 0.006 (0.003; 0.009) 0.006 (–0.004; 0.015)

λ2 0.008 (0.004; 0.013) 0.007 (–0.005;0.019)

θ 0.516 (0.281; 0.723) 0.590 (–2.408; 3.588)

Figure 5 – Posterior density of survival S(8, 12).

To compare the proposed models, we could use some existing Bayesian discrimination criteria,

as for example, DIC (Deviance information criterion) introduced by Spiegelhalter et al. (2002)
(see appendix) and given automatically by the WinBugs software. Assuming “model 1” (not
considering the presence of the covariate sex), we obtained a MonteCarlo estimate for DIC given

by the value 686.33; assuming “model 2” (presence of the covariate sex), the DIC value is given
by 677.695; that is, “model 2” gives better fit for the data set introduced in Table 3 (smaller value
for DIC).
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Figure 6 – Plots and contours of bivariate functions for the “model 1”.

Table 6 – Bayesian summaries (“model 2” in the presence of the covariate sex).

Parameter
Posterior

S.D.
95% credible

mean interval

α1 0.842 0.179 (0.588; 1.179)

α2 1.143 0.257 (0.771; 1.612)

λ1 0.006 0.001 (0.004; 0.009)

λ2 0.009 0.002 (0.005; 0.014)

β1 0.230 0.159 (–0.024; 0.514)

β2 –0.118 0.147 (–0.345; 0.113)

θ 0.500 0.040 (0.437; 0.569)
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7 CONCLUDING REMARKS

The use of bivariate generalized exponential distributions derived from copula functions could
be a good alternative to analyze bivariate lifetime data, usually in the presence of censored obser-

vations and covariates. Other copula functions also could be used to derive bivariate lifetime dis-
tributions. Bayesian inference for this class of models using standard existing MCMC methods
is a good alternative to get accurate inference results. It is important to point out that the depen-

dence parameter θ can present some identifiability problems and this problem could be solved
considering an informative prior from θ based on expert opinion or considering a reparametriza-
tion, as it was observed in this paper.

The use of existing Bayesian softwares like the WinBugs software gives a great simplification to

get the posterior summaries of interest.
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APPENDIX
DEVIANCE INFORMATION CRITERION (DIC)

The Deviance Information Criterion (DIC) is a criterion specifically useful for selection model
under the Bayesian approach where samples of the posterior distributions for the parameters of
the model are obtained using MCMC methods.

The deviance is defined by,

D(θ) = −2 log L(θ )+ c (A1)

where θ is a vector of unknown parameters of the model, is the likelihood function of the model
and c is a constant that does not need to be known when the comparison between models is made.
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The DIC criterion defined by Spirgelhalter (2002) is given by,

DIC = D(̂θ )+ 2nD (A2)

where D(̂θ ) is the deviance evaluated at the posterior mean θ̂ = E(θ | data) and nD is the effec-
tive number of parameters of the model given by nD = D − D(̂θ), where D = E(D(θ ) | data)

is the posterior deviance measuring the quality of the data fit for the model. Smaller values of
DIC indicates better models. Note that these values could be negative.
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