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ABSTRACT. Industrial recurrent event data where an event of interest can be observed more than once

in a single sample unit are presented in several areas, such as engineering, manufacturing and industrial

reliability. Such type of data provide information about the number of events, time to their occurrence

and also their costs. Nelson (1995) presents a methodology to obtain asymptotic confidence intervals for

the cost and the number of cumulative recurrent events. Although this is a standard procedure, it can not

perform well in some situations, in particular when the sample size available is small. In this context,

computer-intensive methods such as bootstrap can be used to construct confidence intervals. In this paper,

we propose a technique based on the bootstrap method to have interval estimates for the cost and the

number of cumulative events. One of the advantages of the proposed methodology is the possibility for

its application in several areas and its easy computational implementation. In addition, it can be a better

alternative than asymptotic-based methods to calculate confidence intervals, according to some Monte Carlo

simulations. An example from the engineering area illustrates the methodology.

Keywords: industrial data, recurrent events, bootstrap, asymptotic theory, confidence intervals.

1 INTRODUCTION

In several areas, such as engineering, manufacturing and industrial reliability, we may observe
recurrent event data, where the event of interest can be the repeated failures in a piece of equip-
ment, systems which accumulate several repairs, or the number of bugs in a software under study,
for instance. There are currently several models and methods developed for the analysis of such
data, as described in Hougaard (2000). Approaches often used to model recurrent event data,
which allow us to learn about an individual process, are those based on Poisson and renewal
processes. (Cox & Isham, 1980; Cox & Lewis, 1966; Andersen, Borgan, Gill & Keiding, 1993;
Lawless, 1987; Follmann & Goldberg, 1988; Prentice, Williams & Peterson, 1981).
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For recurrent event data, it is interesting to study the number of events that occurs over the
time. Adding to that, as for each event a cost can be associated, an event cost study may be
also important for the analyst. From this perspective, a mean cumulative function (MCF) for the
number (or cost) of events per sample unit can be defined. Nelson (1988, 1995) presented a non
parametric procedure to calculate confidence intervals for this function. However, as it relies on
asymptotic distributional assumptions, the quality of their results can be affected if information
about the event of interest are not largely available, which results in a small sample size of units.
In this context, computer-intensive methods (Davison & Hinkley, 1999; Chernik, 2008) such as
bootstrap can be used to construct confidence limits for the MCF.

In this paper, we present the estimate and confidence limits proposed by Nelson, and also intro-
duce a bootstrap-based technique in order to obtain confidence limits for the MCF. In Section 2,
we introduce the MCF estimate proposed by Nelson (1995). Two methods to calculate con-
fidence limits for the MCF are presented in Section 3, the Nelson asymptotic procedure and
our proposed technique. Section 4 presents a simulation study in order to compare the two
approaches discussed in Section 3 via coverage probabilities, and in Section 5 the methodol-
ogy is illustrated on a valve seats replacement data set. Some concluding remarks in Section 6
finalize the paper.

2 MODEL FORMULATION AND THE MCF ESTIMATOR

Consider a population of units which are exposed to recurrent events. Despite the occurrence of
censoring, an uncensored cumulative history function Yi (t) for the cost of events is associated
for each population unit i . Yi (t) denotes the cumulative cost of events on unit i up to age t .
The model proposed by Nelson (1995) is a population of such uncensored cumulative functions,
which extend in principle to any time of interest and does not depend on the censoring of a
sample.

Figure 1 – Population Cumulative Cost Histories (uncensored),

distribution at age t (taken from Nelson, 1995).

Figure 1 shows such functions as smooth curves for easy viewing, although each Yi (t) is better
described by staircase functions due to the nature of data (Nelson, 1995). Since different units
undergo different number and cost of events at different ages, there is a population distribution
of cumulative cost at a given age t . It is assumed that the distribution of the cumulative cost at
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any age t has a finite mean C(t), which is called the population mean cumulative function per
cost per unit (MCF). The MCF is represented in Figure 1 as a dark curve.

3 ESTIMATION

To estimate the population MCF, consider a sample of units which was exposed to recurrent
events and their censored histories. Figure 2 shows these censored histories, where each hori-
zontal line represents an unit cost history, each x denotes an occurrence of an event, and each
dashed vertical line denotes the censoring age of a sample unit.

Following Nelson (1995), note that, in the representation presented in Figure 2, the units are
shown in an ascending order and numbered backward according to their censoring ages. Also,
these censoring ages divide the observed age range into N intervals, as well as these intervals are
also numbered backward. Denote the total incremental event cost accumulated over all events in
interval i on unit n by Yin where i, n = 1, 2, . . . , N . Based on this representation, the estimate
for the mean cost cumulative function at a given age t in the interval I is,

C∗(t) =
1

N

[
YN N + YN ,N−1 + YN ,N−2 + ∙ ∙ ∙ + YN I + ∙ ∙ ∙ + YN1

]

+
1

N − 1

[
YN−1,N−1 + YN−1,N−2 + ∙ ∙ ∙ + YN−1,I + ∙ ∙ ∙ + YN−1,1

]

+
1

N − 2

[
YN−2,N−2 + ∙ ∙ ∙ + YN−2,I + ∙ ∙ ∙ + YN−2,1

]

...
. . .

...
...

+
1

I + 1

[
YI+1,I+1 + YI+1,I + ∙ ∙ ∙ + YI+1,1

]

+
1

I

[
YI,I + ∙ ∙ ∙ + YI,1

]
.

(1)

Note that the first row in (1) denotes the total incremental cost of N units in the interval N
divided by N , the second row denotes the total incremental cost of N − 1 units in the interval
N − 1 divided by N − 1 and so on. The sum in the last row is the total incremental cost up
to age t of all I units which are exposed in interval I . It implies that each row represents the
average incremental cost per unit for each interval from N up to I . Since the MCF estimate
depends on the intervals which have considered for the representation in Figure 2, this estimate
and also the confidence limits are conditional on the given censoring ages. Also, it is assumed
that the set of units considered for the estimate are a random sample from some population, and
the event histories for each unit are statistically independent of their censoring ages. To avoid
consideration of ties, it is assumed the the sample ages of recurrences are known exactly and are
distinct points on a continous time scale. Note that the estimate for the mean number cumulative
function is the same except that 1 is used as the cost for each event.

From the representation presented in Figure 2 and the property of the variance of a sum of
random variables, Nelson (1995) derived the variance of (1), denoted by V [C∗(t)]. Since
V [C∗(t)] is the variance of a sum, it consists of the variances denoted by V [Yin] of all the
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total incremental costs in (1) and the covariances V (Yin,Y j,n), which reflects the population
autocorrelation between incremental cost in intervals i and j . Then the variance of (1) is,

V [C∗(t)] =
1

N 2

[
V (YN N ) + V (YN ,N−1) + V (YN ,N−2) + ∙ ∙ ∙ + V (YN I ) + ∙ ∙ ∙ + V (YN1)

]

+
1

(N − 1)2

[
V (YN−1,N−1) + V (YN−1,N−2) + ∙ ∙ ∙ + V (YN−1,I ) + ∙ ∙ ∙ + V (YN−1,1)

]

+
1

(N − 2)2

[
V (YN−2,N−2) + ∙ ∙ ∙ + V (YN−2,I ) + ∙ ∙ ∙ + V (YN−2,1)

]

...
. . .

...
...

+
1

(I + 1)2

[
V (YI+1,I+1) + V (YI+1,I ) + ∙ ∙ ∙ + V (YI+1,1)

]

+
1

I 2

[
V (YI,I ) + ∙ ∙ ∙ + V (YI,1)

]

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

V [C∗(t)] = +
2

N (N − 1)

N−1∑

n=1

V (YNn,YN−1,n)

+
2

N (N − 2)

N−2∑

n=1

V (YNn,YN−2,n)

+
2

N (N − 3)

N−3∑

n=1

V (YNn,YN−3,n)

...
...

+
2

N (I + 1)

I+1∑

n=1

V (YNn,YI+1,n)

+
2

N I

I∑

n=1

V (YNn,YI,n)

− − − − − − − − − − − − − − − − − − − −

+
2

(N − 1)(N − 2)

N−2∑

n=1

V (YN−1,n,YN−2,n)

+
2

(N − 1)(N − 3)

N−3∑

n=1

V (YN−1,n,YN−3,n)

(2)
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+
2

(N − 1)(N − 4)

N−4∑

n=1

V (YN−1,n,YN−4,n)

...
...

+
2

(N − 1)(I + 1)

I+1∑

n=1

V (YN−1,n,YI+1,n)

+
2

(N − 1)I

I∑

n=1

V (YN−1,n,YI,n)

− − − − − − − − − − − − − − − − − − − −−

...
...

− − − − − − − − − − − − − − − − − − − −−

2

(I + 1)I

I∑

n=1

V (YI+1,n,YI,n).

(2)

The first block of terms consists of the individual variances of each of the Yin in (1), the second
block consists of the covariances between incremental costs in interval i = N and those of each
in subsequent intervals i = N − 1, i = N − 2, . . . , i = I . The third block of terms consists of
the covariances between incremental costs in interval i = N − 1 and those of each in subsequent
intervals i = N − 2, i = N − 3, . . . , i = I and so on until the last block, which consists of
the covariances between incremental costs in interval i = I + 1 and those in the interval i = I
up to age t .

Since the variances appearing in the first row of the first block in (2) are N independent observa-
tions from the same incremental cost distribution for the interval N , we have

V (YN N ) = V (YN ,N−1) = . . . = (YN1) = V (YNn).

Hence, the sum of the first row of the first block in (2) is N V (YNn). By this reasoning, the
N − 1 variances in the second row of the first block have a common value V (YN−1,n) and a
sum of (N − 1)V (YN−1,n) and so on. Similarly, the covariance terms can be combined, since
the covariance terms in a sum in a single row of (2) are all equal. For instance, the first row of
the second block has N − 1 covariances with a common value V (YNn , YN−1,n) and a sum of
(N − 1)V (YNn , YN−1,n). Hence, the variance of the C∗(t) can be simplified as

V [C∗(t)] =
1

N
V (YNn) +

1

N − 1
V (YN−1,n) +

1

N − 2
V (YN−2,n) + ∙ ∙ ∙ +

1

I
V (YI n)

+
2

N
[V (YNn, YN−1,n) + V (YNn, YN−2,n) + ∙ ∙ ∙ + V (YNn, YI,n)]

+
2

N − 1
[V (YN−1n, YN−2,n) + ∙ ∙ ∙ + V (YN−1n, YI,n)] + ∙ ∙ ∙

∙ ∙ ∙ +
2

I + 1
[V (YI+1n, YI,n)].

(3)
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For the estimation of the terms in (3), consider the i sample incremental costs Yii , Yii−1,...,Yi1

observed in interval i . These observed costs are a random sample from the incremental cost
distribution of the interval i . Thus, their sample variance,

V ∗(YI n) = +
1

I

i∑

n=1

(Yin − Y i)2 (4)

is an unbiased estimate of the population variance V (Yin). Also, the population covariance
V (Yin, Y jn) is estimated by the sample covariance,

V ∗(YI N ,YI J ) = +
1

J − 1

J∑

n=1

(Yin − Y i)(Y jn − Y j ). (5)

J < I.

The inclusion of (4) and (5) into (3) provides an unbiased estimate for the true variance V [C∗(t)]
(Nelson, 1995).

4 CONFIDENCE INTERVALS FOR MCF

In this Section, the usual procedure to calculate confidence limits for the Mean Cumulative
Function are presented, as well as an alternative based on bootstrap techniques.

4.1 Confidence Intervals Based on Asymptotic Theory

Suppose that N cumulative history functions for cost represented in Figure 2 are a simple random
sample from a infinite population. At a given time t , the estimator of the Mean Cumulative
Function estimator is given by (3). Since this estimator is the sample mean considering censored
histories, by the central-limit theorem (Lehmann, 1999), C∗(t) has a normal distribution with
Mean C(t) (the mean cumulative function at the time t) and variance V ∗[C∗(t)] (Nelson, 1995).
Hence, the two sided normal approximate (100 − α)% confidence interval for C(t) is given by,

C∗(t) ± Kα ∗ {V ∗[C∗(t)]}1/2 (6)

where V ∗[C∗(t)] is the V [C∗(t)] estimator and Kα is the α/2 standard normal percentile.

This procedure are based on a sample of units, in which the asymptotic based confidence intervals
presented here can not perform well if the size sample is small. In this context, computer-
intensive methods such as bootstrap can be used to construct confidence intervals for the Mean
Cumulative Function.

4.2 Confidence Intervals Based on the Bootstrap

The bootstrap is a computer-intensive method which can be used to obtain confidence intervals
for quantities of interest (Efron, 1979). According to Moretti & Mendes (2003), this technique
is especially useful for dealing with statistical problems involving a small sample size and those
involving estimators whose distribution (exact or asymptotic) has not yet been obtained. The
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basic idea is to consider the observed data as a population, and then samples from this population
are obtained based on a sampling scheme with replacement from the original sample. If this
procedure is repeated several times, different values of the quantities of interest can be obtained,
thus providing an empirical distribution of this quantity. Based on this idea, it is possible to
construct the percentile confidence intervals (Efron & Tibshirani, 1993; Davison & Hinkley,
1999; Chernik, 2008; Souza, Souza & Staub, 2009) for the MCF, resampling the original set of
units exposed to recurrent events and calculating the mean cumulative function estimate for each
sample available.

Along these lines, an algorithm to obtain the 100 (1 − α) % percentile bootstrap confidence in-
tervals for the MCF is given by the following steps:

Step 1: From the original dataset, obtain B resamples of units based on a sampling with replace-
ment scheme;

Step 2: To each of the B resamples, calculate the Mean Cumulative Function estimate;

Step 3: Based on the estimates obtained from the resamples of the original dataset, calculate the
α
2 and

(
1 − α

2

)
percentiles from the empirical distributions for each recurrent time for the units

from the original dataset, provided for the B sets of estimatives calculated from the B resamples.

A program to calculate the bootstrap confidence intervals for the MCF is available from the
authors. An implementation of the variance estimate of (3) as well as asymptotic confidence
limits are provided by the SAS software.

5 A SIMULATION STUDY

In order to assess the efficiency and have a comparison of the confidence intervals provided by
the asymptotic theory and the bootstrap, as well as verifying the sample size influence in these
methods, a simulation study was performed to check the coverage probability and the mean range
of the confidence intervals developed here.

The study considered the sample sizes of 10, 30 and 100. For each sample size, four scenarios
based on the parameter settings for the data generation were considered: the number of events
in each sample unit was generated from a Poisson distribution with means 2 and 5, and the
recurrence times were generated from an Weibull distribution with scale parameter 1000 and
shape parameter equal to 1 and 3, assuming the biggest time generated for each unit as a censored
event. We considered then four different scenarios: Scenario 1 (Poisson distribution with mean
equals to 2 and Weibull distribution with shape equals 1), Scenario 2 (Poisson distribution with
mean equals to 2 and Weibull distribution with shape equals 3), Scenario 1 (Poisson distribution
with mean equals to 5 and Weibull distribution with shape equals 1) and Scenario 1 (Poisson
distribution with mean equals to 5 and Weibull distribution with shape equals 3). It was not
considered the presence of ties. We studied the behavior of the 90% confidence limits for the
mean number cumulative function, which is a MCF particular case.

To determine the coverage probability, it was first generated an original data set and their MCF
estimate was calculated. Then, 399 samples was generated considering the same specifications
that it was used to generate the original data set. Then, the number B of resamples was set at
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399. According to Hall (1986) this number of replications is enough to obtain a critical level
of 0.05 from the 0.95 percentile of the empirical distribution of the test statistics. To set up
the Monte Carlo simulation, this procedure was repeated 399 times. The MCF estimate was
calculated for each of the samples. In order to calculate the coverage probability, it was necessary
to set percentiles, since the recurrence times from the 399 samples and the original sample were
generated from a probability distribution, thus varying from sample to sample. The percentiles
10, 25, 50, 75 and 90. where chosen. With this, for each considered percentile it was verified
whether the confidence intervals of the 399 samples covered the MCF estimate obtained in the
original sample. If not, it was also verified if the related percentile MCF estimate lied above the
upper limit or below the lower limit.

The results for all scenarios considered are presented are presented in Table 1. It contains, for
each verified percentile, the time related to the percentile in the original sample, and, for the two
methods considered, the coverage probability, the average range of the interval and the standard
deviation of the interval range in the 399 samples apart from the original sample. The relative
difference of these quantities between the methods is also presented, always considering the
quantity provided by the asymptotic method in the denominator.

For sample sizes bigger than 30, in all the scenarios, it was verified that the bootstrap method
and the asymptotic method provides similar coverage probabilities. Besides, the results indicate
that the coverage probabilities are underestimated in the smallest percentiles and overestimated
in the biggest quantiles, and it tends to decrease as the sample size increases as well as the
average confidence intervals and its standard deviations do. However, for the sample size 10,
the bootstrap method provides smaller confidence intervals average ranges as well as smaller
standard deviations of these ranges. It indicates that, since the asymptotic methods requires
a sufficiently large sample for developing inferences, the bootstrap method can be used as an
alternative approach to provide confidence limits for the mean cumulative function in presence
of small samples.

6 THE VALVE SEATS REPLACEMENT DATA

The presented methodology was applied to a real dataset provided by Nelson (1995). The data
is the valve seats replacement over the time in 41 engines in a fleet. Is this case, the recurrent
event is the valve seats replacements in each of the engines. The interest relies on verifying if the
replacement rate increases with engine age (in days).

The confidence limits obtained via asymptotic theory and the bootstrap method are presented in
the Figure 3, as well as in Table 1. It is verified that both methods indicate that the replacement
rate is constant over the time. Besides, it is also verified that the confidence limits becomes
bigger as the age increases, since information about the valve seats replacements decreases
over the time. However, the asymptotic procedure leads to negative lower confidence limits,
which is impossible from the practical point of view. This problem is overcome by consider-
ing our boostrap procedure. Also, for approximately 92% of the recurrence times the bootstrap
procedure produces confidence interval ranges approximately 50% smallest than the asymptotic

Pesquisa Operacional, Vol. 32(1), 2012



“main” — 2012/3/26 — 15:17 — page 112 — #10

112 BOOTSTRAP CONFIDENCE INTERVALS FOR INDUSTRIAL RECURRENT EVENT DATA

Pesquisa Operacional, Vol. 32(1), 2012



“main” — 2012/3/26 — 15:17 — page 113 — #11

OSVALDO ANACLETO and FRANCISCO LOUZADA 113

Pesquisa Operacional, Vol. 32(1), 2012



“main” — 2012/3/26 — 15:17 — page 114 — #12

114 BOOTSTRAP CONFIDENCE INTERVALS FOR INDUSTRIAL RECURRENT EVENT DATA

Pesquisa Operacional, Vol. 32(1), 2012



“main” — 2012/3/26 — 15:17 — page 115 — #13

OSVALDO ANACLETO and FRANCISCO LOUZADA 115

Pesquisa Operacional, Vol. 32(1), 2012



“main” — 2012/3/26 — 15:17 — page 116 — #14

116 BOOTSTRAP CONFIDENCE INTERVALS FOR INDUSTRIAL RECURRENT EVENT DATA

100 200 300 400 500 600

0.
0

0.
5

1.
0

1.
5

2.
0

time (in days)

M
C
F
 e
st
im
at
e 
an
c 
co
nf
id
en
ce
 li
m
its

MCF estimate 

95% asymptotic confidence interval 

95% bootstrap confidence interval 

Figure 3 – 95% Asymptotic and bootstrap Confidence Intervals for the MCF.

one. Even though these results are not conclusive, they provide an indication of the advantage of
the pratical use of the boostrap confidence interval procedure over the asymptotic method.

7 CONCLUDING REMARKS

In this work, we presented the estimate and confidence intervals based in the asymptotic theory
proposed by Nelson (1995) for the Mean Cumulative Function, using non parametric methodol-
ogy for recurrent events data. Also, it was presented an implementation of the bootstrap tech-
nique for the construction of confidence limits for the MCF. These two procedures were applied
in a real dataset. One of the advantages of the proposed methodology presented here is the
possibility for its application in several areas, its easy computational implementation.

Our simulation results suggest that the confidence intervals based on the two procedures are
similar to moderate and large sample sizes. However, for small sample sizes, the bootstrap
method provides smaller confidence intervals ranges as well as smaller standard deviations of
these ranges. Hence, the bootstrap method can be used as an alternative approach to provide
confidence intervals for the Mean Cumulative Function, in particular when there are restrictions
regarding the availability of information about the event under study.

We only considered the percentile bootstrap method to develop the confidence intervals for the
MCF, since such method is the most straightforward one. Also, we keep the non-parametric
nature of you the MCF estimator, which is non-parametric. However, other bootstrap schemes,
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Table 2 – 95% asymptotic and bootstrap Confidence Intervals for the MCF.

Asymptotic Bootstrap

Recurrence CI 95% CI 95% CI 95% CI 95%

time MCF (Lower (Upper MCF (Lower (Upper

limit) limit) limit) limit)

61 0.0244 -0.0234 0.0722 0.0244 0.0244 0.0732

76 0.0488 -0.0180 0.1155 0.0488 0.0244 0.1220

84 0.0732 -0.0075 0.1539 0.0732 0.0244 0.1707

87 0.0976 0.0056 0.1895 0.0976 0.0244 0.1951

92 0.1220 0.0205 0.2234 0.1220 0.0488 0.2195

98 0.1463 0.0368 0.2559 0.1463 0.0488 0.2683

120 0.1707 0.0541 0.2873 0.1707 0.0732 0.2927

139 0.1951 0.0723 0.3179 0.1951 0.0976 0.3659

139 0.2195 0.0741 0.3649 0.2195 0.0976 0.3659

165 0.2439 0.0943 0.3936 0.2439 0.1220 0.3902

166 0.2683 0.1149 0.4217 0.2683 0.1463 0.4390

202 0.2927 0.1359 0.4494 0.2927 0.1463 0.4634

206 0.3171 0.1434 0.4908 0.3171 0.1951 0.5366

249 0.3415 0.1655 0.5174 0.3415 0.1951 0.5366

254 0.3659 0.1879 0.5438 0.3659 0.2195 0.5610

258 0.3902 0.2107 0.5697 0.3902 0.2439 0.5610

265 0.4146 0.2339 0.5954 0.4146 0.2439 0.5854

276 0.4390 0.2448 0.6332 0.4390 0.2927 0.6463

298 0.4634 0.2459 0.6809 0.4634 0.3293 0.7073

323 0.4878 0.2700 0.7056 0.4878 0.3293 0.7073

326 0.5122 0.2944 0.7300 0.5122 0.3293 0.7317

328 0.5366 0.3086 0.7646 0.5366 0.3659 0.7561

344 0.5610 0.3335 0.7885 0.5610 0.3659 0.7805

348 0.5854 0.3388 0.8319 0.5854 0.3902 0.8780

349 0.6098 0.3641 0.8554 0.6098 0.3902 0.8780

367 0.6341 0.3897 0.8786 0.6341 0.4024 0.8780

377 0.6585 0.3969 0.9202 0.6585 0.4756 0.9512

404 0.6835 0.4138 0.9533 0.6829 0.4756 0.9762

408 0.7085 0.4311 0.9860 0.7079 0.4756 1.0019

410 0.7335 0.4574 1.0096 0.7329 0.4756 1.0250

449 0.7585 0.4754 1.0417 0.7579 0.4893 1.0513

479 0.7835 0.4937 1.0734 0.7829 0.5131 1.0976

497 0.8085 0.5123 1.1047 0.8079 0.5375 1.1153

538 0.8335 0.5314 1.1357 0.8329 0.5610 1.1512

539 0.8585 0.5507 1.1664 0.8579 0.5610 1.1662

561 0.8835 0.5625 1.2045 0.8829 0.6098 1.2518

563 0.9085 0.5826 1.2345 0.9079 0.6098 1.2518
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Table 2 (continuation) – 95% asymptotic and bootstrap Confidence Intervals for the MCF.

Asymptotic Bootstrap

Recurrence CI 95% CI 95% CI 95% CI 95%

time MCF (Lower (Upper MCF (Lower (Upper

limit) limit) limit) limit)

570 0.9335 0.5955 1.2716 0.9329 0.6491 1.2768

573 0.9585 0.6232 1.2938 0.9579 0.6491 1.2768

581 0.9849 0.6451 1.3246 0.9829 0.6829 1.3369

586 1.0143 0.6692 1.3593 1.0092 0.7082 1.3369

604 1.0597 0.6920 1.4275 1.0387 0.7340 1.4202

621 1.1185 0.7048 1.5323 1.0841 0.8170 1.5715

635 1.1810 0.7685 1.5936 1.1429 0.8170 1.5715

640 1.2435 0.7911 1.6959 1.2054 0.8840 1.6409

646 1.3205 0.8635 1.7774 1.2679 0.8840 1.7201

653 1.4316 0.9232 1.9399 1.3449 0.9702 2.1313

653 1.5427 0.9079 2.1774 1.4560 0.9702 2.1313

such as the normal, percentile t and the pivotal method (Davison & Hinkley, 1999; Chernik,
2008), can also be considered in the context of obtaining confidence intervals for the MCF.
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