Accessibility / Report Error

AMAZON RAINFOREST COSMETICS: CHEMICAL APPROACH FOR QUALITY CONTROL

Mariko Funasaki Hileia dos Santos Barroso Valdelira Lia Araújo Fernandes Ingrid Sabino Menezes About the authors

Abstract

The market for natural cosmetics featuring ingredients derived from Amazon natural resources is growing worldwide. However, there is neither enough scientific basis nor quality control of these ingredients. This paper is an account of the chemical constituents and their biological activities of fourteen Amazonian species used in cosmetic industry, including açaí (Euterpe oleracea), andiroba (Carapa guianensis), bacuri (Platonia insignis), Brazil nut (Bertholletia excelsa), buriti (Mauritia vinifera or M. flexuosa), cumaru (Dipteryx odorata), cupuaçu (Theobroma grandiflorum), guarana (Paullinia cupana), mulateiro (Calycophyllum spruceanum), murumuru (Astrocaryum murumuru), patawa (Oenocarpus bataua or Jessenia bataua), pracaxi (Pentaclethra macroloba), rosewood (Aniba rosaeodora), and ucuuba (Virola sebifera). Based on the reviewed articles, we selected chemical markers for the quality control purpose and evaluated analytical methods. Even though chromatographic and spectroscopic methods are major analytical techniques in the studies of these species, molecular approaches will also be important as used in food and medicine traceability. Only a little phytochemical study is available about most of the Amazonian species and some species such as açaí and andiroba have many reports on chemical constituents, but studies on biological activities of isolated compounds and sampling with geographical variation are limited.

Keywords:
Amazonian species; quality control; chemical markers; biological activities


INTRODUCTION

The market for natural cosmetics featuring ingredients derived from Amazon rainforest is growing worldwide. We have been attracted to exotic fragrance perfume, high potency moisturizing skin cream, etc. In Brazil, most of the cosmetics company have a series of products focused on Amazon ingredients, such as "andiroba", "copaíba", "murumuru", etc.11 http://www1.folha.uol.com.br/folha/equilibrio/noticias/ult263u2714.shtml, accessed in May 2015.
http://www1.folha.uol.com.br/folha/equil...
Traditionally, the extracts of these plants have been used by indigenous people as sun protection, dry hair treatment, ointment for wound healing, etc. They are based on the beliefs, experiences, and the knowledge handed down from generation to generation. On the other hand, when we purchase natural cosmetics, there is no doubt that we would like to know if the cosmetics really have efficacy or if they contain genuine ingredients. Among more than 40 thousands species of Amazonian plants,22 Pyers, G.; Biodiversity of Rainforests, Macmillan Education: South Yarra, 2013. only a few tens of species are used in cosmetic industries and, about most of them, the efficacy and its responsible chemical constituents have not been proven.

To guarantee product quality, a lot of aspects can be considered: minimum threshold for natural ingredients; geographical indication, manufacturing process including extraction, preservation and transportation; extent of contamination; safety under the conditions of use; efficacy with clinical data; safety issues associated with genetic modification.33 http://www.ecocert.com/en, accessed in May 2013; http://www.wto.org/english/tratop_e/trips_e/gi_background_e.htm, accessed in August 2013; Nohynek, G. J. ; Antignac, E.; Re, T.; Toutain, H.;Toxicol. Appl. Pharm.2010, 243, 239.
http://www.ecocert.com/en...

In the herbal medicines, chemical markers are generally employed for quality control purposes.44 Li, S.; Han, Q.; Qiao, C.; Song, J.; Cheng, C. L.; Xu, H.;Chinese Medicine2008, 3, 1; EMA-European Medicines Agency. Reflection paper on markers used for quantitative and qualitative analysis of herbal medicinal products and traditional herbal medicinal products. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003211.pdf
http://www.ema.europa.eu/docs/en_GB/docu...
They are used for both identification and quantification and when they have therapeutic activity, they can serve for control of efficacy. In the same way, chemical markers can be applied to the control of cosmetic products.

In this work, we reviewed chemical studies on fourteen species from Amazon rainforest used in the industry of personal hygiene, perfumery, and cosmetics, with the brief descriptions about traditional and cosmetic use of these species. Our object is to provide the information useful for quality control, principally, to pick out chemical markers which stand out chemically and may have biological activities.

AMAZONIAN SPECIES

The Table 1 summarizes the plant source, compound class, compound's name, biological activity and reference. The chemical structures of the compounds mentioned throughout this review are shown in Figures 1 to 12 with numbering 1-112.

Table 1
Compounds obtained from Amazonian species and biological activities

Figure 1
Structures of compounds 1-29 from Euterpe oleracea
Figure 2
Structures of compounds 30-41 from Carapa guianensis
Figure 3
Structures of compounds 42-54 from Platonia insignis
Figure 4
Structures of compounds 55-57 from Bertholletia excelsa
Figure 5
Structures of compounds 58-62 from Mauritia flexuosa(or M. vinifera)
Figure 6
Structures of compounds 63-76 from Dipteryx odorata
Figure 7
Structures of compounds 77-90 from Theobroma grandiflorum and Paullinia cupana
Figure 8
Structure of compounds 91-98 from Calycophyllum spruceanum
Figure 9
Structures of compounds 99-103 from Oenocarpus bataua
Figure 10
Structure of compound 104 from Pentaclethra macroloba
Figure 11
Structures of compounds 105-107 from Aniba rosaeodora
Figure 12
Structures of compounds 108-112 from Virola sebifera

Chemical composition and biological activities of Euterpe oleracea ("açaí")

Fruits of E. oleracea have been consumed as energy drink by indigenous and rural people, and are recently employed to prepare a variety of healthy foods, in both tropical and non-tropical countries.6161 Burlando, B.; Verotta, L. Cornara L.; Bottini-Massa, E.;Herbal Principles in Cosmetics: Properties and Mechanisms of Action, CRC Press, Taylor & Francis Group: Boca Raton, 2010. The oil yielded from the fruit pulp can be used in after-sun products, creams, lotions, shampoo, face masks, and other cosmetics. It is considered to have regenerative and anti-aging properties on the skin due to its constituents like essential fatty acids, phytosterol, and vitamins.6161 Burlando, B.; Verotta, L. Cornara L.; Bottini-Massa, E.;Herbal Principles in Cosmetics: Properties and Mechanisms of Action, CRC Press, Taylor & Francis Group: Boca Raton, 2010.

Phenolic constituents are associated with the anti-oxidant activities in various plant-derived foods. The fruit of E. oleracea contains phenolics as major secondary metabolites remarkably anthocyanins (1-5), which is water-soluble pigments responsible for the dark purple color, and other flavonoids (6-21).55 Gallori, S.; Bilia, A. R.; Bergonzi, M. C.; Barbosa, W. L. R.; Vincieri, F. F.; Chromatographia2004, 59, 739.

6 Pozo-Insfran, D. D.; Brenes, C. H.; Talcott, S. T.; J. Agric. Food Chem. 2004, 52, 1539.

7 Schauss, A. G.; Wu, X.; Prior, R. L.; Ou, B.; Patel, D.; Huang, D.; Kababick, J. P.; J. Agric. Food Chem. 2006,54, 8598.

8 Pacheco-Palencia, L. A.; Duncan, C. E.; Talcott, S. T.; Food Chem. 2009, 115, 1199.

9 Pacheco-Palencia, L. A.; Mertens-Talcott, S. U.; Talcott, S. T.;Food Chem. 2010, 119, 1071.

10 Gordon, A.; Cruz, A. P. G.; Cabral, L. M. C.; Freitas, S. C. de; Dib Taxi, C. M. A.; Donangelo, C. M.; Mattietto, R. de A.; Friedrich, M.; Matta, V. M. da; Marx, F.; Food Chem. 2012,133, 256.

11 Mulabagal, V; Calderón, A. I.; Food Chem.2012, 134, 1156.

12 Pacheco-Palencia, L. A.; Mertens-Talcott, S.; Talcott, S. T.;J. Agric. Food Chem. 2008,56, 4631.

13 Kang, J.; Li, Z.; Wu, T.; Jensen, G. S.; Schauss, A. G.; Wu, X.;Food Chem. 2010, 122, 610.
-1414 Kang, J.; Xie, C.; Li, Z.; Nagarajan, S.; Schauss, A. G.; Wu, T.; Wu, X. Food Chem. 2011, 128, 152.Cyanidin-3-rutinoside (2) is most abundant anthocyanin followed by cyaniding-3-glucoside (1).55 Gallori, S.; Bilia, A. R.; Bergonzi, M. C.; Barbosa, W. L. R.; Vincieri, F. F.; Chromatographia2004, 59, 739.,77 Schauss, A. G.; Wu, X.; Prior, R. L.; Ou, B.; Patel, D.; Huang, D.; Kababick, J. P.; J. Agric. Food Chem. 2006,54, 8598.

8 Pacheco-Palencia, L. A.; Duncan, C. E.; Talcott, S. T.; Food Chem. 2009, 115, 1199.

9 Pacheco-Palencia, L. A.; Mertens-Talcott, S. U.; Talcott, S. T.;Food Chem. 2010, 119, 1071.

10 Gordon, A.; Cruz, A. P. G.; Cabral, L. M. C.; Freitas, S. C. de; Dib Taxi, C. M. A.; Donangelo, C. M.; Mattietto, R. de A.; Friedrich, M.; Matta, V. M. da; Marx, F.; Food Chem. 2012,133, 256.
-1111 Mulabagal, V; Calderón, A. I.; Food Chem.2012, 134, 1156.Non-anthocyanin fractions include a diversity of flavonoids (6-21) and phenolic acids (22-25). Among them, flavone-C-glycosides of luteolin (orientin 8, homoorientin 9) and apigenin (isovitexin 10, vitexin 11) are dominant.55 Gallori, S.; Bilia, A. R.; Bergonzi, M. C.; Barbosa, W. L. R.; Vincieri, F. F.; Chromatographia2004, 59, 739..77 Schauss, A. G.; Wu, X.; Prior, R. L.; Ou, B.; Patel, D.; Huang, D.; Kababick, J. P.; J. Agric. Food Chem. 2006,54, 8598.,88 Pacheco-Palencia, L. A.; Duncan, C. E.; Talcott, S. T.; Food Chem. 2009, 115, 1199.,1010 Gordon, A.; Cruz, A. P. G.; Cabral, L. M. C.; Freitas, S. C. de; Dib Taxi, C. M. A.; Donangelo, C. M.; Mattietto, R. de A.; Friedrich, M.; Matta, V. M. da; Marx, F.; Food Chem. 2012,133, 256.,1111 Mulabagal, V; Calderón, A. I.; Food Chem.2012, 134, 1156.,1313 Kang, J.; Li, Z.; Wu, T.; Jensen, G. S.; Schauss, A. G.; Wu, X.;Food Chem. 2010, 122, 610.,1414 Kang, J.; Xie, C.; Li, Z.; Nagarajan, S.; Schauss, A. G.; Wu, T.; Wu, X. Food Chem. 2011, 128, 152.

The liquid chromatography with mass spectrometry (LC/MS) based fingerprinting analysis and mass profiling led to the identification of chemical constituents in the three different processed açaí raw materials. In the case of dichloromethane extracts containing mainly fatty acids (FA) (26), there were no significant difference in chemical profile among the three raw materials, whereas the variations and similarities were obtained in methanol extracts, which showed the presence of anthocyanin (1, 2, 4, 5), non-anthocyanin (8-12, 14, 15) polyphenols and phenolic acids (22, 24).1111 Mulabagal, V; Calderón, A. I.; Food Chem.2012, 134, 1156.

Anti-oxidant capacities of flavonoids isolated from the pulp of E. oleracea were evaluated using a chemical-based assay and two cell-based assays: oxygen radical absorbance capacity (ORAC) assay, cell-based anti-oxidant protection (CAP-e) assay and reactive oxygen species formation in polymorphonuclear cells (ROS PMN) assay.1313 Kang, J.; Li, Z.; Wu, T.; Jensen, G. S.; Schauss, A. G.; Wu, X.;Food Chem. 2010, 122, 610. By combining these assays, quercetin (15) and dihydrokaempferol (19) were found to be a good anti-oxidant with cell penetration ability.

Anti-inflammatory assay showed that velutin (16), an uncommon flavone, inhibited secreted embryonic alkaline phosphatase (SEAP) secretion in RAW-BlueTM cells induced by LPS or oxLDL at low micromole level.1414 Kang, J.; Xie, C.; Li, Z.; Nagarajan, S.; Schauss, A. G.; Wu, T.; Wu, X. Food Chem. 2011, 128, 152.

E. oleracea fruit is rich in lipids with a high amount of unsaturated FA (26) (74%), of which oleic acid (omega-9) and linoleic acid (omega-6) are predominant with 56% and 13%, respectively.77 Schauss, A. G.; Wu, X.; Prior, R. L.; Ou, B.; Patel, D.; Huang, D.; Kababick, J. P.; J. Agric. Food Chem. 2006,54, 8598. In addition, it has a high phytosterol level, mainly β-sitosterol (27)77 Schauss, A. G.; Wu, X.; Prior, R. L.; Ou, B.; Patel, D.; Huang, D.; Kababick, J. P.; J. Agric. Food Chem. 2006,54, 8598. and these compounds are known to have beneficial effects on skin protection.6262 Elias, P. M.; Brown, B. E.; Ziboh, V. A.; J. Invest., Dermatol. 1980, 74, 230; Rafia, B.;Int. J. Sci. Res. Rev. 2013,2, 1.

Vitamin E, a general term for tocopherols and tocotrienols (α-, β-, γ-, and δ-), which are effective lipid-soluble antioxidants and α-tocopherol has been reported to play an important role in skin photoprotection.6363 Anstey, A. V.; Clin. Exp. Dermatol.2002, 27, 170. Darnet et al.1515 Darnet, S.; Serra, J. L.; Rodrigues, A. M. C.; Silva, L. H. M.;Food Res. Int.2011, 44, 2107. reported that tocopherol (28) profiles (α, β+γ, δ) inE. oleracea fruit pulp from three different locations of Amazon estuary were found to be similar, but the mean total tocopherol value (404.5 µg g-1) was high with a concentration equivalent to many nuts.1212 Pacheco-Palencia, L. A.; Mertens-Talcott, S.; Talcott, S. T.;J. Agric. Food Chem. 2008,56, 4631.

Chemical composition and biological activities of Carapa guianensis ("andiroba")

Seed oil of C. guianensis has traditionally been used as a household liniment for treatment of sprains, rashes, sore, and inflammation, as well as insect repellent by indigenous people.6464 Ferraz, I. D. K.; Camargo, J. L. C.; Sampaio, P. T. B.; Acta Amaz.2002, 32, 647; Kilham, C. Tales from the Medicine Trail: Tracking Down the Health Secrets of Shamans, Herbalists, Mystics, Yogis, and Other Healers; Rodale Press: Emmaus, 2000. In the cosmetic industry, the seed oil is used as soap, cream, massage oil, etc.

The bitter taste, origin of name "andiroba" in the Tupi-Guarani language, is due to limonoids, highly oxygenated and modified terpenoids. Limonoids (30-41) are known to have a variety of biological activities like insecticidal, antifeedant, antibacterial, antimalarial, and antiviral.6565 Roy, A.; Saraf, S.; Biol. Pharm. Bull.2006, 29, 191. Recently, a number of limonoids have been isolated from the seed oil.1717 Ambrozin, A. R. P.; Leite, A. C.; Bueno, F. C.; Vieira, P. C.; Fernandes, J. B.; Bueno, O. C.; Silva, M. F. G. F.; Pagnocca, F. C.; Hebling, M. J. A.; Bacci, M.; J. Braz. Chem. Soc.2006, 17, 542.

18 Tappin, M. R. R.; Nakamura, M. J.; Siani, A. C.; Lucchetti, L.;J. Pharm. Biomed. Anal.2008, 48, 1090.

19 Silva, V. P.; Oliveira, R. R.; Figueiredo, M. R.; Phytochem. Anal. 2009, 20, 77.

20 Silva, S. G.; Nunomura, R. C. S.; Quim. Nova2012, 35, 1936.
-2121 Inoue, T.; Nagai, Y.; Mitooka, A.; Ujike, R.; Muraoka, O.; Yamada, T.; Tanaka, R.; Tetrahedron Lett. 2012,53, 6685. Among them, carapanolide A (41) exhibited moderate cancer cell growth inhibition using murine L1210 leukemia cells with IC50 8.7 µM.2121 Inoue, T.; Nagai, Y.; Mitooka, A.; Ujike, R.; Muraoka, O.; Yamada, T.; Tanaka, R.; Tetrahedron Lett. 2012,53, 6685.

High performance liquid chromatography (HPLC) method, optimized by central composite design, determined the amount of four limonoids, gedunin (31), 6α-acetoxygedunin (32), 7-desacetoxy-7-oxogedunin (33), and methyl angolensate (37), being 33 most abundant.1818 Tappin, M. R. R.; Nakamura, M. J.; Siani, A. C.; Lucchetti, L.;J. Pharm. Biomed. Anal.2008, 48, 1090.

Cabral et al.,2323 Cabral, E. C.; Cruz, G. F.; Simas, R. C.; Sanvido, G. B.; Gonçalves, L. V.; Leal, R. V. P.; Silva, R. C. F.; Silva, J. C. T.; Barata, L. E. S.; Cunha, V. S.; França, L. F.; Daroda, R. J.; Sá, G. F.; Eberlin, M. N.;Anal. Methods2013, 5, 1385.characteryzed the triacylglycerols (TAG) (29), FA (26) and limonoid profiles of the seed oil via mass spectrometry fingerprinting using direct electrospray ionization mass spectrometry (ESI-MS). The technique, requiring no pre-separation of sample, could detect adulteration of the andiroba oil with soybean oil at levels as low as 10%.

Chemical composition and biological activities of Platonia insignis ("bacuri")

The sticky and white fruit of P. insignis is consumed row by local people, and is often made into various condiments and beverages due to its distinctive taste with pleasant odor and subacid flavor.6666 http://www.hort.purdue.edu/newcrop/morton/bakuri.html, accessed in June 2013.
http://www.hort.purdue.edu/newcrop/morto...
The seeds contain high amount of oil, being used for treatment of eczemas and herpes.6767 Agra, M. F.; Freitas, P. F.; Barbosa-Filho, J. M.; Rev. Bras. Farmacogn.2007, 17, 114. In cosmetics, the oil is used as soap, skin care product, and moisturizer,6868 Bolton, E. R.; Hewer, D. G.; Analyst1922, 47, 282; Schiller, C.; Schiller, D.;The Aromatherapy Encyclopedia: A Concise Guide to Over 385 Plant Oils, Basic Health Publications, Inc.: Laguna Beach, 2008. but the cultivation is very limited and most of the fruit production is extractive.6969 Menezes, A. J. E. A; Carvalho, J. E. U.; Homma, A. K. O.; Matos, G. B. In Congresso Brasileiro de Sistemas Agroflorestais, 7,2009, Luziánia, Sociedade Brasileira de Sistemas Agroflorestais: Brasília, DF, Emater-DF, Embrapa, 2009.

Analysis of the volatile fractions of the fruits demonstrated that terpene alcohols (42-51) are the most abundant, and among them, linalool (42) and related compounds (43-51) may indicate the biosynthetic origin.2424 Boulanger, R.; Chassagne, D.; Crouzet, J.; Flavour Fragr. J. 1999, 14, 303.

The antioxidant and toxicity activities of the dichloromethane and ethyl acetate fractions of ethanolic extract of the seeds were evaluated.2525 Costa-Júnior J. S.; Ferraz, A. B. F.; Sousa, T. O.; Silva, R. A. C.; De Lima, S. G.; Feitosa, C. M.; Citó, A. M. G. L.; Melo Cavalcante, A. A. C.; Freitas, R. M.; Moura Sperotto, A. R. M.; Péres, V. F.; Moura, D. J.; Saffi, J.;Basic Clin. Pharmacol. Toxicol. 2013,112, 34. Both fractions demonstrated in vitroantioxidant effects, by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2´-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assays, as well as in vivo effects in antioxidant-defectiveSaccharomyces cerevisiae strains. These activities could be attributed to xanthones (52, 53), present in these fractions as major compounds. The xanthones isolated from other species have been reported to demonstrate anti-cancer and anti-inflammatory activities.7070 Gutierrez-Orozco, F.; Failla, M. L.; Nutrients2013, 5, 3163.

Garcinielliptone FC (54), a polyisoprenylated benzophenones, present in the seed of P. insignis, promoted an endothelium-independent vasorelaxation on phenylephrine-induced vasoconstriction.2626 Arcanjo, D. D. R.; Costa-Júnior, J. S.; Moura, L. H. P.; Ferraz, A. B. F.; Rossatto, R. R.; David, J. M.; Quintans-Júnior, L. J.; Oliveira, R. C. M.; Cito, A. M. G. L; Oliveira, A. P.; Nat. Prod. Res.2014, 28, 923.

Chemical composition and biological activities of Bertholletia excelsa (Brazil nut)

B. excelsa is internationally traded seed crop and is collected exclusively from natural forests because the tree is unsuitable for cultivation. The reasons for that are the very slow growth, taking 10 to 30 years to fructify, and their unique reproductive system, which requires specific bees for pollination.7171 http://www.rain-tree.com/brazilnu.htm, accessed in June 2013.
http://www.rain-tree.com/brazilnu.htm...
The nut, which consists of 60-70% fat and 17% protein, has long been a valuable source of nutrient for indigenous and local people residing in the Amazon region.7171 http://www.rain-tree.com/brazilnu.htm, accessed in June 2013.
http://www.rain-tree.com/brazilnu.htm...
The oil extracted from the nut is high in mono- and polyunsaturated fatty acid and selenium,7272 Yang, J.; LWT-Food Sci. Technol. 2009,42, 1573; Costa, P. A.; Ballus, C. A.; Teixeira-Filho, J.; Godoy, H. T.; Ciênc. Tecnol. Aliment. 2011,31, 950 . and has recently been used in cosmetic industries such as emollient or moisturizing creams.7373 Athar, M.; Nasir, S.M.; Afr. J. Biotechnol.2005, 4, 36.

Squalene (55) is a triterpene hydrocarbon, a precursor in the synthesis of steroids. In human skin surface, it prevents lipid peroxidation.7474 Kohno, Y.; Egawa, Y.; Itoh, S.; Nagaoka, S.; Takahashi, M.; Mukai, K.; Biochim Biophys Acta1995, 1256. 52. According to the studies by Maguire et al.7575 Maguire, L. S.; O'Sullivan, S. M.; Galvin, K.; O'Connor, T. P.; O'Brien, N. M.; Int. J. Food Sci. Nutr.2004, 55, 171. and Ryan et al.,2727 Ryan, E.; Galvin, K.; O'Connor, T. P.; Maguire, A. R.; O'Brien, N. M.; Int. J. Food Sci. Nutr.2006, 57, 219. the Brazil nut contained the highest squalene (1377.8 µg g-1) among ten edible nuts.

Tocopherols (6) are also remarkable compounds found in this nut (total tocopherol contents in oil 199.1 µg g-1)2727 Ryan, E.; Galvin, K.; O'Connor, T. P.; Maguire, A. R.; O'Brien, N. M.; Int. J. Food Sci. Nutr.2006, 57, 219. like as other species of nuts. The decreasing order of total tocopherol level was almond > hazelnut > walnut > pistachio > pine nut > Brazil nut > pecan > peanut > macadamia > cashew.2727 Ryan, E.; Galvin, K.; O'Connor, T. P.; Maguire, A. R.; O'Brien, N. M.; Int. J. Food Sci. Nutr.2006, 57, 219.,7575 Maguire, L. S.; O'Sullivan, S. M.; Galvin, K.; O'Connor, T. P.; O'Brien, N. M.; Int. J. Food Sci. Nutr.2004, 55, 171. We determined tocopherol contents of Brazil nut oils from different Amazon regions as well as some commercial oils. The rates of γ-tocopherol/α-tocopherol of authentic oils didn´t show distinct variation when compared to that of other species. This fact indicates that the tocopherol profile can be useful to distinguish Brazil nut oil from other vegetable oil.2828 Funasaki, M.; Menezes, I. S.; Barroso, H. S.; Zanotto, S. P.; Carioca, C. R. F.; Acta Amaz. 2013,43, 505.

John and Shahidi2929 John, J. A.; Shahidi, F.; J. Funct. Foods2010, 2, 196. identified and quantified free- and bound phenolics in kernel, brown skin and whole nuts. Phenolic acids and flavonoids, including (+)-catechin (6), protocatechuic acid (22), vanillic acid (24), gallic acid (56), and ellagic acid (57), were found and the concentration of phenolics was the highest in the brown skin. Similarly, Trolox Equivalent Antioxidant Capacity (TEAC), DPPH, and ORAC assays showed that the brown skin had the highest antioxidant activities.2929 John, J. A.; Shahidi, F.; J. Funct. Foods2010, 2, 196.

Chemical composition and biological activities of Mauritia flexuosa ("buriti")

M. flexuosa (syn. M. vinifera) is a beautiful palm tree and the common name "buriti" means "that contains water" in Tupi-Guarani language because it develops in water logged areas throughout the tropical region of South.7676 Prance, G. T.; Futures1990, 22, 891. The oil extracted from the fruits is traditionally used to cure respiratory problem, pneumonia, asthma, cough, influenza, fever, snake bite and heart problems as well as to treat dry hair7777 Martins, R. C.; Filgueiras, T. S.; Albuquerque, U. P.; Econ. Bot. 2012, 66, 91. and can be used as adjuvant in sun protection formulation.7878 Zanatta, C. F.; Mitjans, M.; Urgatondo, V.; Rocha-Filho, P. A.; Vinardell, M. P.; Food Chem. Toxicol.2010, 48, 70.

Carotenoids (58, 59) are a class of yellow to red pigment, belong to the tetraterpenoids built from four terpene units. They act as antioxidant and some of them can be converted to vitamin A in the human body. Further, when present in the skin, they have an important role in photoprotection against UV radiation.7979 Anunciato, T. P.; da Rocha Filho, P. A.; J. Cosmet. Dermatol. 2012, 11, 51. Among the numerous food already analyzed, the fruit of M. flexuosa has the highest β-carotene amount, as well as other provitamin A.8080 Taipina, M. S.; International Journal of Nutrology2013, 6, 102. Unique profile of carotenoids was obtained by HPLC- MS/MS analysis, with total carotenoid content of 513 µg g-1.3030 Rosso, V. V.; Mercadante, A. Z; J. Agric. Food Chem.2007, 55, 5062.

Tocopherol (26) content of the fruit pulp of M. flexuosa is very high (1169 µg g-1 of dry matter)3232 Darnet, S. H.; Silva, L. H. M.; Rodrigues, A. M. C.; Lins, R. T.;Cienc. Tecnol. Aliment. 2011,31, 488. and the profile with a predominant β+γ tocopherol fraction is similar to that of other seed and nut oil, as Brazil nut, cashew nut, pecan nut, and walnut.2727 Ryan, E.; Galvin, K.; O'Connor, T. P.; Maguire, A. R.; O'Brien, N. M.; Int. J. Food Sci. Nutr.2006, 57, 219.,7575 Maguire, L. S.; O'Sullivan, S. M.; Galvin, K.; O'Connor, T. P.; O'Brien, N. M.; Int. J. Food Sci. Nutr.2004, 55, 171.

Further, Koolen et al.3333 Koolen, H. H. F.; Silva, F. M. A.; Gozzo, F. C.; Souza, A. Q. L.; Souza, A. D. L.; Food Res. Int. 2013,51, 467.reported that the fruits contained a considerable amount of phenolic compounds (1, 2, 11, 12, 60-62), being glycosylated flavonoids: vitexin (11), scoparin (12), and rutin (62), and anthocyanins: cyanidin-3-glucoside (1) and cyanidin-3-rutinoside (2), as the main constituents, and it may justify the observed antioxidant activities. Further studies are needed to clarify the relationship between phenolic compounds and activities as well as to obtain the quantitative and fingerprinting data.

Chemical composition and biological activities of Dipteryx odorata ("cumaru")

Seeds of D. odorata are also known as tonka beans and contain an important chemical component for perfumes, coumarin (63), as a major compound with yields of 1 to 3%, and other minor compounds such as diterpene, flavonoid, lignan, etc. (64-76).3434 Sullivan, G.; J. Agric. Food Chem.1982, 30, 610.,3535 Jang, D. S.; Park, E. J.; Hawthorne, M. E; Schunke Vigo, J.; Graham, J. G.; Cabieses, F.; Santarsiero, B. D.; Mesecar, A. D.; Fong, H. H. S.; Mehta, R. G.; Pezzuto, J. M.; Kinghorn, A. D.; J. Nat. Prod.2003, 66, 583.

Jang et al.3535 Jang, D. S.; Park, E. J.; Hawthorne, M. E; Schunke Vigo, J.; Graham, J. G.; Cabieses, F.; Santarsiero, B. D.; Mesecar, A. D.; Fong, H. H. S.; Mehta, R. G.; Pezzuto, J. M.; Kinghorn, A. D.; J. Nat. Prod.2003, 66, 583. isolated four potential cancer chemopreventive compounds: isoliquiritigenin (68), 6,4´-dihydroxy-3´-methoxyaurone (69), sulfuretin (70), and (±)-balanophonin (71) by a bioassay-guided fractionation of an ethyl acetate-soluble extract of the seeds using the enzyme quinone reductase (QR) induction assay. With further analysis of selected compounds, 68 exhibited significant inhibition of carcinogen-induced preneoplastic lesion formation (76% at 10 µg mL-1) in the mouse mammary organ culture (MMOC) assay.

Chemical composition and biological activities of Theobroma grandiflorum ("cupuaçu")

Fruits of T. grandiflorum are very much appreciated for its acidic and highly-flavored pulp, that is consumed as the ingredient of juices, ice-creams, jams, and candies.6969 Menezes, A. J. E. A; Carvalho, J. E. U.; Homma, A. K. O.; Matos, G. B. In Congresso Brasileiro de Sistemas Agroflorestais, 7,2009, Luziánia, Sociedade Brasileira de Sistemas Agroflorestais: Brasília, DF, Emater-DF, Embrapa, 2009.

Phytochemical analyses demonstrated in the seeds the presence of xanthine alkaloids (76-79)3737 Vasconcelos, M. N. L; Silva, M. L.; Maia, J. G. S.; Gottlieb, O. R.;Acta Amaz. 1975, 5, 293.,3838 Lo-Coco, F.; Lanuzza, F.; Micali, G.; Cappellano, G.; J Chromatogr. Sci. 2007, 45, 273. and flavonoids (6, 7, 15, 80-89),3939 Yang, H.; Protiva, P.; Cui, B.; Ma, C.; Baggett, S.; Hequet, V.; Mori, S.; Weinstein, I. B.; Kennelly, E. J.; J. Nat. Prod.2003, 66, 1501.,4040 Pugliese, A. G.; Tomas-Barberan, F. A.; Truchado, P.; Genovese, M. I.; J. Agric. Food Chem., 2013,61, 2720. of which hypolaetin 8- O-β-D-glucuronide (87) and isoscutellarein 8- O-β-D-glucuronopyranoside 3′′-O-sulfate (84) were dominant.4040 Pugliese, A. G.; Tomas-Barberan, F. A.; Truchado, P.; Genovese, M. I.; J. Agric. Food Chem., 2013,61, 2720. Activity-guided fractionation using DPPH method of the seeds identified 11 flavonoid antioxidants (6,7, 15, 81-88), of which quercetin (15) and its glycosides (82, 83) were more potent with IC50 values of 39.7-44.4.3939 Yang, H.; Protiva, P.; Cui, B.; Ma, C.; Baggett, S.; Hequet, V.; Mori, S.; Weinstein, I. B.; Kennelly, E. J.; J. Nat. Prod.2003, 66, 1501.

FA (27) and TAG (29) compositions of seed fats were compared among the eight species of the genus Theobrama.4141 Gilabert-Escrivá, M. V.; Gonçalves, L. A. G.; Silva, C. R. S.; Figueira, A.; J. Sci. Food Agric.2002, 82, 1425. Significant differences in these profiles were observed between species of distinct sections (subdivision of genus according to morphological characters), whereas the profiles of species from the same section were similar.

Chemical composition and biological activities of Paullinia cupana ("guarana")

P. cupana is widely consumed as an effective stimulant in dietary supplements and drinks. It is due to the highest content of caffeine (78) in its seed from 3 to 6% of dry weight,4242 Henman, A. R.; J. Ethnopharmacol.1982, 6, 311.,8181 Mumford ,G. K.; Holtzman ,S.G.; J. Pharmacol. Exp. Ther. 1991, 258, 857. but other minor compounds also contribute to pharmacological effects such as central nervous system stimulants of xanthine alkaloids (79, 80), antioxidant flavonoids (6, 7) and tannins.4343 Heard, C. M.; Johnson, S.; Moss, G.; Thomas, C. P.; Int. J. Pharm. 2006, 317, 26.,4545 Ushirobira, T. M. A.; Yamaguti, E.; Uemura, L. M.; Nakamura, C. V.; Dias Filho, B. P.; Mello, J. C. P.; Lat. Am. J. Pharm.2007, 26, 5. In the cosmetic industry, the seed extracts are used in soap, cream, and shampoo.8282 Hamerski, L.; Somner, G. V.; Tamaio, N.; J. Med. Plants Res. 2013, 7, 2221.

Majhenič et al.8383 Majhenič, L.; Škerget, M.; Knez, Ž.; Food Chem.2007, 104, 1258.reported that the seed extracts exhibited high antioxidant, antimicrobial, and antifungal activities, and had promising potentials as natural additives in food, cosmetic, and pharmaceutical industries. Also, because of the cellulite reduction effect of methylxanthines, such as 78-80, P. cupana is used for cosmetic formulation.8484 Hexsel, D.; Orlandi, C.; Zechmeister do Prado, D.; Dermatol. Surg. 2005, 31, 866.

The seed powder and commercial tablets of P. cupana were characterized by capillary electrophoresis (CE) using caffeine (78) as a marker compound and the results were compared to those obtained by HPLC.8585 Sombra, L. L.; Gómez, M. R.; Olsina, R.; Martínez, L. D.; Silva, M. F.; J. Pharm. Biomed. Anal.2005, 36, 989. In this study, the CE technique showed good specificity, sensitivity and precision like HPLC and had advantages in the analysis time and solvent consumption as compared to HPLC.

Chemical composition and biological activities of Calycophyllum spruceanum ("mulateiro")

The wood of C. spruceanum (syn. C. multiflorum) has high economic value because of its resistance to deterioration and facility to work, being used in lumber and construction materials.8686 http://www.rain-tree.com/mulaterio.htm, accessed in october 2013.
http://www.rain-tree.com/mulaterio.htm...
Local people apply the bark poultice to skin, as antifungal, contraceptive, emollient, and vulnerary or take the bark decoction for diabetes and eye infection.8787 Duke, J. A.; Bogenschuts-Godwin, M. J.; Ottesen, A. R.;Duke´s Handbook of Medicinal Plants of Latin America, CRC Press,Talor & Francis Group: Boca Raton, 2009. The bark of C. spruceanum has recently attracted world attention as the ingredient for body care products.8686 http://www.rain-tree.com/mulaterio.htm, accessed in october 2013.
http://www.rain-tree.com/mulaterio.htm...

Phytochemical study showed that the ethanolic extracts of the wood bark yielded seco-iridoids and iridoids (91-98), of which 7-methoxydiderroside (91), 6´-acetyl-β-D-glucopyranosyldiderroside (92), secoxyloganin (94), and diderroside (96) exhibited weak in vitro antitrypanosomal activities.4646 Zuleta, L. M. C.; Cavalheiro, A. J.; Silva, D. H. S.; Furlan, M.; Young, M. C. M.; Albuquerque, S.; Castro-Gamboa, I.; Bolzani, V. S.;Phytochemistry2003, 64, 549. Screening study for antifungal activity of forty five extracts of species used in traditional medicine demonstrated that the dichloromethane extract of the bark of C. multiflorum had the highest activity,8888 Portillo, A.; Vila, R.; Freixa, B.; Adzet, T.; Cañigueral, S.;J. Ethnopharmacol. 2001, 76, 93. which may support the use for skin treatment.

Chemical composition and biological activities of Astrocaryum murumuru ("murumuru")

A distinguishing feature of the palm tree, A. murumuru, is innumerable thorns even on the seeds and flowers. The oil extracted from the seed is white and solid at room temperature.6161 Burlando, B.; Verotta, L. Cornara L.; Bottini-Massa, E.;Herbal Principles in Cosmetics: Properties and Mechanisms of Action, CRC Press, Taylor & Francis Group: Boca Raton, 2010. The seed butter can be added to skin care products, shampoos, and conditioners because the oil has water-retention capacity.8989 Msika, P.; Piccirelli, A.; EP1461060 A22004.

The chemical studies on saponifiable compositions of the seed butter demonstrated unique TAG (29) and FA (26) profiles with lauric (43-52%) and myristic (26-37%) acid as major fatty acids.2222 Saraiva S. A.; Cabral, E. C.; Eberlin, M. N.; Catharino, R. R.;J. Agric. Food Chem.2009, 57, 4030.,4747 Mambrim, M.C.T.; Barrera-Arellano, D.; Grasas Aceites1997, 48, 154.

Chemical composition and biological activities of Oenocarpus bataua ("patawa")

O. bataua (syn. Jessenia bataua) is one of the useful palm tree for Amazonian indigenous. The fruit is consumed as a nutritional beverage and the oil extracted from both fruit and kernel seed is traditionally used for medicinal, culinary, and cosmetic purposes, including for hair and skin care.6969 Menezes, A. J. E. A; Carvalho, J. E. U.; Homma, A. K. O.; Matos, G. B. In Congresso Brasileiro de Sistemas Agroflorestais, 7,2009, Luziánia, Sociedade Brasileira de Sistemas Agroflorestais: Brasília, DF, Emater-DF, Embrapa, 2009.,9090 Plotkin, M. J.; Balick, M. J.; J. Ethnopharmacol.1984, 10, 157.

The fruit oil has a profile of fatty acids similar to that of olive oil, with high oleic acid contents (77%), being considered to have nutritional value.3232 Darnet, S. H.; Silva, L. H. M.; Rodrigues, A. M. C.; Lins, R. T.;Cienc. Tecnol. Aliment. 2011,31, 488.,4747 Mambrim, M.C.T.; Barrera-Arellano, D.; Grasas Aceites1997, 48, 154.,4848 Rodrigues, A. M. C.; Darnet, S.; Silva, L. H. M.; J. Braz. Chem. Soc.2010, 21, 2000.Because in the sterol composition, the percentage of Δ55 Gallori, S.; Bilia, A. R.; Bergonzi, M. C.; Barbosa, W. L. R.; Vincieri, F. F.; Chromatographia2004, 59, 739.-avenasterol (99), known for effective antioxidant,9191 Gordon, M. H.; Magos, P.; Food Chem.1983, 10, 141. is high and that of campesterol (100) is relatively low, these compounds could serve as markers for authentication of the oil.4949 Montufar, R.; Laffargue, A.; Pintaud, J.; Avallone, S. H. S.; Dussert, S.; J. Am. Oil Chem. Soc. 2010,87, 167. The latest report by Rezaire et al.5050 Rezaire, A.; Robinson, J.-C.; Bereau, D.; Verbaere, A.; Sommerer, N.; Khan, M. K.; Durand, P.; Prost, E.; Fils-Lycaon, B.; Food Chem. 2014, 149, 62. dealing with the in vitro antioxidant tests showed the good activity of the fruit ofO. bataua as compared to E. oleracea and other berries known as potential antioxidants. This activity could be accounted for by the presence of characteristic polyphenols like stilbenes (101, 102), phenolic acids (103), and condensed tannins, identified by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS). However, further experiments including structural elucidation and biological activity would be required.

Chemical composition and biological activities of Pentaclethra macroloba ("pracaxi")

Seed oil of P. macroloba is used in cosmetic industry and may have positive effects on wound healing.9292 Banov, D.; Banov, F.; Bassani, A. S.; Dermatol. Ther. 2014, 4, 259.

The oil is known to have the highest content of behenic acid, C21H43COOH, in natural products (10-25%),5151 http://www.amazonoil.com.br/en/products/oils/pracachy.htm, accessed in October, 2013.
http://www.amazonoil.com.br/en/products/...
while most fruits or nuts contain less than 1%.2727 Ryan, E.; Galvin, K.; O'Connor, T. P.; Maguire, A. R.; O'Brien, N. M.; Int. J. Food Sci. Nutr.2006, 57, 219.,4848 Rodrigues, A. M. C.; Darnet, S.; Silva, L. H. M.; J. Braz. Chem. Soc.2010, 21, 2000. Besides, the saponin (104) isolated from the seeds exhibited high larvicidal activity with LC50= 18.6 µg mL-1.5252 Santiago, G. M. P.; Viana, F. A.; Pessoa, O. D. L.; Santos, R. P.; Pouliquen, Y. B. M.; Arriaga, A. M. C.; Andrade-Neto, M.; Braz-Filho, R.;Rev. Bras. Farmacogn.2005, 15, 187.

Chemical composition and biological activities of Aniba rosaeodora (rosewood)

Essential oil of A. rosaeodora is worldly famous with pleasant rose-like aromas and is employed as fragrance in fine perfumery. European fragrance industry originally obtained the oil from French Guiana, but after the intensive exploitation, Brazilian rainforest is the main producer and A. rosaeodora is protected under international law.9393 Wilson, R.; Aromatherapy: Essential Oils for Vibrant Health and Beauty, Avery: New York, 2002.

The oil is obtained from the wood chips and contains mainly linalool (42, 80-90%) with small amounts of (Z)- or (E)-linalool oxide (furanoid) (43, 44), α- or β-selinene (105, 106) and α-copaene (107).5353 Zellner, B. D.; Lo Presti, M.; Barata, L. E. S.; Dugo, P.; Dugo, G.; Mondello, L.; Anal. Chem. 2006,78, 883.

54 Maia, J. G. S.; Andrade, E. H. A.; Couto, H. A. R.; Silva, A. C. M.; Marx, F.; Henke, C.; Quim. Nova2007, 30, 1906.
-5555 Sampaio, L. F. S.; Maia, J. G. S.; Parijós, A. M.; Souza, R. Z.; Barata, L. E. S.; Phytother. Res.2012, 26, 73.

For the sustainable production of the oil, there are other sources including: the young leaves or branches of A. rosaeodora; synthetic linalool; another species with linalool-rich essential oils, such as Cinnamomum camphora9494 Roszaini, K.; Nor Azah, M. A.; Mailina, J.; Zaini, S.; Mohammad Faridz, Z.; Wood Sci. Technol. 2013,47, 1273. andCroton cajucara.9595 Rosa, M. S. S.; Mendonça-Filho, R. R.; Bizzo, H. R.; Rodrigues, I. A.; Soares, R. M. A.; Souto-Padrón, T.; Alviano, C. S.; Lopes, A. H. C. S.;Antimicrob. Agents Chemother. 2003,47, 1895.Yet sometimes, as obtained by low cost and considered low quality, they are used for product adulteration. Chemical study using comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometric detection (GC×GC-qMS) identified major and minor chemical compositions of the oils extracted from the leaves collected from trees with different ages (four, ten and twenty year old) and few differences in constituents were found among all samples.9696 Fidelis, C. H. V.; Sampaio, P. T. B.; Krainovic, P. M.; Augusto, F.; Barata, L. E. S.; Microchem. J. 2013,109, 73. Souza et al.9797 Souza, R. C. Z.; Eiras, M. M.; Cabral, E. C.; Barata, L. E. S.; Eberlin, M. N.; Catharino, R. R.; Anal. Lett.2011, 44, 2417. characterized the oils from the wood and leaves by ESI-MS and the adulteration with synthetic linalool could be detected by fingerprinting.

Linalool (42) has two enantiomeric forms due to a stereogenic center at C3 (Figure 3). (R)-(-)-linalool has a woody lavender scent while (S)-(+)-linalool has a sweet floral scent and both forms can be found at various proportions according to the geographic origin and part of the tree.5353 Zellner, B. D.; Lo Presti, M.; Barata, L. E. S.; Dugo, P.; Dugo, G.; Mondello, L.; Anal. Chem. 2006,78, 883.,5555 Sampaio, L. F. S.; Maia, J. G. S.; Parijós, A. M.; Souza, R. Z.; Barata, L. E. S.; Phytother. Res.2012, 26, 73.,9898 Chantraine, J. M.; Dhénin, J. M.; Moretti, C.; J. Essent. Oil Res.2009, 21, 486. Linalool has a diversity of pharmacological properties,9999 Venâncio, A. M.; Marchioro, M.; Estevam, C. S.; Melo, M. S.; Santana, M. T.; Onofre, A. S. C. Guimarães, A. G.; Oliveira, M. G. B.; Alves, P. B.; Pimentel, H. C.; Quintans-Júnior, L. J.; Braz. J. Pharmacogn.2011, 21, 1043; Batista, P. A.; Werner, M. F. F.; Oliveira, E. C.; Burgos, L.; Pereira, P.; Brum, L. F. D.; Santos, A. R. S.;Neurosci. Lett. 2008, 440, 299. but the chiral influence to the properties is not clear.5555 Sampaio, L. F. S.; Maia, J. G. S.; Parijós, A. M.; Souza, R. Z.; Barata, L. E. S.; Phytother. Res.2012, 26, 73.,100100 Sousa, D. P.; Nóbrega, F. F. F.; Santos, C. C. M. P.; Almeida, R. N.; Nat. Prod. Commun.2010, 5, 1847.

Chemical composition and biological activities of Virola sebifera ("ucuuba")

Yellow and aromatic fat extracted from the seeds of V. sebiferahas some cosmetic properties such as emollient, moisturizer, skin conditions and antiseptic, and due to that, it is used for industrial products such as soap, cleansing, massage lotion and hair care products.6969 Menezes, A. J. E. A; Carvalho, J. E. U.; Homma, A. K. O.; Matos, G. B. In Congresso Brasileiro de Sistemas Agroflorestais, 7,2009, Luziánia, Sociedade Brasileira de Sistemas Agroflorestais: Brasília, DF, Emater-DF, Embrapa, 2009. The fat has high content of myristic (72.9%) and lauric (17.3%) acids5656 Soares, B. M. C.; Gamarra, F. M. C.; Paviani, L. C.; Gonçalves, L. A. G.; Cabral, F. A.; J. Supercrit. Fluids2007, 43, 25. and the former has high absorption into the skin.101101 Becker, L. C.; Bergfeld, W. F.; Belsito, D. V.; Hill, R. A.; Klaassen, C. D.; Marks, J. G. Jr; Shank, R. C.; Slaga, T. J.; Snyder, P. W.; Alan-Andersen, F.; Int. J. Toxicol.2010, 29, 162S.

Study on the secondary metabolites of the seeds showed the accumulation of a variety of lignans (109-112) such as aryltetralone (109), dibenzylbutyrolactone (110), arylindan (111), and furofuran (112) type lignans.5757 Lopes, L. M. X.; Yoshida, M.; Gottlieb, O. R.;Phytochemistry1982, 21, 751.

58 Lopes, L. M. X.; Yoshida, M.; Gottlieb, O. R.;Phytochemistry1983, 22, 1516.

59 Lopes, L. M. X.; Yoshida, M.; Gottlieb, O. R.;Phytochemistry1984, 23, 2021.
-6060 Lopes, L. M. X.; Yoshida, M.; Gottlieb, O. R.;Phytochemistry1984, 22, 2647.

ANALYTICAL TECHNIQUES FOR QUALITY CONTROL OF COSMETIC PRODUCTS AND OTHER APPROACHES

Reported chemical constituents of Amazonian species were classified from an analytical point of view:

1) TAG and FA - Major constituents of oils and fats are triacylglycerols, which are esters derived from glycerol and three fatty acids. FA analysis by gas chromatography with flame ionization detection (GC-FID) is a broadly accepted official method to characterize quality and a specific oil,102102 D´Imperio, M.; Dugo, G.; Alfa, M.; Mannina, L.; Segre, A. L.;Food Chem. 2007, 102, 956. but the analysis needs a conversion of TAG to fatty acid methyl esters by acid or base, and provides only total percentage of FA.103103 Christie, W. W. In Advances in Lipid Methodology - Two, Christie, W. W., ed.; Oily Press: Dundee, 1993. The separation of TAG can be achieved by HPLC,104104 Lee, D. S.; Lee, E. S.; Kim, H. J.; Kim, S. O.; Kim, K.;Anal. Chim. Acta2001, 429, 321. but diverse factors, sample preparations, stationary and mobile phases, columns and detectors, have to be considered depend on the number of carbon atoms and their saturation.105105 Aparicio, R.; Morales, M. T.; Aparicio-Ruiz, R.; Tena, N.; Garcia-Gonzalez, D. L.; Food Res. Int.2013, 54, 2025. A refractive index (RI) was the most widely used detector for the HPLC analysis despite its low sensibility.106106 Endo, Y.; Ohta, A.; Kido, H.; Kuriyama, M.; Sakaguchi, Y.; Takebayashi, S.; Hirai, H.; Murakami, C.; Wada, S.; J. Oleo Sci. 2011, 60, 451.,107107 Pacheco, C.; Palla, C.; Crapiste, G. H.; Carrín, M. E.; Food Anal. Methods2014, 7, 2013. Recently, advance of mass spectrometry has enabled the direct analysis of TAG in Amazon oils. First, Saraiva et al.2222 Saraiva S. A.; Cabral, E. C.; Eberlin, M. N.; Catharino, R. R.;J. Agric. Food Chem.2009, 57, 4030. characterized Amazon vegetable oils (andiroba, Brazil nut, buriti, passion fruit, cupuaçu, and ucuuba) via dry matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) without pre-separation or derivatization. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) has, then, realized instantaneous analysis of Amazon vegetable oils, including açaí, andiroba, Brazil nut, and buriti, by both TAG and free fatty acid profiles.1616 Simas, R. C.; Catharino, R. R.; Cunha, I. B. S.; Cabral, E. C.; Barrera-Arellano, D.; Eberlin, M. N.; Alberici, R. M.; Analyst2010, 135, 738. Moreover, several samples of Brazil Nut oil (authentic oils of different geographic origin, commercial oils) were evaluated using EASI-MS TAG profiles and adulteration of Brazil nut oil with soy bean oil could be detected at a level of 5% or higher.108108 Funasaki, M; Oliveira, R. S.; Zanotto, S. P.; Carioca, C. R.; Simas, R. C.; Eberlin, M. N.; Alberici, R. M.; J. Agric. Food Chem.2012, 60, 11263.

2) Unsaponifiable fraction or minor components - This fraction contains minor constituents, which have also been employed for oil characterization. Tocopherols, carotenoids, and sterols are usually contained in any oils, but its amount varies depending on species and environmental conditions. Their qualitative and quantitative analyses can be performed by chromatographic methods such as HPLC coupled with photodiode array detection (DAD), fluorescence detection (FLD) or MS for tocopherol or carotenoid3030 Rosso, V. V.; Mercadante, A. Z; J. Agric. Food Chem.2007, 55, 5062.,109109 Costa, P. A.; Ballus, C. A.; Teixeira-Filho, J.; Godoy, H. T.;Food Res. Int. 2010, 43, 1603.,110110 Albuquerque, M. L. S.; Guedes, I.; Alcantara Jr., P.; Moreira, S. G. C.; Barbosa Neto, N. M.; Correa, D. S.; Zilio, S. C.; J. Braz. Chem. Soc. 2005, 16, 1113. and GC-FID for sterols.4949 Montufar, R.; Laffargue, A.; Pintaud, J.; Avallone, S. H. S.; Dussert, S.; J. Am. Oil Chem. Soc. 2010,87, 167.,109109 Costa, P. A.; Ballus, C. A.; Teixeira-Filho, J.; Godoy, H. T.;Food Res. Int. 2010, 43, 1603. Phenolic compounds have also been investigated because they are responsible for the antioxidant potential, stability and organoleptic characteristics and the use of these compounds would permit the authentication and quality assessment.1111 Mulabagal, V; Calderón, A. I.; Food Chem.2012, 134, 1156.,5050 Rezaire, A.; Robinson, J.-C.; Bereau, D.; Verbaere, A.; Sommerer, N.; Khan, M. K.; Durand, P.; Prost, E.; Fils-Lycaon, B.; Food Chem. 2014, 149, 62.

3) Volatile constituents- Volatile compounds obtained from D. odorata and A. rosaeodora are ingredients of perfumes. The universally adapted analytical technique is GC including GC-FID and GC-MS. These techniques have recently been substituted by direct infusion mass spectrometry without or with simple pre-treatment because of the fast and simple measurement.9797 Souza, R. C. Z.; Eiras, M. M.; Cabral, E. C.; Barata, L. E. S.; Eberlin, M. N.; Catharino, R. R.; Anal. Lett.2011, 44, 2417.

Besides these techniques mentioned above, infrared111111 Wang, J; Jun, S; Bittenbender, H. C.; Gautz, L; Li, Q. X.;J. Food Sci. 2009, 74, C385; Tres, A.; van der Veer, G.; Perez-Marin, M. D.; van Ruth, S. M.; Garrido-Varo, A.; J. Agric. Food Chem. 2012,60, 8129. and NMR112112 Lucas-Torres, C.; Pérez, A.; Cabañas, B.; Moreno, A.; Food Chem. 2014, 165, 21; Sciubba, F.; Capuani, G.; Cocco, M. E. D.; Avanzato, D.; Delfini, M.; Food Res. Int. 2014, 62, 66. spectroscopy have been applied to the authentication of natural products. Analyses of stable isotope ratio and trace element have also allowed us to determine the origin of food products.113113 Anderson, K. A.; Smith, B. W.; J. Agric. Food Chem.2006, 54, 1747; Benincasa, C.; Lewis, J.; Perri, E.; Sindona, G.; Tagarelli, A.; Anal. Chim. Acta2007, 585, 366; Bandoniene, D.; Zettl, D.; Meisel, T.; Maneiko, M.; Food Chem. 2013,136, 1533.

The fingerprinting techniques have become more and more popular for the purpose of quality control.1616 Simas, R. C.; Catharino, R. R.; Cunha, I. B. S.; Cabral, E. C.; Barrera-Arellano, D.; Eberlin, M. N.; Alberici, R. M.; Analyst2010, 135, 738.,2222 Saraiva S. A.; Cabral, E. C.; Eberlin, M. N.; Catharino, R. R.;J. Agric. Food Chem.2009, 57, 4030.,2323 Cabral, E. C.; Cruz, G. F.; Simas, R. C.; Sanvido, G. B.; Gonçalves, L. V.; Leal, R. V. P.; Silva, R. C. F.; Silva, J. C. T.; Barata, L. E. S.; Cunha, V. S.; França, L. F.; Daroda, R. J.; Sá, G. F.; Eberlin, M. N.;Anal. Methods2013, 5, 1385.,108108 Funasaki, M; Oliveira, R. S.; Zanotto, S. P.; Carioca, C. R.; Simas, R. C.; Eberlin, M. N.; Alberici, R. M.; J. Agric. Food Chem.2012, 60, 11263. They enable the handling of a large amount of data and provide quantitative and qualitative information of the compounds as well as the relationship between chemical information and efficacy with the aid of chemometric tools.114114 Liang, Y.; Xie, P.; Chau, F.; J. Sep. Sci.2010, 33, 410.

Even though chemical composition analyses have been a great success to detect adulteration, there are difficulties in the discrimination of cultivars because of the high variability influenced by environmental conditions. In order to overcome this problem, molecular approach has been used in food115115 Bazakos, C.; Dulger, A. O.; Uncu, A. T.; Spaniolas, S.; Spano, T.; Kalaitzis, P.; Food Chem. 2012,134, 2411; Torelli, A.; Marieschi, M.; Bruni, R.;Food Control2014, 36, 126. and medicine116116 Seethapathy, G. S.; Balasubramani, S. P.; Venkatasubramanian, P.;Food Chem. 2014, 145, 1015.traceability. In particular, for complex matrix like olive oil, molecular markers techniques such as random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and simple sequence repeat (SSR) are useful.117117 Ben-Ayed, R.; Kamoun-Grati, N.; Rebai, A.; Compr. Rev. Food Sci. Food Saf.2013, 12, 218. Special attention has, however, to be paid for extraction and purification of DNA because samples (oil or extract) are usually complex and highly processed.118118 Costa, J.; Mafra, I.; Oliveira, M. B. P. P.; Trends Food Sci. Technol. 2012, 26, 43.

CONCLUDING REMARKS

Table 2 summarized possible chemical markers of reviewed Amazonian species for control purpose of cosmetic products. Chemical markers have been used in the regulatory agencies of herbal medicines or by scientists and each agency or scientist has own classification.44 Li, S.; Han, Q.; Qiao, C.; Song, J.; Cheng, C. L.; Xu, H.;Chinese Medicine2008, 3, 1; EMA-European Medicines Agency. Reflection paper on markers used for quantitative and qualitative analysis of herbal medicinal products and traditional herbal medicinal products. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003211.pdf
http://www.ema.europa.eu/docs/en_GB/docu...
With reference to them, the following criteria were used to select chemical markers: (a) the constituents have biological activities which are or are not related to efficacy as cosmetics; (b) their biological activities are not known, but they are abundant or the isolation yield was the highest; (c) they are not abundant, but characteristic (not common); (d) the fingerprintings (or profiles) of the groups of constituents are distinguishable when compared to those of other species.

Table 2
Selected chemical markers for quality control of cosmetic products containing extracts of Amazonian species

These chemical markers have been proposed based on the reviewed articles. It is noted that markers have different role according to the type. When the markers don´t have biological activities, they can provide quantitative information. It seems that the fingerprintings of TAG would be applicable to most of the fixed oils for quantitative assessment, especially identification and detection of adulteration. Essential fatty acids such as linoleic acid may be useful as chemical markers to evaluate efficacy, but they would not be adequate for the use of authentication purpose or stability test due to the susceptibility to autooxidation.119119 Duh, P.-D.; Yen, W. J.; Yen, G.-C.; J. Am. Oil Chem. Soc. 1999, 76, 201.

In view of increasing demand for Amazon cosmetics, little data are available about the chemical studies on Amazonian species. Even though chemical constituents of some species, such as E.oleracea, C. guianensis, have been studied by many researchers, their biological activities, especially cosmetic efficacies, have hardly been evaluated. Furthermore, there are few studies focused on the origin of extract and in many cases researchers have obtained or purchased previously prepared extracts because of the difficulty of access to the Amazon raw materials. This problem has to be overcome to study geographical origin, seasonality, cultivar, and extraction method that affect the quality of natural cosmetics.

Thus, it is essential that quality control of natural products would be accomplished by multi/interdisciplinary approaches including chemistry, biology, and agriculture. In addition, the access to the Amazon biodiversity should be controlled properly by international regime120120 http://brazil-works.com/wp-content/uploads/2012/11/Fact-sheet_india_final.pdf, accessed in May 2015.
http://brazil-works.com/wp-content/uploa...
for further research and development.

ACKNOWLEDGMENTS

This work was supported by Brazilian Science foundation CNPq and CAPES.

REFERENCES

  • 1
    http://www1.folha.uol.com.br/folha/equilibrio/noticias/ult263u2714.shtml, accessed in May 2015.
    » http://www1.folha.uol.com.br/folha/equilibrio/noticias/ult263u2714.shtml
  • 2
    Pyers, G.; Biodiversity of Rainforests, Macmillan Education: South Yarra, 2013.
  • 3
    http://www.ecocert.com/en, accessed in May 2013; http://www.wto.org/english/tratop_e/trips_e/gi_background_e.htm, accessed in August 2013; Nohynek, G. J. ; Antignac, E.; Re, T.; Toutain, H.;Toxicol. Appl. Pharm.2010, 243, 239.
    » http://www.ecocert.com/en
  • 4
    Li, S.; Han, Q.; Qiao, C.; Song, J.; Cheng, C. L.; Xu, H.;Chinese Medicine2008, 3, 1; EMA-European Medicines Agency. Reflection paper on markers used for quantitative and qualitative analysis of herbal medicinal products and traditional herbal medicinal products. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003211.pdf
    » http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003211.pdf
  • 5
    Gallori, S.; Bilia, A. R.; Bergonzi, M. C.; Barbosa, W. L. R.; Vincieri, F. F.; Chromatographia2004, 59, 739.
  • 6
    Pozo-Insfran, D. D.; Brenes, C. H.; Talcott, S. T.; J. Agric. Food Chem 2004, 52, 1539.
  • 7
    Schauss, A. G.; Wu, X.; Prior, R. L.; Ou, B.; Patel, D.; Huang, D.; Kababick, J. P.; J. Agric. Food Chem 2006,54, 8598.
  • 8
    Pacheco-Palencia, L. A.; Duncan, C. E.; Talcott, S. T.; Food Chem 2009, 115, 1199.
  • 9
    Pacheco-Palencia, L. A.; Mertens-Talcott, S. U.; Talcott, S. T.;Food Chem 2010, 119, 1071.
  • 10
    Gordon, A.; Cruz, A. P. G.; Cabral, L. M. C.; Freitas, S. C. de; Dib Taxi, C. M. A.; Donangelo, C. M.; Mattietto, R. de A.; Friedrich, M.; Matta, V. M. da; Marx, F.; Food Chem 2012,133, 256.
  • 11
    Mulabagal, V; Calderón, A. I.; Food Chem2012, 134, 1156.
  • 12
    Pacheco-Palencia, L. A.; Mertens-Talcott, S.; Talcott, S. T.;J. Agric. Food Chem 2008,56, 4631.
  • 13
    Kang, J.; Li, Z.; Wu, T.; Jensen, G. S.; Schauss, A. G.; Wu, X.;Food Chem 2010, 122, 610.
  • 14
    Kang, J.; Xie, C.; Li, Z.; Nagarajan, S.; Schauss, A. G.; Wu, T.; Wu, X. Food Chem 2011, 128, 152.
  • 15
    Darnet, S.; Serra, J. L.; Rodrigues, A. M. C.; Silva, L. H. M.;Food Res. Int.2011, 44, 2107.
  • 16
    Simas, R. C.; Catharino, R. R.; Cunha, I. B. S.; Cabral, E. C.; Barrera-Arellano, D.; Eberlin, M. N.; Alberici, R. M.; Analyst2010, 135, 738.
  • 17
    Ambrozin, A. R. P.; Leite, A. C.; Bueno, F. C.; Vieira, P. C.; Fernandes, J. B.; Bueno, O. C.; Silva, M. F. G. F.; Pagnocca, F. C.; Hebling, M. J. A.; Bacci, M.; J. Braz. Chem. Soc.2006, 17, 542.
  • 18
    Tappin, M. R. R.; Nakamura, M. J.; Siani, A. C.; Lucchetti, L.;J. Pharm. Biomed. Anal.2008, 48, 1090.
  • 19
    Silva, V. P.; Oliveira, R. R.; Figueiredo, M. R.; Phytochem. Anal 2009, 20, 77.
  • 20
    Silva, S. G.; Nunomura, R. C. S.; Quim. Nova2012, 35, 1936.
  • 21
    Inoue, T.; Nagai, Y.; Mitooka, A.; Ujike, R.; Muraoka, O.; Yamada, T.; Tanaka, R.; Tetrahedron Lett 2012,53, 6685.
  • 22
    Saraiva S. A.; Cabral, E. C.; Eberlin, M. N.; Catharino, R. R.;J. Agric. Food Chem.2009, 57, 4030.
  • 23
    Cabral, E. C.; Cruz, G. F.; Simas, R. C.; Sanvido, G. B.; Gonçalves, L. V.; Leal, R. V. P.; Silva, R. C. F.; Silva, J. C. T.; Barata, L. E. S.; Cunha, V. S.; França, L. F.; Daroda, R. J.; Sá, G. F.; Eberlin, M. N.;Anal. Methods2013, 5, 1385.
  • 24
    Boulanger, R.; Chassagne, D.; Crouzet, J.; Flavour Fragr. J 1999, 14, 303.
  • 25
    Costa-Júnior J. S.; Ferraz, A. B. F.; Sousa, T. O.; Silva, R. A. C.; De Lima, S. G.; Feitosa, C. M.; Citó, A. M. G. L.; Melo Cavalcante, A. A. C.; Freitas, R. M.; Moura Sperotto, A. R. M.; Péres, V. F.; Moura, D. J.; Saffi, J.;Basic Clin. Pharmacol. Toxicol 2013,112, 34.
  • 26
    Arcanjo, D. D. R.; Costa-Júnior, J. S.; Moura, L. H. P.; Ferraz, A. B. F.; Rossatto, R. R.; David, J. M.; Quintans-Júnior, L. J.; Oliveira, R. C. M.; Cito, A. M. G. L; Oliveira, A. P.; Nat. Prod. Res2014, 28, 923.
  • 27
    Ryan, E.; Galvin, K.; O'Connor, T. P.; Maguire, A. R.; O'Brien, N. M.; Int. J. Food Sci. Nutr.2006, 57, 219.
  • 28
    Funasaki, M.; Menezes, I. S.; Barroso, H. S.; Zanotto, S. P.; Carioca, C. R. F.; Acta Amaz 2013,43, 505.
  • 29
    John, J. A.; Shahidi, F.; J. Funct. Foods2010, 2, 196.
  • 30
    Rosso, V. V.; Mercadante, A. Z; J. Agric. Food Chem.2007, 55, 5062.
  • 31
    Silva, S. M.; Taham, S. T.; Rocco, S. A.; Ceriani, R.; Meirelles, A. J. A.; J. Am. Oil Chem. Soc 2009,86, 611.
  • 32
    Darnet, S. H.; Silva, L. H. M.; Rodrigues, A. M. C.; Lins, R. T.;Cienc. Tecnol. Aliment 2011,31, 488.
  • 33
    Koolen, H. H. F.; Silva, F. M. A.; Gozzo, F. C.; Souza, A. Q. L.; Souza, A. D. L.; Food Res. Int 2013,51, 467.
  • 34
    Sullivan, G.; J. Agric. Food Chem1982, 30, 610.
  • 35
    Jang, D. S.; Park, E. J.; Hawthorne, M. E; Schunke Vigo, J.; Graham, J. G.; Cabieses, F.; Santarsiero, B. D.; Mesecar, A. D.; Fong, H. H. S.; Mehta, R. G.; Pezzuto, J. M.; Kinghorn, A. D.; J. Nat. Prod2003, 66, 583.
  • 36
    Godoy, R. L. O.; Lima, P. D. D. B.; Pinto, A. C.; Aquino Neto, F. R.; Phytochemistry1989, 28, 642.
  • 37
    Vasconcelos, M. N. L; Silva, M. L.; Maia, J. G. S.; Gottlieb, O. R.;Acta Amaz 1975, 5, 293.
  • 38
    Lo-Coco, F.; Lanuzza, F.; Micali, G.; Cappellano, G.; J Chromatogr. Sci 2007, 45, 273.
  • 39
    Yang, H.; Protiva, P.; Cui, B.; Ma, C.; Baggett, S.; Hequet, V.; Mori, S.; Weinstein, I. B.; Kennelly, E. J.; J. Nat. Prod2003, 66, 1501.
  • 40
    Pugliese, A. G.; Tomas-Barberan, F. A.; Truchado, P.; Genovese, M. I.; J. Agric. Food Chem, 2013,61, 2720.
  • 41
    Gilabert-Escrivá, M. V.; Gonçalves, L. A. G.; Silva, C. R. S.; Figueira, A.; J. Sci. Food Agric.2002, 82, 1425.
  • 42
    Henman, A. R.; J. Ethnopharmacol1982, 6, 311.
  • 43
    Heard, C. M.; Johnson, S.; Moss, G.; Thomas, C. P.; Int. J. Pharm 2006, 317, 26.
  • 44
    Yamaguti-Sasaki, E.; Ito, L. A.; Canteli, V. C. D.; Ushirobira, T. M. A.; Ueda-Nakamura, T.; Dias Filho, B. P., Nakamura C. V.; Mello, J. C. P.;Molecules2007, 12, 1950.
  • 45
    Ushirobira, T. M. A.; Yamaguti, E.; Uemura, L. M.; Nakamura, C. V.; Dias Filho, B. P.; Mello, J. C. P.; Lat. Am. J. Pharm2007, 26, 5.
  • 46
    Zuleta, L. M. C.; Cavalheiro, A. J.; Silva, D. H. S.; Furlan, M.; Young, M. C. M.; Albuquerque, S.; Castro-Gamboa, I.; Bolzani, V. S.;Phytochemistry2003, 64, 549.
  • 47
    Mambrim, M.C.T.; Barrera-Arellano, D.; Grasas Aceites1997, 48, 154.
  • 48
    Rodrigues, A. M. C.; Darnet, S.; Silva, L. H. M.; J. Braz. Chem. Soc.2010, 21, 2000.
  • 49
    Montufar, R.; Laffargue, A.; Pintaud, J.; Avallone, S. H. S.; Dussert, S.; J. Am. Oil Chem. Soc 2010,87, 167.
  • 50
    Rezaire, A.; Robinson, J.-C.; Bereau, D.; Verbaere, A.; Sommerer, N.; Khan, M. K.; Durand, P.; Prost, E.; Fils-Lycaon, B.; Food Chem 2014, 149, 62.
  • 51
    http://www.amazonoil.com.br/en/products/oils/pracachy.htm, accessed in October, 2013.
    » http://www.amazonoil.com.br/en/products/oils/pracachy.htm
  • 52
    Santiago, G. M. P.; Viana, F. A.; Pessoa, O. D. L.; Santos, R. P.; Pouliquen, Y. B. M.; Arriaga, A. M. C.; Andrade-Neto, M.; Braz-Filho, R.;Rev. Bras. Farmacogn.2005, 15, 187.
  • 53
    Zellner, B. D.; Lo Presti, M.; Barata, L. E. S.; Dugo, P.; Dugo, G.; Mondello, L.; Anal. Chem 2006,78, 883.
  • 54
    Maia, J. G. S.; Andrade, E. H. A.; Couto, H. A. R.; Silva, A. C. M.; Marx, F.; Henke, C.; Quim. Nova2007, 30, 1906.
  • 55
    Sampaio, L. F. S.; Maia, J. G. S.; Parijós, A. M.; Souza, R. Z.; Barata, L. E. S.; Phytother. Res.2012, 26, 73.
  • 56
    Soares, B. M. C.; Gamarra, F. M. C.; Paviani, L. C.; Gonçalves, L. A. G.; Cabral, F. A.; J. Supercrit. Fluids2007, 43, 25.
  • 57
    Lopes, L. M. X.; Yoshida, M.; Gottlieb, O. R.;Phytochemistry1982, 21, 751.
  • 58
    Lopes, L. M. X.; Yoshida, M.; Gottlieb, O. R.;Phytochemistry1983, 22, 1516.
  • 59
    Lopes, L. M. X.; Yoshida, M.; Gottlieb, O. R.;Phytochemistry1984, 23, 2021.
  • 60
    Lopes, L. M. X.; Yoshida, M.; Gottlieb, O. R.;Phytochemistry1984, 22, 2647.
  • 61
    Burlando, B.; Verotta, L. Cornara L.; Bottini-Massa, E.;Herbal Principles in Cosmetics: Properties and Mechanisms of Action, CRC Press, Taylor & Francis Group: Boca Raton, 2010.
  • 62
    Elias, P. M.; Brown, B. E.; Ziboh, V. A.; J. Invest., Dermatol 1980, 74, 230; Rafia, B.;Int. J. Sci. Res. Rev 2013,2, 1.
  • 63
    Anstey, A. V.; Clin. Exp. Dermatol2002, 27, 170.
  • 64
    Ferraz, I. D. K.; Camargo, J. L. C.; Sampaio, P. T. B.; Acta Amaz.2002, 32, 647; Kilham, C. Tales from the Medicine Trail: Tracking Down the Health Secrets of Shamans, Herbalists, Mystics, Yogis, and Other Healers; Rodale Press: Emmaus, 2000.
  • 65
    Roy, A.; Saraf, S.; Biol. Pharm. Bull.2006, 29, 191.
  • 66
    http://www.hort.purdue.edu/newcrop/morton/bakuri.html, accessed in June 2013.
    » http://www.hort.purdue.edu/newcrop/morton/bakuri.html
  • 67
    Agra, M. F.; Freitas, P. F.; Barbosa-Filho, J. M.; Rev. Bras. Farmacogn.2007, 17, 114.
  • 68
    Bolton, E. R.; Hewer, D. G.; Analyst1922, 47, 282; Schiller, C.; Schiller, D.;The Aromatherapy Encyclopedia: A Concise Guide to Over 385 Plant Oils, Basic Health Publications, Inc.: Laguna Beach, 2008.
  • 69
    Menezes, A. J. E. A; Carvalho, J. E. U.; Homma, A. K. O.; Matos, G. B. In Congresso Brasileiro de Sistemas Agroflorestais, 7,2009, Luziánia, Sociedade Brasileira de Sistemas Agroflorestais: Brasília, DF, Emater-DF, Embrapa, 2009.
  • 70
    Gutierrez-Orozco, F.; Failla, M. L.; Nutrients2013, 5, 3163.
  • 71
    http://www.rain-tree.com/brazilnu.htm, accessed in June 2013.
    » http://www.rain-tree.com/brazilnu.htm
  • 72
    Yang, J.; LWT-Food Sci. Technol 2009,42, 1573; Costa, P. A.; Ballus, C. A.; Teixeira-Filho, J.; Godoy, H. T.; Ciênc. Tecnol. Aliment 2011,31, 950 .
  • 73
    Athar, M.; Nasir, S.M.; Afr. J. Biotechnol2005, 4, 36.
  • 74
    Kohno, Y.; Egawa, Y.; Itoh, S.; Nagaoka, S.; Takahashi, M.; Mukai, K.; Biochim Biophys Acta1995, 1256 52.
  • 75
    Maguire, L. S.; O'Sullivan, S. M.; Galvin, K.; O'Connor, T. P.; O'Brien, N. M.; Int. J. Food Sci. Nutr.2004, 55, 171.
  • 76
    Prance, G. T.; Futures1990, 22, 891.
  • 77
    Martins, R. C.; Filgueiras, T. S.; Albuquerque, U. P.; Econ. Bot 2012, 66, 91.
  • 78
    Zanatta, C. F.; Mitjans, M.; Urgatondo, V.; Rocha-Filho, P. A.; Vinardell, M. P.; Food Chem. Toxicol.2010, 48, 70.
  • 79
    Anunciato, T. P.; da Rocha Filho, P. A.; J. Cosmet. Dermatol 2012, 11, 51.
  • 80
    Taipina, M. S.; International Journal of Nutrology2013, 6, 102.
  • 81
    Mumford ,G. K.; Holtzman ,S.G.; J. Pharmacol. Exp. Ther 1991, 258, 857.
  • 82
    Hamerski, L.; Somner, G. V.; Tamaio, N.; J. Med. Plants Res 2013, 7, 2221.
  • 83
    Majhenič, L.; Škerget, M.; Knez, Ž.; Food Chem.2007, 104, 1258.
  • 84
    Hexsel, D.; Orlandi, C.; Zechmeister do Prado, D.; Dermatol. Surg 2005, 31, 866.
  • 85
    Sombra, L. L.; Gómez, M. R.; Olsina, R.; Martínez, L. D.; Silva, M. F.; J. Pharm. Biomed. Anal.2005, 36, 989.
  • 86
    http://www.rain-tree.com/mulaterio.htm, accessed in october 2013.
    » http://www.rain-tree.com/mulaterio.htm
  • 87
    Duke, J. A.; Bogenschuts-Godwin, M. J.; Ottesen, A. R.;Duke´s Handbook of Medicinal Plants of Latin America, CRC Press,Talor & Francis Group: Boca Raton, 2009.
  • 88
    Portillo, A.; Vila, R.; Freixa, B.; Adzet, T.; Cañigueral, S.;J. Ethnopharmacol 2001, 76, 93.
  • 89
    Msika, P.; Piccirelli, A.; EP1461060 A22004
  • 90
    Plotkin, M. J.; Balick, M. J.; J. Ethnopharmacol1984, 10, 157.
  • 91
    Gordon, M. H.; Magos, P.; Food Chem1983, 10, 141.
  • 92
    Banov, D.; Banov, F.; Bassani, A. S.; Dermatol. Ther 2014, 4, 259.
  • 93
    Wilson, R.; Aromatherapy: Essential Oils for Vibrant Health and Beauty, Avery: New York, 2002.
  • 94
    Roszaini, K.; Nor Azah, M. A.; Mailina, J.; Zaini, S.; Mohammad Faridz, Z.; Wood Sci. Technol 2013,47, 1273.
  • 95
    Rosa, M. S. S.; Mendonça-Filho, R. R.; Bizzo, H. R.; Rodrigues, I. A.; Soares, R. M. A.; Souto-Padrón, T.; Alviano, C. S.; Lopes, A. H. C. S.;Antimicrob. Agents Chemother 2003,47, 1895.
  • 96
    Fidelis, C. H. V.; Sampaio, P. T. B.; Krainovic, P. M.; Augusto, F.; Barata, L. E. S.; Microchem. J 2013,109, 73.
  • 97
    Souza, R. C. Z.; Eiras, M. M.; Cabral, E. C.; Barata, L. E. S.; Eberlin, M. N.; Catharino, R. R.; Anal. Lett2011, 44, 2417.
  • 98
    Chantraine, J. M.; Dhénin, J. M.; Moretti, C.; J. Essent. Oil Res.2009, 21, 486.
  • 99
    Venâncio, A. M.; Marchioro, M.; Estevam, C. S.; Melo, M. S.; Santana, M. T.; Onofre, A. S. C. Guimarães, A. G.; Oliveira, M. G. B.; Alves, P. B.; Pimentel, H. C.; Quintans-Júnior, L. J.; Braz. J. Pharmacogn.2011, 21, 1043; Batista, P. A.; Werner, M. F. F.; Oliveira, E. C.; Burgos, L.; Pereira, P.; Brum, L. F. D.; Santos, A. R. S.;Neurosci. Lett 2008, 440, 299.
  • 100
    Sousa, D. P.; Nóbrega, F. F. F.; Santos, C. C. M. P.; Almeida, R. N.; Nat. Prod. Commun.2010, 5, 1847.
  • 101
    Becker, L. C.; Bergfeld, W. F.; Belsito, D. V.; Hill, R. A.; Klaassen, C. D.; Marks, J. G. Jr; Shank, R. C.; Slaga, T. J.; Snyder, P. W.; Alan-Andersen, F.; Int. J. Toxicol.2010, 29, 162S.
  • 102
    D´Imperio, M.; Dugo, G.; Alfa, M.; Mannina, L.; Segre, A. L.;Food Chem 2007, 102, 956.
  • 103
    Christie, W. W. In Advances in Lipid Methodology - Two, Christie, W. W., ed.; Oily Press: Dundee, 1993.
  • 104
    Lee, D. S.; Lee, E. S.; Kim, H. J.; Kim, S. O.; Kim, K.;Anal. Chim. Acta2001, 429, 321.
  • 105
    Aparicio, R.; Morales, M. T.; Aparicio-Ruiz, R.; Tena, N.; Garcia-Gonzalez, D. L.; Food Res. Int.2013, 54, 2025.
  • 106
    Endo, Y.; Ohta, A.; Kido, H.; Kuriyama, M.; Sakaguchi, Y.; Takebayashi, S.; Hirai, H.; Murakami, C.; Wada, S.; J. Oleo Sci 2011, 60, 451.
  • 107
    Pacheco, C.; Palla, C.; Crapiste, G. H.; Carrín, M. E.; Food Anal. Methods2014, 7, 2013.
  • 108
    Funasaki, M; Oliveira, R. S.; Zanotto, S. P.; Carioca, C. R.; Simas, R. C.; Eberlin, M. N.; Alberici, R. M.; J. Agric. Food Chem2012, 60, 11263.
  • 109
    Costa, P. A.; Ballus, C. A.; Teixeira-Filho, J.; Godoy, H. T.;Food Res. Int 2010, 43, 1603.
  • 110
    Albuquerque, M. L. S.; Guedes, I.; Alcantara Jr., P.; Moreira, S. G. C.; Barbosa Neto, N. M.; Correa, D. S.; Zilio, S. C.; J. Braz. Chem. Soc 2005, 16, 1113.
  • 111
    Wang, J; Jun, S; Bittenbender, H. C.; Gautz, L; Li, Q. X.;J. Food Sci 2009, 74, C385; Tres, A.; van der Veer, G.; Perez-Marin, M. D.; van Ruth, S. M.; Garrido-Varo, A.; J. Agric. Food Chem 2012,60, 8129.
  • 112
    Lucas-Torres, C.; Pérez, A.; Cabañas, B.; Moreno, A.; Food Chem 2014, 165, 21; Sciubba, F.; Capuani, G.; Cocco, M. E. D.; Avanzato, D.; Delfini, M.; Food Res. Int 2014, 62, 66.
  • 113
    Anderson, K. A.; Smith, B. W.; J. Agric. Food Chem2006, 54, 1747; Benincasa, C.; Lewis, J.; Perri, E.; Sindona, G.; Tagarelli, A.; Anal. Chim. Acta2007, 585, 366; Bandoniene, D.; Zettl, D.; Meisel, T.; Maneiko, M.; Food Chem 2013,136, 1533.
  • 114
    Liang, Y.; Xie, P.; Chau, F.; J. Sep. Sci2010, 33, 410.
  • 115
    Bazakos, C.; Dulger, A. O.; Uncu, A. T.; Spaniolas, S.; Spano, T.; Kalaitzis, P.; Food Chem 2012,134, 2411; Torelli, A.; Marieschi, M.; Bruni, R.;Food Control2014, 36, 126.
  • 116
    Seethapathy, G. S.; Balasubramani, S. P.; Venkatasubramanian, P.;Food Chem 2014, 145, 1015.
  • 117
    Ben-Ayed, R.; Kamoun-Grati, N.; Rebai, A.; Compr. Rev. Food Sci. Food Saf.2013, 12, 218.
  • 118
    Costa, J.; Mafra, I.; Oliveira, M. B. P. P.; Trends Food Sci. Technol 2012, 26, 43.
  • 119
    Duh, P.-D.; Yen, W. J.; Yen, G.-C.; J. Am. Oil Chem. Soc 1999, 76, 201.
  • 120
    http://brazil-works.com/wp-content/uploads/2012/11/Fact-sheet_india_final.pdf, accessed in May 2015.
    » http://brazil-works.com/wp-content/uploads/2012/11/Fact-sheet_india_final.pdf

Publication Dates

  • Publication in this collection
    Feb 2016

History

  • Received
    09 June 2015
  • Accepted
    06 Oct 2015
Sociedade Brasileira de Química Secretaria Executiva, Av. Prof. Lineu Prestes, 748 - bloco 3 - Superior, 05508-000 São Paulo SP - Brazil, C.P. 26.037 - 05599-970, Tel.: +55 11 3032.2299, Fax: +55 11 3814.3602 - São Paulo - SP - Brazil
E-mail: quimicanova@sbq.org.br