
Quim. Nova, Vol. 40, No. 4, 413-417, 2017

Ar
ti

go

http://dx.doi.org/10.21577/0100-4042.20170023

*e-mail: rvivasr@unicartagena.edu.co

COMPUTATIONAL STUDY OF THE INTERACTION BETWEEN INDENE PYRAZOLE AND CYCLIN 
DEPENDENT KINASE 2

Juan Enrique Torres, Juan Pablo Toro, Javier Vergara, Rosa Baldiris, Ricardo Vivas Reyes*
Quantum and Theoretical Chemistry Group, University of Cartagena, Faculty of Exact and Natural Sciences, Campus of San 
Pablo, 130014 Cartagena, Colombia
CIPTec, Tecnológico Comfenalco Foundation Group. Faculty of Engineering, Industrial Engineering, Cartagena, Colombia

Recebido em 08/10/2016; aceito em 09/01/2017; publicado na web em 24/02/17

Proteins have been traditionally out of reach of electronic structure methods. But with technological advances in the development 
of powerful computers and the need to extend the methods of computational chemistry to problems of biological interest, such as 
the rational design of drugs, new technologies in silico have been developed that allow to study condensed systems of phase, which 
consist of thousands of atoms. Here, there are some techniques that combine two or more methods of calculating in a calculation that 
allows precise chemical exploration of very large systems. The aim of this work is to find the binding affinity of CDK2 inhibitors 
calculating their electronic densities and then comparing the similarities of these with the biological activity of ligands developing a 
QSAR in order to establish correlations between quantum similarity, which is a physical-chemical property and biological activity 
of said set of molecules that change their properties by varying any of their substituents.
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INTRODUCTION

Kinases generally constitute one of the most important families of 
targets, representing 20-30% of drug discovery programs of pharma-
ceutical companies, surpassed only by the G-protein coupled receptors.1 
Due to the participation in regulatory processes of cell homeostasis and 
deregulation of cyclin dependent kinases (CDKs) in several disorders, 
CDK inhibitors have a broad spectrum of applications ranging from 
protozoan infections (such as malaria, leishmania, trypanosomiasis),2,3 
viral infections (HCMV, HSV, HIV, HPV), reproductive disorders,4 
cardiovascular diseases (such as atherosclerosis, restenosis, cardiac 
hypertrophy),5 glomerulonephritis6 and cancers7,8 to nervous system 
diseases (such as Alzheimer’s disease, seizures, amyotrophic disease 
and drug abuse).9 In the investigation of antineoplastic agents, CDK2 
is an important drug target (cyclin dependent kinase 2). The inhibition 
of CDK2 essential activities can cause apoptosis in cancer cells, but 
only cell cycle reversible arrest in normal cells. This is why CDK2 
inhibitors have potential as anticancer agents with good therapeutic 
window.10,11 Although numerous inhibitors of CDK2 have been reported 
including carbazides, staurosporines, flavonoids, indigoids, indurubins, 
oxindoles, paullone, pyrimidines, purines and pyrrolidones,12-21 none 
have progressed to clinically useful drugs. Despite long and intensive 
experimental investigations, most CDK2 inhibitors and hinge region 
of the active site of the enzyme has hardly been explored. Indeed, there 
is no clear answer yet to such an important and momentous question 
for the detailed origin of the interaction between indene pyrazoles 
ligands and the CDK2 target enzyme; therefore, it remains as an open 
problem. A better understanding of this aspect is vital for the design 
of new inhibitors. Consequently, the theoretical work presented in this 
research proposal is an alternative approach to study the interaction of 
CDK2-indene pyrazoles in detail. A methodology used to find com-
pounds that inhibit this enzyme is through a study of molecular coupling 
or molecular Docking. The Docking approach is a computational 
method that has as main objective to identify the correct positions of 
the ligands in the binding site in order to predict the affinity between 

the ligand and the protein. In other words, it describes a process by 
which a molecule interacts with another one to form a stable complex 
in a three dimensional space. Based on previously reported research, a 
theoretical study of docking was performed using a number of synthetic 
derivatives of indene pyrazole ligands that interact in the active site 
of the enzyme CDK2, in order to determine its affinities and binding 
modes and based on the results obtained, conducting biological tests.

The field of the quantum similarity was introduced by Carbó-
Dorca and co-workers;22-28 they defined the quantum similarity mea-
surements ZAB between molecules A and B with the electronic density 
rA(r) and rB(r) taking into account the minimizing of the expression 
for the Euclidean distance as:

 (1)

Considering the overlap integral involving the ZAB between the 
electronic density of the molecule A and B, where ZAA and ZBB rep-
resent the Self-similarity.29 Using the cosine of the angle between the 
density functions30 can be expressed mathematically as:

  (2)

A simple manner using a general operator (Ω), can be expressed 
as:

  (3)

COMPUTATIONAL PROCEDURE

Dataset, Molecular Docking and optimization

The in vitro biological activity data reported as IC50 for inhibition 
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of CDK2 by the indene pyrazole derivatives was taken from the 
Singh´s article.31 All the molecules from this study were obtained 
from sources by the same research group reported at different times. 
As biological data are normally slanted, the reported IC50 values 
were turned into the corresponding pIC50 values utilizing the formula:

 pIC50= -logIC50 (4)

The model of the macromolecular target used in this study was 
the crystallographic structure (PDB Code: 1GZ8), resolved to 1.3 
Å with an R value of 0.153 and published by Gibson et al.32 which 
corresponds to the CDK2 in complex with inhibitor1 - [(2-amino-6,9-
dihydro-1H-purin-6-yl) oxy] -3-methyl-2-butanol (Figure 1). Based 
on this structure, a system consisting of 5 amino acid residues and 
the inhibitor will be adopted (hinge region).

Amino acid residues included were F80, E81, F82, L83 and H84. 
With the exception of the catalytic triad K33, E51 and D14. Protonation 
condition of amino acids were determined by the H ++ program.33 
For this calculation seven residues were manually rebuilt in the 1GZ8 
model (residues 37 to 43). Furthermore, it is assumed that all bond 
and torsion angles are the same as in the crystallographic structure. 
Hydrogen atoms missing in the system were added, a model taken 
from the crystallographic structure. The positions of these hydrogens 
were optimized by the semi-empirical PM6 method.34 The structure 
fully converged was used as an initial model for the remaining calcula-
tions. The indene pyrazole ligands were coupled with this converged 
1GZ8 structure using the FlexiDock program available in Sybyl-X.35 

FlexiDock parameters were set at 1000 generations for Genetic 
Algorithms, the CDK2 structure was minimized using Tripos force 
field with an implicit solvation model. The PRCG method was used 
with convergence criteria set to Gradient. All indene pyrazole ligands 
as well as protein residues within 5 Å were allowed to move freely 
during energy minimization, while residues at a distance between 5 
and 15 Å were constrained by a parabolic force constant of 30 kJ Å-1. 
Optimization calculation of indene pyrazoles ligands were performed 
later in order to use them for the study of quantum similarity applying 
the ab initio DFT/B3LYP method to describe atoms that characterize 
the electronic population determined by steric and electronic effects 
in the local atomic shells.36 Charges and multiplicity of these were 
also specified. Then it was used the calculation basis 6-31G,37 to add 
the Cartesian-Gaussian polarization functions on each of the atoms, 
followed by an overall minimization of bond distances and angles 
using an optimizer. For this purpose, the option Opt =QuadMacro 
was used from the GAUSSIAN09 package.38

Molecular Quantum Similarity 

The equation 3 was used in this study to obtain the Molecular 
Quantum Similarity Measurements (MQSM) and characterizations 
from the point of view of the atomic shells, described through the 

polarizability function in the B3LYP/6-31G. For the implementa-
tion of quantum calculation and obtaining similarity matrix, the 
SIMILARITY39 program was used, which is part of a computational 
strategy for QSAR calculations in three dimensions (3D-QSAR). It 
is currently under development in the group of Theoretical Quantum 
Chemistry at University of Cartagena.

Statistical Analysis by PLS 

The statistical analysis was performed with 117 ligands derived 
from indene pyrazoles, of which 7 components were chosen, using a 
cross-validation method known as “taking two at a time” (k umpteenth 
with k = 2), which consists of adjusting n times, each time leaving out 
two of the observations and re-adjusting the model by using the other 
n – 1 observations. Then the omitted observation is predicted with 
the model that was excluded. This validation is used to shorten the 
process in large data sets, as shown in this study. While the meaning 
of each successive latent variable may be evaluated with partial F 
tests, the numbers of latent variables to include were chosen from 
the results of cross-validation. In cross-validation multiple models 
were developed for which one or more molecules were omitted. Each 
model was then used to predict the biological activity and potency 
of molecules omitted. The overall predictability of the model is then 
expressed in terms of Q2, which is formally equivalent to R2 except that 
predicted values, rather than setting values are used in the equation:

   (5)

Ypred and Ytest indicate predicted and observed activity values res-
pectively, and Ytrain indicates mean activity value of the training set. 

PLS statistical analysis was carried out in the STATGRAPHICS 
Centurion XVI program, version 16.02.4, which is fairly complete 
and provides information based on most of the data required in this 
study as component factor graphics, model and prediction graphics.

RESULTS AND DISCUSSION

In Table 1S is depicted 117 derived indene pyrazole ligands with 
their respective pIC50 values that were coupled with CDK2 target 
and their total coupling scores, a Scoring function can be adapted 
from force field approaches, estimating the enthalpy of binding via 
the pair-energy of the complex and also can estimate the entropy of 
binding, incorporating terms for desolvation and loss of conforma-
tional flexibility. The Total Score is the main study descriptor, since 
it is the resulting sum from the other docking molecular descriptors; 
this defines more precisely the ligand affinity for the active site of the 
protein. The ligands in Table 1S are listed according to the different 
basic structural indene pyrazole cores, as is shown in Figure 2.

A complete analysis for all Total Scores was carried out in Table 
1S in order to find ligands with higher and lower activity reported 
out of the range, which was chosen with a score convention of 4.0 
to 7.0. Here, some ligands with low inhibition were found such as 
001, 002, 111 and 113 with a total score of 3.96, 3.50, 3.51 and 2.76 
respectively, while we can see ligands with potent inhibition with a 
total score of 7.03, 7.38 and 7.14, such as 017, 062 and 108 being 
these ligands the ones with more internal energy of interaction with 
the active site of CDK2. After analyzing the results of molecular 
coupling, it was observed that the major interactions between CDK2 
protein and all ligands are presented in the catalytic site by means 
of hydrogen bonds between amino acids of polar nature (Glu 81 and 
His 84) and the oxygens atoms present in this group. Furthermore, 
joints between the ligand and the active site of the protein through 

Figure 1. Structure of co-crystallized ligand (MBP) of the Protein Databank 
1GZ8 entry
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the oxygens atoms of the carboxyl group present in the side chain of 
the residue Lys 33 and nitrogens atoms present in the indene pyrazol 
ligands. On the other hand, the nonpolar stabilizing interactions occur 
between residues Phe 80, Phe 82, Leu 83 and the adjacent aromatic 
ring on the indene pyrazolic base of ligands. All interactions detailed 
above are essential for the binding between the enzyme and the ligands 
and are present in all the molecules studied. Making a more detailed 
approach of the different basic structural cores of the indene pyrazol 
derivatives, it can be said that the highest total score of coupling 
and highest affinity for the target CDK2 were those ones of the first 
structural basis (1-93), this is due to the majority of the ligands of this 
group possess strong hydrogen bonding interactions that are formed 
between the NH groups and thiols with amino acid residues of the 
active site of CDK2, while with a relatively medium and significant 
score, ligands of the second structural base could be found (94-110). 
In the last ligands a few hydrogen interactions and van der Waals 
interactions were found with less affinity value than the ones in the 
first base because there are more lipophilic interactions between both 
piperidine and pyrrolidine rings as well as phenylalanine residues of 
the hinge region. Finally we find the third structural basis (111-117) 
as the lowest average score of all coupling. Latter ligands derived 
from indene pyrazoles have fairly simple radicals and lower electron 
densities; therefore, few interactions with amino acid residues of the 
active site as Van der Waals and torsion can be created, which do not 
contribute so much to the total score as the hydrophilic and lipophi-
lic. In Figure 3 are shown the Van der Waals interactions, lipophilic, 
hydrogen bonds, among others, that have the amino acid residues of 
the active site with the most suitable ligand, 062. 

In order to find the correlation between biological activity and the 
Total Score of indene pyrazole ligands a scatter plot was performed. 
According to the results of the regression it can be said that there is 
a good correlation between the biological activity measured in half 

maximal inhibitory concentration (IC50) and the total score of the 
coupling motor (Total Score) with a determination coefficient R2 
of 0.89, and as is shown in Figure 4 these values increase linearly 
in proportion. The above analysis was carried out based on two 
specific variables, while the PLS analysis is designed to build a 
statistical model that links an independent variable X (in this case, 
the descriptors of molecular quantum similarity) with a dependent 
variable Y (biological activity of indene pyrazol ligands). All ligands 
in Table 1S were optimized as was described above to be used in 
the calculation of quantum similarity rates, which in turn shows a 
matrix of similarity index. In the matrix, each column represents the 
similarity between two ligands. Similarity values for 117 compounds 
were obtained by using the overlap operator, combined with the Carbo 
index. In Tables 3S and 4S, the values of the multiple linear regression 
coefficients which were obtained with the PLS technique are given.

In Table 3S, we can see relatively high values for R2, reaching a 
value of 100.0% in the seventh component, so that the correlation be-
tween proposed variables with seven components used is notoriously 
demonstrated. The PRESS value (Prediction Error Sum of Squares) 
was calculated through the cross-validation test group. These statistics 
are comparable to the mean square of the residues in Table 2S except 
that the former is calculated from predictions for observations when 
these are not used to adjust the model. The lower the values of the 
PRESS mean square the less error prediction and therefore, the model 
with the number of components to extract is better. We can see that 
in the seventh component, PRESS reaches its minimum value (0.63) 
so this means a model with 7 has the lowest prediction error and is 
the best model. Table 4S presents percentages of the total variation in 
variables X and Y explained as the number of components increase. 
The last column shows the R Squared of average Prediction through 
all dependent variables (biological activity). Although the value for 
10 components could explain the correlation and model prediction 
(R2 = 84.78) the average reaches a peak of 7 components, with a 
value of R2= 89.37%. A 2D factors graph was also done (Figure 5), 
in which two factors are chosen, a pair for each axis, and the points 
representing the rows in the corresponding columns were plotted. 
In situations where the factors are interpreted, this graph shows the 
value of each of the samples for these factors. 

To analyze these outcomes, it is important to keep in mind that 
each component chosen in PLS analysis is a linear combination of 
the similarity matrix columns, and it can generate new descriptors 
uncorrelated with each other and increase in turn the correlation with 
biological activities. The difference between the traditional analysis 
of main components and PLS analysis used in this study, is in the 
implementation of the correlation between the independent variables 

Figure 2. Structural bases of indene pyrazol ligands used in the study

Figure 3. Ligand interactions of indene pyrazole 062 with the active site of 
the protein

Figure 4. Correlation between pIC50 VS Total Score of indene pyrazol ligands
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when generating components. Finally, in Figure 6 are shown the 
values of the predicted biological activity vs the experimentally me-
asured biological activity, in which the predicted biological activity 
was calculated with the values of the coefficients obtained by PLS 
for 7 components.

In this study there is a good adjusting model, and is seen that 
points are aligned along the diagonal line, also the R2 of prediction 
for 7 components is 89.37, suggesting that a model with seven com-
ponents is an excellent choice and quite accurately describes the good 
correlation between the model and molecular interactions. 

CONCLUSIONS

From this study it can be concluded that there is a great affinity 
between indene pyrazol ligands used and the target CDK2 enzyme. 
This could be verified through a significant correlation between the 
inhibitory activity of indene pyrazol ligands and the total score of the 
complex docking, with a coefficient of determination of R2 = 0.89 
and a very good prediction correlation between molecular quantum 
similarity and biological activity of ligands, with a squared coefficient 
of prediction R2 = 89,37 for seven components, which means that a 
successful QSAR model has been developed that clearly explains the 
interaction of the inhibitors with the amino acids of the hinge region 
in the active site of CDK2, being this one more robust than recurrent 
models of simple division.
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