Acessibilidade / Reportar erro

The chemistry of peroxynitrite, a biological toxin<a name=TOP1></a>

Oxyradicals play a tole in several diseases. While for several decades the hydroxyl radical - produced via the Fenton reaction - has been considered the species that initiates oxyradical damage, new findings suggest that much of this damage can be ascribed to peroxynitrite, O=NOO-, formed from the reaction of the superoxide anion with nitrogen monoxide near activated macrophages. The rate constant for the reaction of this reaction has been investigated by flash photolysis and was found to be significantly higher than previously described in the literature, 1.9 x 10(10) M-1s-1. Studies of the isomerization to nitrate resulted in the discovery of a complex between peroxynitrite and its protonated form with a stability constant of 1 x 10(4) M-1. Some of the harmful reaction of peroxynitrous acid have been ascribed to the hydroxyl radical as a product of homolysis of the O-O bond during the conversion to nitrate. Kinetics of the isomerization reaction as a function of pressure show that the activation volume is only +1.5+1.0 ml mol-1, which is inconsistent with homolysis. Instead, an intermediate, possibly a distorted trans-isomer of O=NOOH could be responsible for the harmful reactions of peroxynitrite.

peroxynitrite; nitrogen monoxide; superoxide; Fenton reaction; oxyradical damage; stopped-flow spectrophotometry; flash photolysis


Sociedade Brasileira de Química Secretaria Executiva, Av. Prof. Lineu Prestes, 748 - bloco 3 - Superior, 05508-000 São Paulo SP - Brazil, C.P. 26.037 - 05599-970, Tel.: +55 11 3032.2299, Fax: +55 11 3814.3602 - São Paulo - SP - Brazil
E-mail: quimicanova@sbq.org.br