FLAVONOIDES DE *Lonchocarpus araripensis* (Leguminoseae) - ISOLAMENTO, ATRIBUIÇÃO INEQUÍVOCA DOS SINAIS DE RMN ¹H E ¹³C E ANÁLISE CONFORMACIONAL

Almi F. Lima^a, Daniele A. Ferreira^a, Francisco José Q. Monte^{*,a} e Raimundo Braz-Filho^b

^aDepartamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará; 60455-760 Fortaleza – CE, Brasil

^bLaboratório de Ciências Químicas, Centro de Ciências Tecnológicas, Universidade Estadual do Norte Fluminense, 28013-602 Campo dos Goytacazes – RJ, Brasil

Recebido em 05/11/2013; aceito em 28/01/2014; publicado na web em 03/04/2014

FLAVONOIDS FROM *Lonchocarpus araripensis* (Leguminoseae) - ISOLATION, UNEQUIVOCAL ASSIGNMENT OF NMR SIGNALS ¹H AND ¹³C AND CONFORMATIONAL ANALYSIS. In a continuing investigation for potentially bioactive natural products, flavonoids were isolated from *Lonchocarpus araripensis* (Leguminoseae) and identified as 3-methoxy-6-*O*-prenyl-6",6"dimethylchromene-[7,8,2",3"]-flavone (1), 3,6-dimethoxy-6",6"-dimethylchromene-[7,8,2",3"]-flavone (2) and 3,5,8-trimethoxy-[6,7,2",3"]-fluranoflavone (3). This is the first time compound **3** has been described. Compound **2** has been previously isolated from roots while this is the first time **1** is reported in this species. Complete NMR assignments are given for **1**, **2** and **3** together with the determination of conformation for **1**.

Keywords: Lonchocarpus araripensis; Leguminosae; flavonoids; NMR data; conformational analysis.

INTRODUÇÃO

Estudos anteriores,¹ demonstraram que o gênero Lonchocarpus constitui uma rica fonte de compostos fenólicos incluindo flavonas, flavonois, flavanas, flavanonas e auronas. Este gênero é representado por cerca de 100 espécies distribuídas na América, África e Ilhas Caribenhas. Uma revisão taxonômica² of Lonchocarpus no Brasil permitiu reconhecer 23 espécies divididas em dois subgêneros: Lonchocarpus subgênero Lonchocarpus com 15 espécies e Lonchocarpus subgênero Punctati (Benth) contendo oito espécies incluindo L. subglaucescens Benth e L. araripensis Benth Ducke. A primeira é encontrada no Sudeste e a segunda no Nordeste do Brasil. Em estudo precedente1 foi relatado o isolamento de várias substâncias flavonoídicas a partir de L. araripensis. Tendo em vista que compostos fenólicos tais como os flavonoides são importantes na dieta e na saúde humana³⁻⁵ e considerando também a relativa abundancia destes constituintes no gênero em epígrafe, foi efetuado o re-estudo fitoquímico da espécie L. araripensis, pesquisando diferentes partes da planta. Neste re-estudo foram isolados os flavonoides 1, a partir das cascas do caule e 2 e 3, a partir do lenho do caule. A substancia 2 foi isolada anteriormente a partir das cascas das raízes de L. araripensis, enquanto 1 é inédita na espécie e 3 na literatura. A elucidação estrutural de 1, 2 e 3 foi baseada em detalhada análise dos espectros de RMN 1H e 13C em combinação com os experimentos bidimensionais (COSY, HSQC, HMBC e NOESY), espectros de massas, como também comparação com dados da literatura.^{1,6} Interessantes conclusões sobre possíveis isômeros conformacionais de 1 puderam ser feitas a partir de dados de interação espacial extraídos do espectro NOESY.

EXPERIMENTAL

Procedimentos experimentais gerais

Os espectros de RMN ¹H e ¹³C foram registrados em espectrômetros Bruker Avance DPX – 300 e DRX – 500 operando nas frequências de hidrogênio a 300 e a 500 MHz e nas frequências de carbono-13 a 75 e 125 MHz, respectivamente, usando CDCl₃ como solvente na dissolução das amostras. Os deslocamentos químicos (δ) foram expressos em parte por milhão (ppm) tendo, como referencial relativo para RMN ¹H, o pico do hidrogênio ($\delta_{\rm H}$ 7,27) do CHCl₃ residual e, para RMN ¹³C, o pico central ($\delta_{\rm C}$ 77,0) do CDCl₃. Os espectros uni (RMN ¹H, RMN ¹³C, RMN DEPT 135° e nOe diferencial) e bi-dimensionais (COSY, HSQC, HMBC e NOESY) foram obtidos mediante programa padrão Bruker XWIN-NMR. Os espectros de massa foram registrados em espectrômetros de massa Shimadzu, modelos QP 5050A (baixa resolução) e LCMS-IP-TOF (alta resolução) no modo positivo com fonte de ionização por *eletrospray* (ESI).

Material vegetal

Lonchocarpus araripensis foi coletada no Municipio de Acarape, Ceará, Brazil, em junho de 2010. Uma exsicata (No. 11074) da planta, identificada pelo Prof. Edson P. Nunes, foi depositada no Herbário Prisco Bezerra do Departamento de Biologia da Universidade Federal do Ceará, Brasil.

Obtenção dos extratos e isolamento dos constituintes

As cascas do caule (3,0 kg) de *L. araripensis* após secas e moídas foram submetidas a extração exaustiva a frio com hexano. O solvente foi evaporado sob pressão reduzida fornecendo o extrato hexânico bruto (EHex-CC; 32,3 g). Este extrato foi submetido à cromatografia em coluna de gel de sílica (Si gel 60) fornecendo as frações EHex-1 (24,8 g), EHex-2 (6,8 g) e EHex-3 (0,1 g) eluídas com hexano, AcOEt e EtOH, respectivamente. A fração EHex-1 (24,8 g) foi submetida à cromatografia em coluna de gel de sílica (Si gel 60) fornecendo as frações EHex-1.1 (1,1 g), EHex-1.2 (18,2 g) e EHex-1.3 (3,7 g) eluídas com hexano, hexano-AcOEt 1:1 e AcOEt, respectivamente. A fração EHex-1.3 (3,7 g) foi submetida à cromatografia em coluna de gel de sílica (Si gel 60) eluída com hexano-CH₂Cl₂ 1:1 originando 72 frações que por CCD resultaram em apenas 5. As frações 60-72 (1,1 g) por cromatografia em coluna de gel de sílica (Si gel 60) usando CH₂Cl₂ como eluente forneceram 96 frações que, por análise em CCD, resultaram em 5. As frações 85-96 (496,0 mg) por cromatografia em coluna de gel de sílica (Si gel 60) usando CH_2Cl_2 -AcOEt 49:1 como eluente forneceram 45 frações que, por análise em CCD, resultaram em 5. As frações 10-27 (180,0 mg) por cromatografia em coluna de gel de sílica (Si gel 60) usando CH_2Cl_2 -AcOEt 49:1 como eluente forneceram 60 frações que, por análise em CCD, resultaram em 3. As frações 21-56 (96,4 mg) por cromatografia em coluna de gel de sílica (Si gel 60) usando CH_2Cl_2 -AcOEt 19:1 como eluente forneceram 28 frações que, por análise em CCD, resultaram em 4 frações, entre as quais as de número 14-28 (20,0 mg) originaram a substância 1.

O lenho do caule (4,00 kg) de L. araripensis após seco e moído foi submetido à extração exaustiva a frio com hexano. O solvente foi evaporado sob pressão reduzida fornecendo o extrato hexânico bruto (EHex-LC; 8,5 g). Este extrato (8,5 g) foi dissolvido em uma mistura MeOH-H₂O 3:1 e a solução resultante foi submetida a uma extração líquido-líquido com hexano seguido de EtOAc, em funil de separação. Após evaporação dos respectivos solventes foram obtidas 3 frações: EHex-1' (MeOH-H₂O; 0,1 g), EHex-2' (AcOEt; 0,3 g) e EHex-3' (Hexano; 6,1 g). A fração EHex-3' (6,1 g) por cromatografia em coluna de gel de sílica (Si gel 60) originou as frações EHex-3'.1 (102,0 mg), EHex-3'.2 (456,0 mg), EHex-3'.3 (5,0 g) e EHex-3'.4 (556,0 mg), eluídas com hexano, hexano-AcOEt 1:1, AcOEt e EtOH, respectivamente. Esta última fração (556,0 mg) por cromatografia em coluna de gel de sílica (Si gel 60) originou as frações EHex-3'.4.a (4,5 mg), EHex-3'.4.b (26,0 mg), EHex-3'.4.c (355,0 mg), EHex-3'.4.d (131,0 mg), EHex-3'.4.e (15,0 mg) e EHex-3'.4.f (27,0 mg), eluídas com hexano, hexano-AcOEt 4:1, hexano-AcOEt 3:2, hexano--AcOEt 1:1, hexano-AcOEt 7:3 e EtOH, respectivamente. A fração EHex-3'.4.c (355,0 mg) foi submetida à cromatografia em coluna de gel de sílica (Si gel 60) eluída com hexano-EtOAc 9 : 1 fornecendo 156 frações. Análise por cromatografia em camada delgada (CCD) permitiu reuni-las em 5 frações principais [F 1-7 (2,0 mg), F 8-32 (26,0 mg), F 33-45 (4,0 mg), F 46-97 (109,0 mg) e F 98-156 (42,0 mg)]. A fração F 8-32 (26,0 mg) mostrou-se pura (CCD) e originou a substância 2. A fração F 98-156 (42,0 mg), por sua vez, após cromatografia em coluna de gel de sílica (sílica gel 60) eluída com CH₂Cl₂ - EtOAC 19 : 1 produziu 21 frações que após analisadas por CCD foram reunidas em 3 frações principais: [F' 1-3 (9,0 mg), F' 4-7 (4,0 mg) e F' 8-21 (10,0 mg). A fração F' 8-21, mostrou-se pura e originou a substância 3. Em todos os sistemas cromatográficos os volumes das frações foram da ordem de 5 a 15 mL. Em geral, as frações obtidas em grandes massas revelaram-se sempre como misturas complexas pastosas, não estudadas.

3-metoxi-6-O-prenil-6",6"-dimetilcromeno-[7,8,2",3"]-flavona (1) Sólido amorfo amarelo; pf 173,0-175,0 °C; IV (KBr, cm⁻¹) ν_{max} 1619, 1585, 1456, 1375,

1195, 1165, 1060, 764, 722, 697; RMN ¹H e ¹³C, Tabela 1; EM *m*/*z* 418 [M] ^{+,} 403 (M-

15), 375, 363, 347, 195, 77.

3,6-dimetoxi-6",6"-dimetilcromeno-[7,8,2",3"]-flavona (2)

Sólido amorfo branco; pf 210,0-212,0 °C; IV (KBr, cm⁻¹) ν_{max} 1622, 1539, 1480, 1347, 1128, 1098, 750, 699; RMN ¹H e ¹³C, Tabela 2; EM *m/z* 364 [M] ^{+*}, 363, 349, 217, 174, 105, 77.

3,5,8-trimetoxi-[6,7,2" 3"]-furanoflavona (3)

Sólido amorfo amarelo; pf 170,0-173,0 °C; IV (KBr, cm⁻¹) ν_{max} 1612, 1585, 1400, 1380, 1168, 1135, 116, 722, 762, 694; RMN ¹H e ¹³C, Tabela 3; EM-EI *m/z* 352 [M]⁺, 337 (100 %, M-15), 308, 105, 77; EM-AR-IES *m/z* 353,1000 [M + H]⁺ (calc. para C₂₀H₁₆O₆, 353,1025) e 375,0836 [M + Na]⁺ (calc. para C₂₀H₁₆O₆, 375,1025).

Atividade biológica: ação contra linhas de células tumorais

A atividade citotóxica *in vitro* das substâncias **1** e **3** foi avaliada usando as linhagens de células tumorais humanas SF-295, HTC-116, HL-60 e OVCAR-8, cedidas pelo Instituto Nacional do Câncer (EUA), através de método descrito previamente.^{6,7} Embora boa atividade citotóxica tenha sido observada para as substâncias, são necessários novos testes para comprovação.

RESULTADOS E DISCUSSÃO

O flavonoide 1 foi isolado como um sólido amorfo amarelo. Seu espectro de RMN ¹³C exibiu 22 sinais, sendo 16 (δ_c 106,78 a 154,57) na região de carbonos sp2 (excetuado um sinal de carbono carbonílico em δ_c 174,48), indicando a natureza aromática do composto. A comparação dos espectros de RMN 13C e DEPT 135 permitiu verificar o padrão de hidrogenação de todos os átomos de carbono (Tabela 1). Os espectros de RMN 1H e 13C registraram, em especial, sinais devidos aos segmentos 6",6"-dimetilcromeno [δ_{H} 1,53 (s, 6H), 6,87 (d, 1H, J = 9.9 Hz) e 5,73 (d, 1H, J = 9.9 Hz); $\delta_{c} 28.1 (2 \text{ CH}_{3})$, 130,5 (CH), 115,6 (CH) e 78,2 (C)] e 3",3" -dimetilalil (prenil) $[\delta_{H} 1,78 (sl, 6H, 2$ CH_3 , 4,68 (2H, d, 2H, J = 6,5 Hz) e 5,52 (1H, m); $\delta_C 18,5 (CH_3)/25,9$ (CH₃), 66,5 (CH₂ - O) e 119,7 (=CH) e 138,0 (C)], registrados na literatura^{1-4,7,8} em substâncias naturais, confirmados por meio dos espectros HSQC, COSY, HMBC e NOESY (Tabela 1). Com base nos espectros de RMN ¹³C, DEPT 135 e de massa (m/z 418 [M]+·) a fórmula molecular de 1 foi estabelecida como C26H26O5, revelando um alto IDH (14), em acordo com uma substancia do tipo flavonoide, metabólitos abundantes em plantas do gênero Lonchocarpus. Análise dos espectros e comparação com dados espectrais da literatura6 identificaram 1 como sendo 3-metoxi-6-O-prenil-6",6"-dimetilcromeno--[7,8,2",3"]-flavona (Figura 1). A interação dipolar (nOe) dos átomos de hidrogênio do grupo oximetileno 2H-1^{""} ($\delta_{\rm H}$ 4,68) com o hidrogênio H-5 ($\delta_{\rm H}$ 7,52) revelada pelo espectro 2D NOESY permitiu postular a conformação esteroquímica preferencial 1a. A ausência de interação do hidrogênio olefínico H-2''' ($\delta_{\rm H}5,\!52)$ com o H-5 ($\delta_{\rm H}7,\!52),$ presente na conformação alternativa 1b (com expressiva interfência estérica) e ausente em 1c, está também em acordo com a dedução conformacional **1a**. O nOe observado entre os hidrogênios H-1" ($\delta_{\rm H}$ 6,87) e H-2'/H-6' ($\delta_{\rm H}$ 8,06), mostrando a proximidade espacial entre eles, contribuiu para a localização do anel dimetilpirânico envolvendo os átomos de carbono C-7 e C-8 e para confirmar a presença do grupo fenila no carbono C-2.8

O composto **2** foi isolado como um sólido amorfo branco. Seus espectros de RMN ¹H e ¹³C exibiram deslocamentos químicos (Tabela 2) semelhantes aos registrados para **1**, porém, com a ausência dos sinais relativos aos átomos do segmento prenila e a presença de um segundo sinal de grupo metoxila ($\delta_{\rm H}$ 3,97; $\delta_{\rm C}$ 56,52). Os espectros COSY, HSQC e HMBC, confirmaram os assinalamentos da Tabela 2, com destaque para as correlações do hidrogênio H-5 ($\delta_{\rm H}$ 7,56-7,50) com os átomos de carbono C-4 ($\delta_{\rm C}$ 175,0) e C-6 ($\delta_{\rm C}$ 146,7) e de hidrogênios metílicos CH₃O-6 com o carbono C-6 ($\delta_{\rm C}$ 146,7) no experimento HMBC. Essas correlações mostraram que o segundo grupo metoxila ocupou na substância **2** a mesma posição (C-6) que o grupo prenila na substância **1**. Assim, com base na análise dos espectros e comparação com dados espectrais da literatura,⁶ o flavonoide **2** com fórmula molecular C₂₂H₂₀O₅ (*m*/*z* 418 [M]⁺⁺) foi identificado como 3,6-dimetoxi-6",6"-dimetilcromeno-[7,8,2",3"]-flavona (Figura 1).

O composto **3** foi isolado como um sólido amorfo amarelo. O espectro de RMN ¹³C de **3** exibiu 18 sinais, sendo 15 devidos a carbonos insaturados, portanto, um composto também de natureza aromática. A comparação com o espectro DEPT 135° mostrou a presença de 10 carbonos não hidrogenados (um de carbono carbonílico em δ_c

Tabela 1. Dados espectrais de RMN ¹H e ¹³C (500 e 125 MHz) de 1 em CDCl₃, J em Hz, δ em ppm

С	HSQC		HMBC		COSY	NOECV
	$\delta_{\rm C}$	$\delta_{\rm H}$	$^{2}J_{\rm CH}$	$^{3}J_{\rm CH}$	COST	NUES Y
2	154,57	-		H-2'/H-6'		
3	141,27	-		MeO-3		
4	174,48	-		H-5		
6	146,33	-		2H-1""		
7	148,22	-		H-5, H-1"		
8	11048	-	H-1"	H-2"		
9	146,62	-		H-5, H-1"		
10	117,44	-	H-5			
1'	131,40	-		H-3'/H-5'		
3"	78,17	-	H-2"; 3H-4"/3H-5"	H-1"		
3'''	138,03	-	3H-4'''/3H-5'''	2H-1""		
CH						
5	106,78	7,52 (s)				2H-1""
2'/6'	128,70	8,07 (dd, 8,2 e 1,5)	H-3'/H-5'	H-4'	H-3'/H-5'	H-3'/H-5'; H-1"; MeO-3
3'/5'	128,39	7,50	H-2'/H-6'; H-4'		H-2'/H-6'	H-2'/H-6'
4'	128,35	7,47		H-2'/H-6'		
1"	115,57	6,87 (d, 9,9)			H-2"	H-2'/H-6'
2"	130,50	5,73 (d, 9,9)			H-1"; 3H-4"'/3H-5"	H-1"; 3H-4"/3H-5"
2""	139,73	5,52 (t, 6,5)	2H-1""	3H-4""/3H-5""	H-1""	H-1""; 3H-4"'/3H-5""
CH_2						
1'''	66,55	4,68 (d, 6,5)			H-2""; 3H-4""/3H-5""	H-5; H-2""; 3H-4""/3H-5""
CH ₃						
MeO-3	60,37	3,88 (s)				H-2'/H-6'
4"	28,08	1,53 (s)		H-2"		
5"	38,08	1,53 (s)		H-2"		
4""	25,97	1,78 (sl)		3H-5'''		
5""	28,49	1,78 (sl)		3H-4""	_	

Tabela 2. Dados espectrais de RMN ¹H e ¹³C (500 e 125 MHz) de **2** em CDCl₃, J em Hz, δ em ppm

C -	Н	SQC	HMB	COSV	
C	$\delta_{\rm C}$	$\delta_{_{\rm H}}$	${}^{2}J_{\rm CH}$	${}^{3}J_{\rm CH}$	0.031
2	154,70	-		H-2'/H-6'	
3	141,31	-		MeO-3	
4	174,50	-		H-5	
6	146,67	-	H-5	MeO-6	
7	147,55	-		H-5, H-1"	
8	110,41	-	H-1"	H-2"	
9	147,20	-		H-5, H-1"	
10	117,57	-	H-5		
1'	131,52	-	H-2'/H-6'	H-3'/H-5'	
3"	79,11	-	H-2";	H-1"	
			3H-4"/3H-5"		
CH					
5	104,65	7,53 – 7,49			
2'/6'	128,43	8,07	H-3'/H-5'	H-4'	H-3'/H-5'
		(dl, 7,2)			
3'/5'	128,76	7,53 – 7,49 1	H-2'/H-6'; H-4'		H-2'/H-6'
4'	128,76	7,53 – 7,49		H-2'/H-6'	
1"	115,57	6,88 (d, 9,9)	H-2"		H-2"
2"	130,41	5,75 (d, 9,9)		3H-4"/	H-1"
				3H-5"	
CH_3					
MeO-3	60,18	3,89 (s)			
MeO-6	56,52	3,97 (s)			
4"	28,11	1,56 (s)		H-2"	
5"	28,11	1,56 (s)		H-2"	

175,31), 5 metínicos e 3 metílicos. Estes três últimos, com sinais em δ_{c} 62,67, 61,83 e 60,31, foram correlacionados a três grupos metoxila e, entre os carbonos metínicos, os sinais em δ_c 128,56 e 128,83 com intensidades relativas acentuadas corresponderam cada a dois átomos de carbono e, assim, atribuídos aos carbonos C-2'/C-6' e C-3'/C-5' de um anel fenila monosubstituído, como nos compostos 1 e 2. Neste ponto foi possível propor uma fórmula molecular parcial C₂₀H₁₄O₃ para 3. Em adição, a comparação dos deslocamentos químicos de 3 (Tabela 3) com os de 1 e 2 permitiu concluir pela presença de uma mesma parte estrutural nos três compostos constituída pelos anéis pirano [contendo carbonila de cetona conjugada (δ_{c} 175,31) e um grupo metoxila no carbono C-3 (δ_{C} 60,31; δ_{H} 3,91)] e fenila, identificada pelos carbonos C-2 (δ_{C} 153,61), C-3 (δ_{C} 141,65), C-4 (δ_{C} 175,31), C-9 (δ_{c} 146,32), C-10 (δ_{c} 114,71), C-1' (δ_{c} 131,29), C-2'/C-6' (δ_{c} 128,56), C-3'/C-5' (δ_{c} 128,83) e C-4' (δ_{c} 130,79) que revelaram valores muito próximos em 1, 2 e 3 (Tabelas 1, 2 e 3). Assim, foi possível expandir a fórmula molecular de 3 para C₂₀H₁₄O₅, bem como, por tratar-se por de um flavonoide, propor a estrutura parcial 3a. O espectro de RMN ¹H registrou quatro sinais bem definidos na região de hidrogênios aromáticos permitindo definir através da integração, um total 7 de átomos. O sinal dubleto de dubleto (J = 7,0)e 2,2 Hz) em $\delta_{\rm H}$ 8,2 com integração para dois hidrogênios e o sinal múltiplo em $\delta_{\rm H}$ 7,57 – 7,48 com integração para três (5 hidrogênios do grupo fenila monosubstituído), foram correlacionados aos átomos H-2'/H-6' e H-3'/H-5'/H-4', respectivamente. Essas correlações foram comprovadas pelos acoplamentos nos espectros ¹H - ¹H COSY entre os sinais em $\delta_{\rm H}$ 8,2 (H-2'/H-6') e 7,57 – 7,48 (H-3'/H-5'/H-4') e no HSQC entre os sinais em $\delta_{\rm C}$ 128,56 (C-2'/C-6') e $\delta_{\rm H}$ 8,2 (H-2'/H-6'), assim como entre os sinais em δ_c 128,83 (C-3'/C-5') e 130,79 (C-4') e $\delta_{\rm H}$ 7,57 – 7,48 (H-3'/H-5'/H-4'). Em adição, no espectro HMBC foram observadas conectividades dos hidrogênios

Tabela 3. Dados espectrais de RMN ¹H e ¹³C (500 e 125 MHz) de **3** em CDCl₃, J em Hz, δ em ppm

C	HSQC		HMBC		COEV	NOESY
U	$\delta_{\rm C}$	$\delta_{_{\rm H}}$	$^{2}J_{\rm CH}$	$^{3}J_{\rm CH}$	COST	NOES I
2	153,61	-		H-2'/H-6'		
3	141,65	-		MeO-3		
4	175,31	-				
5	147,49	-		MeO-5		
6	119,71			H-1"; H-2"		
7	149,32	-		H-1"; H-2"		
8	130,42	-		MeO-8		
9	146,32	-				
10	114,71	-				
1'	131,29	-	H-2'/H-6'	H-3'/H-5'		
СН						
2'/6'	128,56	8,20 (dd, 7,8 e 2,2)	H-3'/H-5'	H-4'	H-3'/H-5'	H-3'/H-5'
3'/5'	128,83	7,57 - 7,48 (m)	H-2'/H-6'; H-4'		H-2'/H-6'	H-2'/H-6'
4'	130,79	7,57 – 7,48	H-3'/H-5'	H-2'/H-6'		
1"	145,87	7,64 (d, 2,2)	Н-2"		H-2"	Н-2"
2"	105,34	7,04 (d, 2,2)	H-1"		H-1"	H-1"; MeO-5
CH ₃						
MeO-3	60,31	3,91 (s)				
MeO-5	62,67	4,13 (s)				Н-2"
MeO-8	61,83	4,24 (s)				

H-2'/H-6' com os carbonos C-3'/C-5' (δ_c 128,83), C-4' (130,79) e ainda com o carbono C-2 (δ_c 153,61) do anel pirano. Os outros sinais no especro de RMN 1H foram dois dubletos mutualmente acoplados (J = 2,2 Hz) e isolados em δ_{H} 7,64 e 7,04 e que foram atribuídos aos dois hidrogenios de um anel furano α,β -disubstituído (comum em flavonoides do gênero Lonchocarpus).1 Com base nestes dados, a fórmula molecular de **3** foi definida como $C_{20}H_{16}O_6$, consistente com os picos em m/z 352 [M]⁺⁺ e 353,1000 [M + H]⁺/375,0836 [M + Na]⁺ nos espectros de massa em baixa e alta resolução, respectivamente. O anel furano, juntamente com os dois outros grupos metoxila (δ_{C} 62,67 e 61,83; $\delta_{\rm H}$ 4,24 e 4,13), foram, obrigatoriamente, colocados no anel A do sistema flavonoide possibilitando, em princípio, duas estruturas isoméricas: 3,5,6-trimetoxi-[7,8,2"3"]-furanoflavona ou 3,5,8-trimetoxi-[6,7,2" 3"]-furanoflavona. Entretanto, o espectro NOESY exibiu o acoplamento do sinal devido ao hidrogênio furânico H-2" ($\delta_{\rm H}$ 7,04) com o sinal dos hidrogênios de um grupo metoxila ($\delta_{\rm H}$ 4,13; MeO-5) e identificou 3 como sendo o 3,5,8-trimetoxi-[6,7,2"3"]--furanoflavona, ou seja, com o anel furano linear em relação ao anel A (Figura 1). O isômero contendo o anel furano angular ao anel A foi isolado anteriormente¹ a partir desta mesma planta.

Com base nos dados coletados a partir de experimentos⁹ individuais os resultados preliminares mostraram que ambas as substâncias apresentaram bom potencial citotóxico, sendo que a substância **3** exibiu boa toxicidade para todas as linhagens tumorais testadas.

CONCLUSÃO

Lonchocarpus araripensis mostrou tratar-se de uma rica fonte de flavonoides, confirmando investigação anterior e conforme esperado para uma espécie do gênero Lonchocarpus. Na presente investigação foram caracterizados componentes (1 e 3) diferentes daqueles registrados anteriormente e, através de nOe, foi possível determinar a estrutura conformacional preferencial no caso de uma das substâncias (1) isoladas, o que se reveste de importância tendo em vista a existência de correlação entre estrutura conformacional e atividade biológica. Em adição, foi noticiado que as substâncias

Figura 1. Flavanóides 1-3 isolados de L. araripensis

isoladas neste estudo detém boa atividade citotóxica contra algumas linhas de células tumorais humanas.

MATERIAL SUPLEMENTAR

Os espectros de RMN dos flavonoides 1-3 encontram-se

disponíveis na forma de arquivo pdf, com acesso livre, http://químicanova.sbq.org.br.

AGRADECIMENTOS

Os autores agradecem ao CNPq/CAPES/FUNCAP pela ajuda financeira e bolsas de estudo concedidas.

REFERÊNCIAS

 Magalhães, A. F.; Tozzi, A. M. G. A.; Sales, B. H. L. N.; Magalhães, E. G.; *Phytochemistry* **1966**, *42*, 1459; Magalhães, A. F.; Ruiz, A. L. T. G.; Tozzi, A. M. G. A.; Magalhães, E. G.; *Phytochemistry* **1969**, *52*, 1681; Borges-Argaez, R.; Peña-Rodriguez, L. M.; Waterman, P. G.; *Phytochemistry* **2002**, *60*, 533; Alvarez-Solano, D.; Reyes-Chilpa, R.; Jimémez-Estrada, M.; Gómez-Garibay, F.; Chavez-Uribe, I.; Souza-Sánchez, M.; *Phytochemistry* **2000**, *55*, 953; Nascimento, M. C.; Diaz, R. L. V.; Mors, W. B.; *Phytochemistry* **1976**, *15*, 1553; Lawson, M. A.; Kaouadji, M.; Allais, D. P.; Champavier, Y.; Chulia, A. J.; *Tetrahedron Lett.* **2006**, *47*, 451; Lima, A. F.; Mileo, P. G. M.; Andrade-Neto, M.; Braz-Filho, R.; Silveira, E. R.; Pessoa, O. D. L.; *Magn. Reson. Chem.* **2009**, *47*, 165; Lima, A. F.; *Dissertação de Mestrado*, Programa de Pós-Graduação em Química, Universidade Federal do Ceará, DQOI, Fortaleza, 2006.

- 2. Silva, M. J.; Tozzi, A. M. G.; Acta Bot. Bras. 2012, 26, 357.
- Sakihama, Y.; Cohen, M. F.; Grace, S. C.; Yamasaki, H.; *Toxicology* 2002, 177, 67.
- Dornas, W. C.; Oliveira, T. T.; Rodrigues-das-Dores, R. G.; Santos, A. F.; Nagem, T. J.; *Rev. Ciênc. Farm. Básica Apl.* 2007, 28, 241.
- Santos, E. L.; Costa, E. V.; Marques, F. A.; Vaz, N. P.; Maia, H. L. N. S.; *Quim. Nova* **2009**, *32*, 2255.
- Almeida, J. R. G. S.; Barbosa-Filho, J. M.; Cabral, A. G. S.; Agra, M. S.; da-Cunha, E. V. L.; Silva, M. S.; Nascimento, S. C.; Braz-Filho, R.; *J. Braz. Chem. Soc.* 2005, *16*, 1454.
- Dantas, I. N. F.; Gadelha, G. C. M.; Chaves, D. C.; Monte, F. J. Q.; Pessoa, C.; Morais, M. O.; Lotufo, L. V. C.; Z. Naturforsch. 2006, 61c, 352.
- Eliel, E. L.; Wilen, S. H.; Sterochemistry of Organic Compounds, John Wiley & Sons: New York, 1994.
- Pessoa, C. O.; Bonfim, I. S.; Rodrigues, F. A. R.; Cavalcanti, B. C.; Laudo Técnico Nº XX/2013, Laboratório de Oncologia Experimental, Faculdade de Medicina – UFC (dados ainda não publicados): Fortaleza, 2013.

FLAVONOIDES DE *Lonchocarpus araripensis* (Leguminoseae) - ISOLAMENTO, ATRIBUIÇÃO INEQUÍVOCA DOS SINAIS DE RMN ¹H E ¹³C E ANÁLISE CONFORMACIONAL

Almi F. Lima^a, Daniele A. Ferreira^a, Francisco José Q. Monte^{*,a} e Raimundo Braz-Filho^b

^aDepartamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará; 60455-760 Fortaleza – CE, Brasil

^bLaboratório de Ciências Químicas, Centro de Ciências Tecnológicas, Universidade Estadual do Norte Fluminense, 28013-602 Campo dos Goytacazes – RJ, Brasil

Figura 1S. Espectro de RMN ¹H do composto 1

Figura 2S. Espectro de RMN ¹H do composto 1 (expansão)

Figura 3S. Espectro de RMN ¹³C do composto 1

Figura 4S. Espectro de RMN¹³C do composto 1 - DEPT-135°

Figura 5S. Espectro de RMN do composto 1 - COSY

Figura 6S. Espectro de RMN do composto 1- HSQC

Figura 7S. Espectro de RMN do composto 1 – HSQC (expansão)

Figura 8S. Espectro de RMN do composto 1 – HMBC

Figura 9S. Espectro de RMN do composto 1 – HMBC (expansão)

Figura 10S. Espectro de RMN do composto 1 – HMBC (expansão)

Figura 11S. Espectro de RMN do composto 1 – HMBC (expansão)

Figura 12S. Espectro de RMN do composto 1 - NOESY

Figura 13S. Espectro de massas do composto 1

Figura 14S. Espectro de RMN ¹H do composto 2

Figura 15S. Espectro de RMN ¹³C do composto 2

Lima et al.

Figura 16S. Espectro de RMN¹³C do composto 2 – DEPT – 135°

Figura 17S. Espectro de RMN do composto 2 - COSY

Figura 18S. Espectro de RMN do composto 2 – HSQC

Figura 19S. Espectro de RMN do composto 2 – HMBC

Figura 20S. Espectro de RMN do composto 2 - HMBC

Figura 21S. Espectro de massas do composto 2

Figura 22S. Espectro RMN de ¹H do composto 3

Figura 23S. Espectro RMN de 'H do composto 3 (expansão)

Figura 24S. Espectro de RMN ¹³C do composto 3

Figura 25S. Espectro de RMN ¹³C do composto 3 - DEPT-135°

Figura 26S. Espectro de RMN do composto 3 – COSY

Figura 28S. Espectro de RMN do composto 3 – HSQC

Figura 27S. Espectro de RMN do composto 3 – COSY (expansão)

Figura 29S. Espectro de RMN do composto 3 – HSQC (expansão)

Figura 30S. Espectro de RMN do composto 3 – HSQC (expansão)

Figura 32S. Espectro de RMN do composto 3 – HMBC (expansão)

Figura 31S. Espectro de RMN do composto 3 – HMBC

Figura 33S. Espectro de RMN do composto 3 – HMBC (expansão)

Figura 34S. Espectro de RMN do composto 3 – NOESY

Figura 35S. Espectro de massas do composto 3 (EI)

Figura 36S. Espectro de massas do composto 3 [M + H]

Figura 37S. Espectro de massas do composto 3 [M + Na]