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The excitation energy transfer between chlorophylls in major and minor antenna complexes of photosystem II (PSII) was investigated 
using quantum Fourier transforms. These transforms have an important role in the efficiency of quantum algorithms of quantum 
computers. The equation 2n=N was used to make the connection between excitation energy transfers using quantum Fourier transform, 
where n is the number of qubits required for simulation of transfers and N is the number of chlorophylls in the antenna complexes.
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INTRODUCTION

In higher plants, photosystem II-light-harvesting complex 
II (PSII-LHCII) in the thylakoid membranes is a supercomplex 
containing PSII surrounded by the light harvesting complex which 
includes the major LHCII proteins and three minor monomeric LHC 
proteins, CP29, CP26 and CP24.1 The supercomplex collects light 
energy, converts it into electro-chemical energy and drives electron 
transfer from water to plastoquinone. The reaction center (RC) is at 
the center of this complex.2 

The major LHCII proteins are composed of three chlorophyll 
a/b binding proteins including LHCII Type I, II and III, encoded 
by Lhcb1, Lhcb2 and Lhcb3 genes, respectively.3 The X-ray crystal 
structure of the major antenna LHCII proteins in spinach (higher 
plants) at 2.72 A resolution revealed that these proteins form tri-
mers. Each monomer LHCII polypeptide has been identified as 14 
chlorophylls, 2 luteins and one neoxantin. These 14 chlorophylls 
(8 Chla and 6 Chlb) are vertically oriented into two layers lying 
close to the stromal or luminal surface. The eight chlorophylls (5 
Chla and 3 Chlb) are located in the layer close to the stromal sur-
face. The remaining six chlorophylls (3 Chla and 3 Chlb), which 
form two separate clusters including 4 chlorophylls (3 Chlb and 1 
Chla) and a Chla-Chla dimer, are located in the layer close to the 
luminal surface.4

The minor antennae CP29, CP26 and CP24 in green plants lie at 
the interface between the core antenna and the major antenna (LHCII) 
of PSII-LHCII supercomplex.2 These minor complexes, which toge-
ther bind about 15% of total PSII chlorophyll, appear to be involved 
in the dissipation of the chlorophyll excitation energy required to 
stop overexcitation and photoinhibition of PSII.5,6

Since at the level of single atoms and photons, quantum effects 
are significant, classical computation essentially becomes insufficient. 
New methods of computation, for example, quantum computations, 
have become possible. The basic concepts of quantum mechanics 
computation were formulated more than 20 years ago.7,8 The internal 

state of a quantum computer can be changed by a series of unitary 
operations referred to as the quantum algorithm. The quantum Fourier 
transform is an essential subroutine in complicated quantum algori-
thms such as factoring of large numbers,9 and simulating quantum 
systems.10 The quantum Fourier transform has been studied extensive-
ly11 and has also been applied in nuclear magnetic resonance (NMR) 
and in many basic and important algorithms of quantum computers 
such as Shor’s Factoring Algorithm.12 

Physicists believe that all aspects of the world around us can 
ultimately be explained using quantum mechanics.13 In this concept, 
a light harvesting antenna is a quantum mechanical particle system 
composed of a large number of atoms. The aim of the present paper 
was to simulate the excitation transition that arises from photon 
absorption in each of light harvesting complexes of major (LHCII) 
and minor antennae (CP29, CP29 and CP24) of PSII with quantum 
computers. In this study, the relationship between quantum computers 
and the above-mentioned light harvesting complexes is established 
with quantum Fourier transforms (QFT) for the first time. After 
studying energy transfer in each of the light harvesting complexes 
with QFT, calculator quantum circuits of these transforms, which in 
fact are representative of existing quantum computers, in both major 
and minor antenna complexes are drawn. These circuits simulate a 
quantum computer by making use of Hadamard, rotation and swap 
gates with regard to the number of qubits required for QFT.

GENERAL CONSIDERATIONS

The quantum Fourier transform

In mathematics and computer science, the transformation of a 
problem into some other with a known solution is a highly efficiently 
way of solving this problem. One such transformation is the discrete 
Fourier transform which can be computed much faster on a quantum 
computer than on a conventional computer. In the usual mathematical 
notation, for the discrete classical Fourier transform of N inputs of 
complex numbers, xj (j = 0, 1, 2, … , N-1), outputs yk (k = 0, 1, 2, 
…, N-1) can be defined as:
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	  	 (1)

Correspondingly, the discrete quantum Fourier transform on an 
arthonormal basis |0〉, … , |N – 1〉 is a unitary transformation which 
is defined by

	 	 (2)

It suffices to take N = 2n, with n as an integer, and the basis 
|0〉, … ,|2n – 1〉 is the computational basis for an n-qubit quantum 
computer. It is preferable to write the state | j 〉 using the binary re-
presentation j = j1 j2…jn. More formally

	 j = j12
n-1 + j22

n-2 + … + jn2
0	 (3)

For simplicity, the quantum Fourier transform can be rewritten 
as the following useful product representation:

	 	 (4)

where 
	 	 (5)

and jl (l = 1, 2, …, n) is equal to 0 or 1.
As explained later this representation allows construction of an 

efficient quantum circuit for the Fourier transform.14

Quantum gates

The internal state of the quantum computer is changed by quantum 
gates. A quantum gate is a sequence of unitary operations, the so-called 
quantum algorithm. In the first step, we introduce the Hadamard, ro-
tational and swap gates which are useful in quantum algorithms. The 
Fourier transformations can be performed very efficiently by these gates.

The Hadamard gate which sets one qubit in superposition is a 
single-qubit gate defined by:

	
	  	 (6)

A symbolic representation of the Hadamard gate is given in 
Figure 1a.

The Rk gate denotes the single-qubit phase-shift operation by a 
phase 2π/2k on qubit k.

	 	 (7)

A symbolic representation of Rk is given in Figure 1b. This gate 
is depends on whether qubit k is 0 or 1.

The swap gate interchanges two qubit and a graphical represen-
tation of this gate is shown in Figure 1c.

Efficient circuits for the quantum Fourier transform

To construct the quantum circuit that performs QFT on an n-
-qubit quantum compute,r a specific sequence of the H and Rk gates 
is applied. The efficient circuit for the quantum Fourier transform is 
shown in Figure 2. The blocks labeled H perform a Hadamard trans-
form, and the other blocks perform a controlled phase shift by the 
angle indicated. The series of swap gates that interchange the output 
qubits is not shown in the circuit. Consider what happens when the 
state | j1 … jn 〉 is input. The Hadamard gate which sets the first qubit 
in superposition is applied in the first step. 

	  	 (8)

where e2pi0.j1 = +1 when j1 = 0, and is –1 otherwise. In the se-
cond step, a unitary controlled-R2 gate is applied and produces t 
he state

	  	 (9)

We carry on applying the controlled-R3, R4 through Rn gates, each 
of which adds an extra qubit to the phase of co-efficient of the first 
| 1〉. Finally, this gives the state:

	  	 (10)

Next, a similar procedure is carried out on the second qubit. The 
Hadamard gate is applied to the second qubit:

	  	 (11)

and the controlled-R2 through Rn-1 gates yield the state:

	  	 (12)

Continuing in this manner for each qubit gives the final state:

	 (13)

The relationship between quantum computers and light 
harvesting complexes of PSII

Excitation transition resulting from photon absorption in each 
of light harvesting complexes of major (LHCII) and minor antennas 
(CP29, CP29 and CP24) of PSII, could be simulated with quantum 
computers. The relationship between quantum computers and the 
light harvesting complexes is established with QFT. 

Figure 1. Graphical representation of some of the basic gates used in quantum 
computation; (a) Hadamard gate; (b) rotational (Rk) gate; (c) swap gate

Figure 2. Efficient circuit for the quantum Fourier transform. This circuit is 
easily derived from the product representation (4) for the quantum Fourier 
transform. Not shown are swap gates at the end of the circuit which reverse 
the order of the qubits in the output
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The relationship between electron excitation transfer in a 
LHCIImonomer and QFT

LHCII is a major antenna and has an important role in effective 
absorption of light energy. The configuration and number of chloro-
phyll are different in both luminal and stromal near-to-surface layers 
of membrane. Since the number of chlorophylls is an important 
parameter in determination of qubits in QFT, simulation of excita-
tion transfer between chlorophylls in these two surfaces is studied 
individually with QFT.

In order to determine the relationship between the number 
ofchlorophylls with QFT, the 2n = N equation is used. In this equa-
tion, n represents the number of required qubits for simulation of 
transfers with QFT and N represents the number of chlorophylls 
and also indicates the number of states or the number of the com-
putational basic set.

The total number of chlorophylls in the monomer luminal surface 
is six molecules. These chlorophylls are configured in two individual 
clusters with 2 and 4 molecules of chlorophylls, respectivelly. Since 
the number of chlorophylls is different in this surface, these two 
clusters are simulated with QFT individually.

The relationship between binary cluster of luminal surface of 
LHCII monomer and QFT

In the binary cluster of the luminal surface, by substituting the 
number of chlorophylls (N = 2) using the equation 2n = N we obtain 
the number of qubits (n) which is equal to 1. The transfer energy be-
tween chlorophylls of the binary cluster of LHCII monomer luminal 
surface can then be simulated with a single-qubit Fourier transform. In 
order to achieve this, the equations outlined in the section above are 
rewritten and executive quantum circuits of these transforms drawn.

Rewriting equations for single-qubit Fourier transform

For single-qubit Fourier transform, basic set includes two mem-
bers {|0>, |1>}, thus the state used is |j> = |j1>, which by substituting 
in Equation 2 gives Equation 14:

	  	 (14)

j1/2 = 0.j1, is replaced and Equation 14 becomes Equation 15:

	  	 (15)

Equation 15 is now executing a single-qubit Fourier transform.

Drawing executive quantum circuits of single-qubit Fourier 
transform

The executive circuit diagram of the single-qubit Fourier trans-
form is shown in Figure 3. A two-member basis set (| 0〉 and | 1〉) is 

the input and  is the output. This circuit has only
 

one Hadamard gate. Table 1 shows the output of single-qubit Fourier 
transform for the states | 0〉 and | 1〉.

Matrix representation of single-qubit Fourier transforms

Fourier transforms can be shown in matrix notation. The number 
of columns and rows of the matrix is given by 2n, where n represents 
number of qubits. Representing the operator of Fourier transform as 
F, the 2×2 matrix elements F can be rewritten as follows:

	  	 (16)

Therefore, the single-qubit Fourier transform matrix F can be 
written as:

	  	 (17)

where w = eip.

The relationship between quartet cluster of luminal surface of 
LHCII monomer and QFT

In this cluster, by substituting the number of chlorophylls (N = 4) 
in the equation 2n = N, we then obtain the number of qubits (n) which 
is equal to 2. Energy transfer between chlorophylls of the quartet 
cluster of the LHCII monomer luminal surface can be simulated with 
a two-qubit Fourier transform. In order to achieve this, the equations 
outlined in the section above are rewritten and executive quantum 
circuits of these transforms then drawn.

Rewriting equations for two-qubit transform

For two-qubit Fourier transform, the basic set includes four mem-
bers {| 00〉, | 01〉, | 10〉, | 11〉}, where state used is | j 〉 = | j1 j2〉 which by 
substituting in Equation 3, gives j = 2j1+j2. Table 2 shows all states | j 〉. 
The state | j 〉 in terms of qubits | 0〉 and | 1〉 can thus be expressed as:

	 	 (18)

Substituting Equation 3 into Equation 18 and comparing the 
results with Equation 5 gives the state vector of the system in the 
form of Equation 19:

	  	  (19)

Equation 19 is executing two-qubit Fourier transform.

Figure 3. General representation of executive circuit of single-qubit Fourier 
transform. Value 0.j1 could be shown in form of j1/2

Table 1. Representations of single-qubit Fourier transform

| j1〉 Output of first qubit

| 0 〉

| 1 〉

Table 2. States of j for quartet cluster of lumenial surface of LHCII monomer

j1 j2 j = 2j1 + j2 | j 〉 = |j1 j2〉     

0 0 0 | 0 〉 = | 00 〉

0 1 1 | 1 〉 = | 01 〉

1 0 2 | 2 〉 = | 10 〉

1 1 3 | 3 〉 = | 11 〉
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Drawing executive quantum circuits of two-qubit Fourier 
transform

The circuit that represents two-qubit Fourier transform is shown 
in Figure 4.

To construct the quantum circuit that performs two-qubit QFT, a 
specific sequence of the Hadamard and R2 rotation gates is applied. 
The input state is the computational base state | j1 j2〉. For the first 
sequence the Hadamard and R2 rotation gates are applied on the 
first qubit. For the second sequence, the Hadamard gate is applied 
on the second qubit. Applying the Hadamard gate to the first qubit 
produces the state:

	  	 (20)

Applying the R2 rotation gate produces the state: 

	 	 (21)

Applying the Hadamard gate to the second qubit produces the 
state:

	  	 (22)

Comparing the Fourier transform output represented by Equation 
19 with circuit output Equation 22, we see that the position of qubits 
in these equations is inverted. The swap operation omitted from Figure 
4 is then used to reverse the order of the qubits.

Table 3 shows the output of two-qubit Fourier transform for the 
four states | 00〉, | 01〉, | 10〉 and | 11〉.

Matrix representation of two-qubit Fourier transform

The two-qubit Fourier transform operator F can be written as a 
4×4 matrix which has the following form:

	 	 (23)

The matrix elements may be written out explicitly, using powers 
of ω as shown in Equation 24:

	 	 (24)

where wn = e2npi/4.

Investigation of excitation energy transfer between 
chlorophylls of stromal surface of a LHCII monomer using 
QFT

The total number of chlorophylls in the stromal surface of the 
LHCII monomer is equal to eight molecules, which are configured 
in an octet cluster. Substitution of N = 8 in the equation 2n = N gives 
a value of n of 3. Thus transfer energy among chlorophylls of octet 
cluster of the LHCII monomer stromal surface can be simulated with 
a three-qubit Fourier transform. In order to achieve this, the equations 
outlined in the section above are rewritten and executive quantum 
circuits of this transform then drawn.

Rewriting equations for three-qubit transform for three-qubit 
Fourier transform

The basic set includes eight members {| 000〉, | 001〉, | 010〉, | 011〉, 
| 100〉, | 101〉, | 110〉, | 111〉} thus state used is | j 〉 = | j1 j2 j3〉 which by 
substituting in Equation 3, gives j  = 4j1  + 2j2  + j3〉. Table 4 shows 
the all states | j 〉. The state | j 〉 in terms of qubits | 0〉 and | 1〉 can be 
expressed as:

	 	 (25)

Substituting Equation 3 into Equation 25 and comparing the 
results with Equation 5 gives the state vector of the system as shown 
in Equation 26:

	 	 (26)

Figure 4. General representation of an executive circuit of two-qubit Fourier 
transform. Values 0.j2 and 0.j1j2 could be shown in form of (j2/2) and (j1/2+j2/4), 
respectively

Table 3. Representations of two-qubit Fourier transform

| j 〉 |j1 j2〉 Output of first qubit Output of second qubit

| 0 〉 | 00 〉

| 1 〉 | 01 〉

| 2 〉 | 10 〉

| 3 〉 | 11 〉

Table 4. States of j for octet cluster of steromal surface of monomer LHCII

j1 j2 j3 j = 4j1 + 2j2 + j3 | j 〉 = |j1 j2 j3〉
0 0 0 0 | 0 〉 = | 000 〉
0 0 1 1 | 1 〉 = | 001 〉
0 1 0 2 | 2 〉 = | 010 〉
0 1 1 3 | 3 〉 = | 011 〉
1 0 0 4 | 4 〉 = | 100 〉
1 0 1 5 | 5 〉 = | 101 〉
1 1 0 6 | 6 〉 = | 110 〉
1 1 1 7 | 7 〉 = | 111 〉
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Equation 26 is executing three-qubit Fourier transform.

Drawing executive quantum circuits of three- qubit Fourier 
transform

The circuit that represents three-qubit Fourier transform is shown 
in Figure 5.

To construct the quantum circuit that performs three-qubit QFT, 
a specific sequence of the Hadamard and R2 rotation gates is applied. 
The input state is the computational base state | j1 j2 j3〉. For the first 
sequence, the Hadamard, R2 and R3 rotation gates are applied on the 
first qubit. For the second sequence, the Hadamard and R2 rotation 
gates are applied on the second qubit. For the third sequence, the 
Hadamard gate is applied on the third qubit. Applying the Hadamard 
gate to the first qubit produces the state:

	 	 (27)

Applying the R2 and R3 rotation gates produce the state:

	  	 (28)

Applying the Hadamard gate and then R2 rotation gate to the 
second qubit produce the state:

	 	 (29)

Applying the Hadamard gate to the third qubit produces:

	 	 (30)

Comparing Fourier transform represented as output Equation 26 
with circuit output Equation 30 shows that the position of qubits in 
these equations is inverted. One swap gate omitted from Figure 5 is 
then used to reverse the order of the qubits. 

Table 5 shows the output of three-qubit Fourier transform for the 
eight states | 000〉, | 001〉, | 010〉, | 100〉, | 011〉, | 101〉, | 110〉, and | 111〉.

Matrix representation of three-qubit Fourier transform

The three-qubit Fourier transform operator F can be written as 
an 8×8 matrix which has the following form:

	 	 (31)

The matrix elements may be written out explicitly, using powers 
of ω as shown in Equation 32:

Figure 5. General representation of an executive circuit of three-qubit Fou-
rier transform. Values 0.j3, 0.j2j3 and 0.j1j2j3 could be shown in form of (j3/2), 
(j2/2+j3/4) and (j1/2+j2/2+j3/8), respectively

Table 5. Representations of three-qubit Fourier transform

| j 〉 |j1 j2 j3〉 Output of first qubit Output of second qubit Output of third qubit

| 0 〉 | 000 〉

| 1 〉 | 001 〉

| 2 〉 | 010 〉

| 3 〉 | 011 〉

| 4 〉 | 100 〉

| 5 〉 | 101 〉

| 6 〉 | 110 〉

| 7 〉 | 111 〉
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Table 6. Representation of relationship among the number of qubits and chlorophylls with number of gates in the major and minor complexes of PSII

Minor antenna Major antenna

CP24 CP26 CP29
LHCII

Steromal surface Lumenial surface

10 9 8 8 4 2 The number of  Chl (N)

3 3 3 3 2 1 The number of qubit (n)

3 3 3 3 2 1 The number of H gates

2 2 2 2 1 0 The number of R2  gates

1 1 1 1 0 0 The number of R3 gates

1 1 1 1 1 0 The number of swap gates

	 	 (32)

which wn = e2npi/8.

The relationship between electron excitation transfer in minor 
antenna monomers CP24, CP26, CP29 with QFT

Minor antenna of Photosystem II consists of 3 monomers 
CP29, CP26 and CP24 whose number of chlorophylls is 8, 9 and 
10 molecules, respectively. Substitution of N = 8, 9, and 10 in the 
equation 2n = N gives n values of 3, 3.17, and 3.32, respectively. For 
good approximation, excitation transfer among chlorophylls can 
be simulated in each of the monomers CP24, CP26 and CP29 with 
a three-qubit Fourier transform. Likewise, the executive quantum 
circuits and matrix representation could be applied for simulation of 
electron excitation transfer in minor antenna monomers CP24, CP26, 
CP29 using three-qubit Fourier transform (Table 6).

CONCLUSIONS

Quantum computers exist in nature. Photosynthesis is one exam-
ple in which a quantum computer component may play a role in the 
classical world of complex biological systems. Biological systems 
represent an untapped resource for thinking about the design and ope-
ration of quantum computers and expanding our current conception 
of what defines a ‘quantum computer’ in nature.

In this report excitation energy transfer among chlorophylls of 
light-harvesting major complexes (LHCII) and light-harvesting minor 
complexes (CP24, CP26 and CP29) of Photosystem II was studied 
for the first time using quantum computers. The results have shown 
that excitation energy transfer among chlorophylls of these antenna 
systems can be simulated with quantum Fourier transform.

In order to establish a relationship between excitation energy 
transfer resulting from photon absorption by chlorophyll molecules of 

minor and major antenna with quantum Fourier transforms, equation 
2n = N has been used. In this equation, n represents the number of 
required qubits for the simulation with QFT and N shows the number 
of states created with n-qubit Fourier transform which is equal to the 
number of chlorophylls in the studied antenna system.

Since the number of chlorophylls is a major factor for the de-
termination of the number of required qubits in the simulation with 
QFT, transfer in each complex was studied individually.

The electron excitation transfer in binary and quartet clusters 
of the luminal surface of the LHCII monomer was simulated using 
single and two-qubit Fourier transforms, respectively. The three-qubit 
Fourier transform was applied to simulate the electron excitation 
transfer in the octet cluster of the luminal surface of the LHCII 
monomer and CP26, CP24, and CP29 monomers. Table 6 provides 
a brief summary of our results. Simulator quantum circuits of these 
transforms in each part have been drawn using Hadamard, Rn rotation 
and swap quantum gates.
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