Acessibilidade / Reportar erro

ELECTRICAL NOISES REDUCTION IN NANOPORES EXPERIMENTS BASED ON CONSENSUS FILTER

Nanopore has developed into an indispensable tool for single molecules experiments, where useful information about the characteristics of DNA/RNA can be obtained from the flowing of ionic current elicited by individual molecules as they traverse a single nanometer-scale aperture. However, due to the relatively high background current noise and low measurement bandwidth, it is difficult to distinguish the molecule-specific signals from the intrinsic noises of the nanopore recording systems, which impeded its application in DNA sequencing. In this paper, we present a novel consensus filter-based noise reduction approach, which considerably improves the accuracy of the noise-filtered current traces and the signal-to-noise ratios (SNRs). The new approach is compared to the conventional Bessel filters and validated by analyzing simulated representative translocation data as well as alpha-Hemolysin (α-HL) nanopore experimental data. It is demonstrated that the high frequency noise generated by the voltage noise of the amplifier and Analog-to-Digital converter circuits (ADC) can be significantly reduced and some hidden short-lived translocation events can be recovered with satisfying accuracy beyond the conventional limitations of the Bessel filters.

Keywords:
nanopores; consensus filter; DNA sequencing; bessel filter


Sociedade Brasileira de Química Secretaria Executiva, Av. Prof. Lineu Prestes, 748 - bloco 3 - Superior, 05508-000 São Paulo SP - Brazil, C.P. 26.037 - 05599-970, Tel.: +55 11 3032.2299, Fax: +55 11 3814.3602 - São Paulo - SP - Brazil
E-mail: quimicanova@sbq.org.br