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	 ABSTRACT

Purpose: This research aims to analyse price movements in the oil 
market stimulated by extreme events such as oil platform explosions, 
geopolitical events, and financial crises and to understand the reaction 
and the persistence of these effects on the commodity’s price.
Originality/value: The prominent position of oil raises the concerns  
of investors, producers, and policymakers because of the unstable 
behaviour of its price level and pattern of volatility. This justifies the 
need to investigate the dynamics of this behaviour for the purposes of 
economic policy formation, strategies around trade and costs, and 
revenue calculations for companies of this sector, as well as investment 
decisions for other sources of energy.
Design/methodology/approach: In order to model the occurrence of 
volatility jumps caused by extreme events, four specifications were used 
for the ARJI-GARCH conditional jumping methodology developed by 
Chan and Maheu (2002). The data consist of 2008 daily records of the 
closing price of light oil (WTI) from January 2010 to December 2017 
obtained from NYMEX.
Findings: Among several results it was verified that the occurrence of 
extreme events causes significant changes in the oil price, which goes 
against the efficient market hypothesis, and that a time-varying 
conditional jump process can be specified, but it has little sensibility to 
past shocks and very short-term persistence.

	 KEYWORDS

Crude oil. Volatility. Extreme events. ARJI-GARCH models. Conditional 
jumps.
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	 1.	 INTRODUCTION

Oil is the world’s most important source of energy, and this prominent 
position raises concerns for investors, producers, and policymakers due to 
its unstable price behaviour and volatility pattern. Those issues justify the 
need to investigate its effects on economic policymaking, trading strategies, 
and impact on profitability performance for companies that rely on oil as an 
input and investment decisions in other energy sources.

Crude oil prices and price volatility3 have been on a run-up spree since 
the late 1990s, changing their behaviour according to the world’s political 
and economic turmoil. According to Hamilton (2008), price increases raise 
concerns of both theoretical and practical consequence. With regard to 
theory, the availability of high-frequency financial data related to the oil 
market has shown that there is evidence of statistically significant correlations 
between a variable and a lagged version of itself over various time intervals 
and the possibility of conditional heteroscedasticity, that is, time-varying 
volatility. Empirical analysis has shown that price fluctuations cause 
macroeconomic instability in both exporting and commodity-dependent 
countries, and they introduce uncertainty and risk to the financial market. 
Thus, governments and investors alike are interested in how to predict oil 
price volatility trends to support the best policy and investment decisions.

According to Laurini, Mauad, and Aiube (2016), and Oliveira and Pereira 
(2017), this behavioural characteristic has produced some stylized facts 
about the statistical proprieties of commodity prices, which are similar to 
most financial data (Enders, 2008), such as near-zero average return and 
slightly asymmetric distribution, volatility clusters, and high kurtosis value, 
which makes it possible to identify extreme events4 and time-varying 
volatility, influencing the proper modelling of the return distribution.

Regardless of the facts that cause oil prices to fluctuate, the analysis, the 
understanding of the reaction, and the persistence of these effects on the 
commodity price are relevant for the most varied economic agents. In this 
context, the literature highlights that the technique commonly used to 
specify oil price volatility consists of the GARCH specification of conditional 

3	  For the purpose of this paper, we use the definition of volatility proposed by Bollerslev (1986): 
2 2 2

1 1;t t tσ ω αε βσ− −= + +  0,  0,  1, α β α β> > + < where α and β are referred to as ARCH and GARCH 
parameters, respectively.

4	 Low-frequency events with high magnitude that are concentrated in the tails of the distribution 
function that fits the data series under analysis (Rocco, 2014).



4

Max C. Resende, Evandro C. Pedro

ISSN 1678-6971 (electronic version) • RAM, São Paulo, 21(2), eRAMF200086, 2020
doi:10.1590/1678-6971/eRAMF200086

heteroscedasticity (Larsson & Nossman, 2011; Laurini et al., 2016). Despite 
being a useful technique, as stated by Ely (2013), when working with 
discrete time intervals, GARCH models are designed to capture smooth 
persistent changes in volatility and are not suited to explaining the large 
discrete changes found in asset returns. 

To model the occurrence of jumps and volatility persistence of oil prices 
over time, a vast literature, consisting of theoretical as well as empirical 
papers, has been developed to analyse both phenomena. Among these 
studies, Chiou and Lee (2009), Gronwald (2012), Ozdemir, Gokmenoglu, 
and Ekinci (2013), Laurini et al. (2016), and Oliveira and Pereira (2017) 
mainly agree that conditional jump models are a very useful framework to 
capture price variations due to extreme events, and that a considerable part 
of its variance can be attributed to these shocks, which makes these authors 
emphasize that extreme price movements lead to heavy-tailed distributions 
on the returns and that such movements should be taken into account when 
dealing with this market. However, these researchers point out that, because 
oil market volatility has shown an impressive increase in recent years, price 
variation that can be explained by jumps has become less frequent.

Due to the relevance of the commodity in different economic scenarios, 
this paper studies the dynamics of WTI (West Texas Intermediate) oil market 
returns, from January 2010 to December 2017, in order to get a better under-
standing of extreme and sudden movements on the oil price caused by finan-
cial and geopolitical crises, environmental disasters, or production issues. 

To perform the inference procedure, four extensions of Chan and 
Maheu’s (2002) auto-regressive jump-intensity ARJI-GARCH methodology 
were applied, which explore the importance of time variation in the jump 
intensity and frequency. This theoretical framework and its bivariate 
extensions have been used in recent research to model stock returns (Maheu 
& McCurdy, 2004; Laurini et al., 2016), exchange rates (Chan, 2004; Ely, 
2013), and copper prices (Chan & Young, 2006). Based on this method, this 
research seeks to answer the following questions: 

•	 How intense are the conditional jumps in the series of oil returns over 
the analysed period? 

•	 Are the jumps persistent, or do they behave like white noise? 
•	 What is the average effect of the jumps on the variation of oil return 

rates? 

By answering these questions, this article provides evidence on how the 
arrival of new events influences the dynamics of the oil market.
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Thus, this study provides evidence of GARCH effects and conditional 
jumps in daily oil price returns, which means that its variations have heavy-
tailed distribution and volatility clustering. Along with these results, 
volatility persistence has a short-term pattern, and as a result, prices do not 
accommodate a long-term trend, which has considerable effects on 
forecasting, volatility, risk management, and derivative pricing analysis.

The remainder of this paper is organized as follows: section 2 shows 
previous literature dealing with the dynamics of crude oil price, section 3 
outlines the conditional jump process developed by Chan and Maheu (2002), 
section 4 provides a descriptive analysis of the data and highlights the major 
events in the oil sector for the period under study, section 5 presents the 
empirical results, and final remarks are presented in section 6. 

	 2.	LITERATURE REVIEW

According to Hamilton (2008) and Gronwald (2009), three different 
approaches are frequently used to explain oil spot price behaviour and/or 
global demand and supply, either for the short term or for the long term. 
The first view attempts to explain the oil price using statistical investigation 
of the basic correlations in the historical data, which shows that changes in 
the commodity’s real price historically have tended to be permanent, diffi-
cult to predict, and governed by very different regimes at different points in 
time. The second approach deals with the insights of economic theory and 
the long-term oil price path, where the seminal model developed for this 
purpose was developed by Hotelling (1931), who stated that the price of oil, 
as a non-renewable energy source, should grow at the same rate as US Fed 
funds and, whenever possible, be priced higher than the marginal cost of 
production. Another important strand of literature arises from storage arbi-
trage, financial futures contracts, and the fact that oil is a resource that can 
be depleted, which connects today’s spot price to the value that market 
participants expect the price to be in the future.

While the first two approaches focus on statistical inference of com-
modity prices, the third approach deals with general microeconomic charac-
teristics by analysing the relationship between the determinants of supply 
and demand in this market. In terms of demand determinants, the price 
elasticity of demand for oil is low and has declined over the last 20 years, 
while income elasticity is close to 1 in late-developing countries (e.g. Brazil 
and Russia) and substantially lower than 1 in countries such as the United 
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States and England, even though interventions by Organization of Petroleum 
Exporting Countries (Opec) lead to misinterpretation of the supply side, 
which generates volatility clustering in oil returns. 

The debate over oil price behaviour has caught the attention of managers, 
statisticians, and economists, among others, who have done a lot of work to 
understand the dynamics and volatility of hydrocarbon prices (Sadorsky, 
1999; Pindyck, 2001; Askari & Krichene, 2008; Gronwald, 2012), based on 
highly varied technical procedures. The real evidence that oil prices are 
highly volatile and undergo sudden drastic changes, such as during times of 
war (the Gulf War of 1991 and the Iraq invasion of 2003), political crises 
(the Arab Spring), and financial crises, such as those in the late 1990s (Asian 
Tigers and Russia) and, more recently, the financial crisis that erupted in 
2008, are some of the reasons for using mathematical tools to better analyse 
the oil market.

Over the years, a number of statistical regularities have been identified 
in the daily returns of financial series, the main ones being these: asset returns 
are assumed to be a martingale difference sequence; returns have small 
autocorrelation but not large enough to generate arbitrage operations; the 
time series of financial asset returns often demonstrates volatility clustering, 
i.e. large changes tend to be followed by large changes, of either sign; and 
the presence of time-varying conditional variance and leptokurtic uncondi-
tional distributions.

Furthermore, oil prices have attracted considerable attention from 
financial econometrics. The general concept that has been proven to work 
better over high-frequent time series in financial markets is generalized 
autoregressive conditional heteroscedastic models (GARCH), which 
provides a good first approximation of these stylized facts. This type of 
model is designed to capture smooth persistent changes in volatility, 
although it is not suited to explaining the large discrete changes found in 
asset returns (Ely, 2013).

Therefore, several studies have analysed the importance of abrupt 
changes in return series (Sadorsky, 1999; Lobo, 1999; Kim & Mei, 2001; 
Larsson & Nossman, 2011), while the base model for the jumping process 
analysis was initially proposed by Press (1967), where the behaviour of the 
jumps was governed by a Poisson5 distribution. Specifically for the oil case, 
Andersen, Bollerslev, and Diebold (2007), Chiou and Lee (2009), and 

5	 Probabilistic distribution, commonly used to model the frequency of occurrences of an event over a 
period of time or space.
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Gronwald (2012) concluded that such models generate satisfactory statistics 
and confirm the behaviour interpretation of daily oil returns.

In addition, Chan and Maheu (2002) admitted that jumps can be used 
to model random events and thus have the ability to capture smooth or 
abrupt changes in price series volatility, and their intensity may vary over 
time, according to an autoregressive-moving-average model (ARMA). This 
parameterization of auto-regressive jump-intensity (ARJI) provides a 
channel for the probability that future jump is a function of historical jump 
dynamics. This specification has several implications: 

•	 Since jump intensity follows an ARMA functional form, which is 
governed by a serial correlated Poisson distribution, it is capable of 
capturing various forms of autocorrelation. 

•	 The model is easy to estimate, and both the maximum likelihood 
technique and asymptotic inference can be used. 

•	 We obtain a product derived from the estimation, the filter, which 
provides ex post inferences of high dynamics. 

•	 No simulation method is required for model estimation.

In order to analyse the dynamic behaviour of oil prices, Gronwald (2012) 
applied the ARJI-GARCH model to the series of daily oil returns from March 
1983 to November 2008. The econometric analysis demonstrated that there 
is strong evidence of GARCH behaviour and that there is evidence of condi-
tional jump in daily changes in oil prices. Gronwald (2012) concluded that 
conditional heteroscedasticity is present, while the empirical distribution of 
oil price changes has fat tails. Therefore, the frequency of observations far 
from the distribution average is much higher than the normal distribution. 
The price of the commodity is very sensitive to the occurrence of new events 
and, consequently, does not accommodate a long-term trend. Corroborating 
these results, Horan, Peterson, and Mahar (2004) found that implied volatility 
increases with the approaching meetings of Opec, followed by another drop 
(4%) after the first day of the meeting.

Regarding the national literature, Laurini et al. (2016) estimated a mul-
tivariate jumping model with the objective of investigating its presence in 
the average and conditional variance in WTI and Brent oil price returns and 
stocks of certain oil companies: Petrobras, Exxon, Chevron, and British 
Petroleum (BP). The methodology developed by the authors combines the 
original proposal of Qu and Perron (2013) about the random structure of 
jumps in the volatility level and the probability of common sudden events 
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presented in Laurini and Mauad (2015), which performs a decomposition of 
the conditional variance of each asset as the sum of the common factor plus 
a specific transient factor in a multivariate stochastic volatility structure.

Among the various conclusions, there is a correlation between the 
treated financial series and the fact that both types of oil, as well as returns 
for Chevron and Exxon, demonstrate relatively low volatility persistence 
parameters when compared to Petrobras and BP. This means that their 
reversal to the average volatility level is faster, indicating a more autonomous 
volatility dynamic for Petrobras and BP related to oil price shocks.

In addition, Oliveira and Pereira (2017) investigated oil price shocks 
and the persistence of volatility in the traditional GARCH model, the 
Markov-Switching GARCH model (MS-GARCH), and the unconditional 
variance model with regime change model (MSIH). The results suggest that 
oil returns expose characteristics common to financial returns, and the 
MSIH model presents better results in terms of predictive performance in 
periods of low volatility. However, in times of high volatility, the GARCH 
and MS-GARCH models produce better results performance. Finally, 
Oliveira and Pereira pointed out that traditional financial series models have 
limited adherence to data due to structural breakdowns, and describe 
volatility with greater persistence; however, in the MS-GARCH model, 
volatility reduces its level faster rather than mitigating the shock over a 
longer period.

Moreover, oil price fluctuations and changes in volatility depend on 
supply and demand levels, economic cycles, the level of speculation, political 
activities, such as wars, and economic and financial crises. From this 
perspective, Morales and Andreosso-O’Callaghan (2017) investigated the 
behaviour of daily hydrocarbon prices during the Asian financial crisis of 
1997 and the global one in 2008 using econometric models of asymmetry in 
volatility and structural breakdown tests. The authors concluded that during 
the global financial crisis, the persistence of volatility had a greater impact 
on the oil markets than during the Asian crisis, suggesting that not only the 
triggers of the crises, but also their geographical location, play important 
roles in analysing the behaviour situation of oil markets.

On the other hand, Bagchi (2017) investigated the effects on oil volatility 
for the post-2008 financial crisis period in the Brics countries (Brazil, Russia, 
India, China, and South Africa), based on weekly closing prices from 2009 
to 2016. The results corroborated the literature, confirming that high vola-
tility increases the level of uncertainty in the sector, generating significant 
externalities in the economy and financial markets of these countries, as 
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well as confirming the existence of asymmetries between good and bad news 
in the market. This essentially means that negative shocks create greater 
volatility in oil markets than positive shocks.

Therefore, the literature has presented how the arrival of unexpected 
news and sudden price movements influence the dynamics of the oil market 
through the treatment of discrete jumps and the need to understand volatility 
during these events. Despite the marked relevance of oil to the Brazilian 
economy, the national literature still lacks studies on the topic. Under
standing the causes of a shock will be beneficial for investors, policymakers, 
and producers.

	 3.	CONDITIONAL JUMP DYNAMICS FRAMEWORK

The central idea that guides the conditional jump dynamic models is to 
add a component to a series that allows one to model the occurrence of 
sudden shifts of high magnitude and low probability (extreme events). These 
severe fluctuations depend on how unexpected the new information is, 
political changes, technological shocks, etc. In order to understand the 
occurrence of these jumps, Chan and Maheu (2002) developed a dynamic 
conditional jump model applied to stock returns coupled with a GARCH 
(p,q) parametrization of volatility, due to the presence of conditional 
heteroscedasticity on financial series.

Relating the information set at time t to the history of observations, Φt, 
the conditional jump model for any given financial time series can be defined 
as follows: 

	
1

1 ,1 1
,tn

t t t t t ki ii
R R h z Yµ φ −= =

= + + +∑ ∑ 	 (1)

	
2

11 1

q p

t t i t ii ii
h hω α ε β− −= =
= + +∑ ∑ ,	 (2)

in which ( )~ 0.1tz NID  is a white noise process; ( )2
, ~ , t kY N θ δ  is the 

conditional jump size given the history of past returns (Φt–1), which is 
assumed to be normally distributed with mean θ  and variance 2 ;δ  µ  is the 
conditional mean; and ht is the conditional variance (volatility) that follows 
a GARCH (p, q) process, in which 

1

11
.t t i ti

R Rε µ φ −=
= − +∑  This specification 

of ε t  contains the expected jump component and thus allows it to affect 
volatility through the GARCH ( )th  variance factor. 
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Let tn  denote the number of jumps that occur between t – 1 e  t and be 
distributed according to a Poisson process:

	
( ) ( )

1

exp
| ,  0,1,2, ,

!

j
t t

t tP n j j
j

λ λ
−

−
= Φ = = … 	 (3)

in which λt  describes both the mean and the variance of the process, being 
interpreted as the jump intensity. For the model under study, called ARJI  
(r, s), λ  is assumed to follow an autoregressive-moving-average model, 
ARMA (1,1), denoted by:

	 λ γ ρ λ γ ξ− −= + +0 1 1 2 1t t t .	 (4) 

Consider that 1|t t tE nλ −≡ Φ   represents the expectation of the number 
of jumps occurring in a given period t conditional to a set of past information 
Φt–1, which is related to r lags of jump intensity plus the lags of the jump-
intensity residual .tξ  Moreover, to ensure that λt  always has a positive 
value, a series of sufficient conditions needs to be established: γ γ γ> ≥0 1 20,   , 
and 2 0.γ >  Now, Equation 4 can identify systematic changes in the average 
number of jumps per period.

The ex-post ξ −1t  residuals represent the expected deviation from the last 
period average number of jumps. This unpredictability affects the number of 
jumps in the previous period t–1 based on the past information set 1,tn −  
which can be calculated as follows: 

	

( )

( )
1 1 1 1

 

1 1
0

|

|

t t t t

t t t i
j

E n

jP n

ξ λ

λ

− − − −

∞

− − −
=

= Φ −

= Φ −∑
	 (5)

in which the first term on the right side of the equation expresses the average 
probability of occurrence for the number of jumps at the previous period 
based on information of the same time, while the second term represents 
the jump intensity expectation based on the available information at t – i – 1. 

Given the probability of unobserved jumps happening at time t  to affect 
the returns Rt, it is necessary to apply a filter to make probabilistic inference 
about the number of jumps that can occur at time t. According to the Bayes 
rule, this filter can be defined as:
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( ) ( ) ( )
( ) ( )

1

1 10

|
|

|

t t t t t
t t

t t t t tj

P R n j P n j
P n j

f R n j P n j

−

∞

− −=

= Φ = Φ
= Φ =

= Φ = Φ∑
, = …0,1,2, ,j 	 (6)

in which the denominator represents the conditional density function of the 
returns and the maximum number of jumps that can occur throughout the 
day (truncated at 20 jumps, since the probability of occurrence of more than 
that quantity approaches zero). The filter is an important component of the 
dynamic jump model because it is inserted in the calculation of the residual 
jump intensity ( )ξ −1t  and used for inference reasons.

The maximum likelihood function of a GARCH (p,q) model is defined 
by iterating equations 4 and 6, and also from the assumptions implicit in 
Equation 1 (Enders, 2008): 

	

( )

( )

( )
( )

1

2

2

11

2

1

2

exp
2

t t t

t t

l

t i t ti

t t

f R n j

h j

R R j

h j

π δ

µ φ θ

δ

−

−=

= Φ

=
+

 − − − 
×  

+ 
 

∑

	

		
(7)

From the point of view that the jump intensity λt  is defined by an ARMA 
(r,s) process (Equation 4) and that the jump intensity residual tξ  can be 
expressed as a martingale difference sequence, that is: 

	 ( ) ( )( )1 1 1| | | 0t t t t t t t tE E E nξ λ λ λ− − −Φ = Φ Φ − = − =  	 (8)

so that ( )ξ = 0tE  and ( )1, 0,  0.t tcov iξ ξ − = >  It is straightforward to derive the 
unconditional mean of ,tλ  which will be set as one of the starting values for 
the GARCH maximum likelihood function

	

( ) 0

1
1

t r

ii

E
λ

λ
ρ

=

=
−∑

 	 (9)

This value will exist as long as ARMA (r,s) is a stationary process 
( )ρ <1 1  and, thus, the conditional forecasts of the future jump intensity for 
the case where = =1r s  will be:
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	 ( )1 1| ,  0, t t tE iλ λ+ −Φ = = 	 (10)

	
( )1 1 0 0 0

1
| ,  1,i i

t t j

i
E iλ ρ λ λ ρ+ − =

−
Φ = + ≥∑  	 (11)

such that, if ρ <1  when ,i →∞  the forecast moves forward the uncondi-
tional value set by Equation 9. 

To ensure that 0,tλ >  it is assumed to be sufficient conditions for any 
given t  that 0   ,0, i iλ ρ γ> ≥  and 0.iγ ≥  Thus, to apply the ARJI model to 
daily returns, the start-up value for λ  i is set to be its unconditional mean 
obtained through Equation 9 and 0.iξ =  Intuitively, the conditional jump 
intensity dynamics suggest that if ξ > 0t  is obtained, the jump intensity  
is temporarily moving away from its unconditional mean, so the model is 
efficient in diagnosing systematic changes in the probability of jump in  
this market.

Until now, it is the conditional dynamics that has governed the number 
of jumps; however, the jump size distribution, which is hypothetically 
assumed to be normally distributed, can also change and display time-
varying dynamics. In this context, a third extension of the conditional jump 
approach is proposed, 2

t 1ARJI R ,−−  which, despite suggesting the same 
treatment for ,tλ  allows the conditional mean and conditional variance of 
jumps to be a function of past oil returns, such that:

	 ( ) ( ) ( )0 1 1 1 1 1 11t t t t tR D R R D Rθ η η η− − − −= + + −  	 (12)

	
2 2 2

0 1 1t tRδ ζ ζ −= +  	 (13)

in which ( ) =1D x  if > 0x  and zero otherwise, while 0 1 2 0 1,  ,  ,  e  η η η ζ ζ  must 
be estimated. This specification allows for the presence of asymmetry, i.e., 
in the case that in the previous period prior to the current one, if the oil 
market had given positive outcomes; thus, the conditional mean of the jump 
size today will be 0 1 1.tRη η −+  For the purpose of this research, if η <0 0   
and 1 0,η <  positive returns will decrease the average jump intensity for  
the following period, generating a tendency that oil returns will move to the 
average market return. Moreover, this specification also investigates whether 
or not jump size variation is sensitive to the overall level of market volatility, 
such that δ 2

t  is a function of −
2

1tR  and that the constant term of the conditional 
variance is squared to avoid negative values for that measure (Equation 15).
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Lastly, there is the − tARJI h  model, which assumes the same specifica-
tion as the previous ones for λt  and ;tθ  nonetheless, the variance of the 
jump size is a function of the GARCH volatility: 

	 δ ζ ζ= +2 2
0 1t th .	 (14)

Note that the difference between these two last specifications refers to 
the conditional variance of the jump size. While −

2
1tR  can be interpreted as a 

proxy for the previous period market volatility, th  is a contemporaneous 
prediction at time t of the conditional volatility. Thus, if the jump size 
variance is sensitive to current market volatility, this last specification will 
give better results, since ht contains more information than past returns. On 
the other hand, despite this difference, in both cases, higher market volatility 
allows for a larger variance of jump sizes in a way that a smaller number of 
jumps may express the variation in oil returns.

To obtain the mean and conditional variance for the four proposed 
models, Equation 1 needs to be redefined, in a way that = +t t tR B C , in 
which 

1 ,
tn

kit tC Y
=

= ∑  is the size of the volatility jump that has its first two 
statistical moments described as follows: 

	 1 ,|t t t tE C θ λ−Φ =   	 (15)

	 ( )2 2
1var |t t t t tC δ θ λ−Φ = +   .	 (16)

Thus, the mean and conditional variance of the four proposed models 
for the returns are, respectively:

	 111| ,t t i t t

l

i tE R Rµ φ θ λ
=− −Φ = + +   ∑  	 (17)

	 ( )2 2
1 ,var |t t t t t tR h θ δ λ−Φ = + +   	 (18)

in which θt  and δt  display, respectively, the mean and conditional variance 
of the jump size on the estimated model and can be defined by the dynamics 
of λ θ, t t  and .tδ  Intuitively, in relation to oil returns, its conditional mean 
may be an increasing or decreasing function of ,tθ  being positive or nega-
tive, while the conditional variance is an increasing function of jump inten-
sity, i.e., the more severe is considered the event that hits the market, the 
greater the volatility density. Moreover, because of this aspect, conditional 
jump models effectively capture systematic changes in market risk.



14

Max C. Resende, Evandro C. Pedro

ISSN 1678-6971 (electronic version) • RAM, São Paulo, 21(2), eRAMF200086, 2020
doi:10.1590/1678-6971/eRAMF200086

	 4.	DATA

The data consists of 2008 observations for daily closing spot prices of 
WTI crude oil from January 2010 to December 2017, collected from NYMEX 
and quoted in US dollars. The results are computed for the usual daily loga-
rithmic return:

	 −

 
= × 

 1

ln 100, t
t

t

P
R

P
	 (19)

in which Pt is the closing price on day t and ln  is the natural logarithm. The 
decision to work with returns rather than price series is justified by the fact 
that returns are dimensionless and meet the desired statistical properties 
for time series analysis.

For Hamilton (2011) and Kilian (2014), the oil price short-term dynamics 
are mainly due to the dynamism of the sector that coexists with a variety of 
circumstances. These include environmental issues of energy efficiency and 
competition with alternative energy sources; geopolitical events (political 
instability, social revolutions in countries affecting production capacity and 
uncertainty about the possibility of extraction and transport); and economic 
factors (Opec supply and production level agreements, financial crises, etc.), 
which lead to unstable behaviour of commodity prices.

Under this matter, in order to identify the key events associated with 
extreme oil price movements, we selected the dates on which the return rate 
was greater than or equal to, in absolute value, 5%, as suggested by King, 
Deng, and Metz (2012). This variation occurred in only 3% of the cases,  
of which 46% were positive and 54% negative. Therefore, the emphasis is 
placed on data associated with large variations in the commodity returns 
and volatility clustering, which are the following highlighted in Figure 4.1:

•	 April 2010: Deepwater Horizon offshore drilling unit explosion and 
Greek debt crisis.

•	 From December 2010 to April 2011: Arab Spring.
•	 June 2012: downgrade in the rating of major banks (Barclays, HSBC, 

Lloyds, Credit Suisse, Bank of America) by Moody’s. 
•	 July 2015: sharp price drop of crude oil driven by growing supply, 

unwillingness of Opec members (Saudi Arabia, Iraq) to cut production, 
and the Iran nuclear deal with the United States, which removed 
economic sanctions from the Persian country.
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Figure 4.1 displays some statistical properties of the data series, such as 
stochastic developments and non-constant volatility over time, that imply 
intermittent behaviour for the oil return with distinct periods of high and 
low volatility (clustering), which indicates the presence of some stylized 
facts related to financial series (Enders, 2008).

Figure 4.1

DAILY WTI CRUDE OIL SPOT RETURN (2010–2017)

15 

• Junho de 2012: rebaixamento das notas de títulos de créditos das maiores

instituições financeiras globais (Barclays, HSBC, Llloyds, Credit Suisse, Bank of 

America). 
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evolução estocástica ao longo do tempo, ou seja, a volatilidade não é constante ao longo 

do tempo, tal que os retornos para o petróleo apresentam um comportamento intermitente, 

com a presença de períodos distintos de alta e baixa volatilidade, similar às séries 

financeiras (Enders, 2008). 

Figura 4.1 
RETORNOS DO PETRÓLEO WTI (2010-2017) 

Fonte: Elaborada pelos autores. 

A Figura 4.2 expõe as estatísticas descritivas para a série de retornos diários do 

petróleo spot WTI. Os valores mostram que a média dos retornos diários é próxima de 

zero, porém com elevado desvio padrão. Observa-se também que os valores de assimetria, 

curtose e do teste de Jarque-Bera apontam para uma curva do tipo leptocúrtica assimétrica 

à esquerda, características que permitem que se rejeite a curva normal como sendo 

representativa da distribuição de frequência da série de retornos e que sugerem a presença 
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Source: Elaborated by the authors.

Figure 4.2 reports descriptive statistics of the data used in this work. 
Returns have an estimated mean close to zero, but standard deviations are 
high. It can also be noticed that skewness, kurtosis, and Jarque-Bera test 
values indicate a left asymmetric leptokurtic curve, characteristics that allow 
us to reject the null hypothesis of a normal curve as representative of the 
frequency distribution of oil return series. Therefore, those properties, as 
well as the high maximum and minimum values observed in all series, sug-
gest the presence of jumps and variable volatility over time.

Figure 4.2

DESCRIPTIVE STATISTICS

Statistics Value

Number of observations 2.008

Mean 0.026

Standard deviation 2.1126

Skewness -0.0883

Kurtosis 4.3816

Jarque-Bera p = 0.0000

(continue)
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Statistics Value

ADF p = 0.0000

Ljung-Box q-test p = 0.6215

Ljung-Box q2-test p = 0.0000

ARCH test p = 0.0000

Source: Elaborated by the authors.

The ADF test score indicates that the oil return series are stationary, 
while the Ljung-Box q-test assesses the presence of autocorrelation in the 
series, which also suggests the presence of conditional heteroscedasticity  
on the square returns. We also applied the Lagrange multiplier diagnostic 
test proposed by Engle (1982) to assess the significance of ARCH effects on 
the return series, which indicates that the variance of the residuals is not 
constant across observations. All of the above results suggest that conditional 
heteroscedasticity models are better suited to describe the behaviour of oil 
returns, which are related to the findings of Gronwald (2012), Laurini et al. 
(2016), and Oliveira and Pereira (2017). 

	 5.	RESULTS

Estimates for the four extensions of the Chan and Maheu (2002) condi-
tional jump model to the daily oil return (WTI) obtained through Equation 
19 are given in figures 5.1 and 5.2. All extensions have included an autore-
gressive coefficient, a number defined by the Akaike information criterion, 
because it has higher efficiency and consistency than other alternative models. 
In general, the constant jump-intensity model shows worse results6, while 
ARJI – ht specification, which uses a contemporary volatility forecast as an 
explanatory variable for the variance of the jump size, is the best one to 
describe the oil market behaviour, especially by allowing the jump distri-
bution parameters to be time-varying and to eliminate correlation among 
observations.

6	 Smaller log-likelihood value. 

Figure 4.2 (conclusion)

DESCRIPTIVE STATISTICS
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Figure 5.1 displays the estimates for both the constant and the autore-
gressive jump-intensity model. Regarding the GARCH parameters – ,  ω α  e 
β  – they are all statistically significant at the 5% level, indicating persis-
tence and presence of a conditional variance process among oil price returns. 
This fact can be verified in Figure 4.1, which describes daily WTI oil returns 
from January 2010 to December 2017. There were severe oil price fluctua-
tions, especially during the Arab Spring and the bank debt paper downgrade. 
Note that volatility in crude oil returns remained at a high level during these 
periods, while remaining relatively low in others. This is called volatility 
clustering. Therefore, the GARCH variance structure is appropriate for 
modelling this phenomenon (Gronwald, 2012; Oliveira & Pereira, 2017).

For both models, λ0  and η0  express the need for jump specification  
to describe oil market dynamics. The parameter λ0  indicates that the mean 
of jumps in the constant model is 0.0403 and in the time-varying jump 
intensity is 0.0283, a fact that allows concluding that the second model is 
more adequate to capture jumps than the first specification. In turn, η0  
demonstrates that the conditional mean of the jump size is negative, i.e., 
sudden devaluations are more common than positive changes for the oil 
market, which is consistent with a negative asymmetry observed in the data 
(Figure 5.2). These results are similar to those reported in Askari and 
Krichene (2008) and Gronwald (2012). 

Figure 5.1

CONSTANT AND TIME-VARYING JUMP-INTENSITY MODELS

Parameters Constant ARJI–GARCH

µ     0.0358 (0.0369)* 0.0277 (0.0391)*

ϕi    -0.0223 (0.0207)* -0.0274 (0.0221)*

ϖ 0.0203 (0.0089) 0.0161 (0.0069)

α 0.0441 (0.0073) 0.0299 (0.0073)

β 0.9397 (0.0102) 0.9556  (0.0099)

ζ0 4.2065 (0.8959) 4.1071 (0.73712)

η0 -1.1590 (0.6001) -0.6838 (0.5165)

λ0 0.0403 (0.0190) 0.0283 (0.0126)

ρ 0.5086 (0.2049)

(continue)
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Parameters Constant ARJI–GARCH

γ 0.5086 (0.2049)

Qξ t
 (15) 21.41 {0.1242} 14.64 {0.4773}

Log-likelihood -4057.6846 -4054.4405

Standard errors are in parentheses, p-values of the Q test are in braces. The asterisk symbol denotes no signifi-
cance at the 5% level. 

Source: Elaborated by the authors.

Moreover, the ρ  parameter in the ARJI-GARCH model, estimated to be 
0.5086, suggests that the jump intensity is not persistent throughout the 
time and its constraint of equality to coefficient γ – a necessary condition for 
maximum likelihood estimation – suggests that unpredicted past shocks, 
ξ −1t  have no influence on the probability of new jumps today. 

The estimates for ζ 0  indicate that variations in jump intensity are high 
and well above the results obtained for stock market returns (Chan & Maheu, 
2002; Qu & Perron, 2013) and exchange rate (Chan, 2004; Ely, 2013), results 
that are related to some other findings in the literature about the presence 
of high volatility in this market (Askari & Krichene, 2008; Oliveira & Pereira, 
2017). Another issue to consider, the Ljung-Box ( )ξ 15

t
Q  statistic, doesn’t 

reject the null hypothesis for independent and identically distributed  
(iid) residuals, that is, it eliminates the residual correlation of the ARMA 
(Equation 4) that sets the jump-intensity value.

Figure 5.2 presents the oil price level and the time-varying jump inten-
sity, expressed by the λt  parameter obtained from the estimated ARJI- 
GARCH model. It is observed that λt  has an amplitude of around 0.7 jumps 
per day, characterized by low persistence and fast mean reversion to market 
volatility, besides presenting a certain regularity in the average number of 
jumps.

This paper presents a new contribution to this literature by allowing the 
conditional mean and conditional variance of the jump size distribution to 
be a function of past returns and GARCH volatility. Figure 5.3 presents 
estimates for both the constant and the autoregressive jump-intensity model 

−− 2
1tARJI R  and ,tARJI h−  respectively. Regarding the third specification, 

 and η0  are highly significant, but ζ1  and η1  are not, indicating that 
neither the variance nor the mean of the jump size accounts for past returns 

Figure 5.1 (conclusion)

CONSTANT AND TIME-VARYING JUMP-INTENSITY MODELS
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that can be justified by geopolitical issues, such as the reduction of price 
tension between Saudi Arabia and other Opec members and the decreasing 
US dependence on Middle Eastern oil imports. 

Figure 5.2

ARJI–GARCH MODEL: JUMP INTENSITY

19 
 

A Figura 5.2 apresenta os retornos do petróleo e a intensidade condicional do salto 

para a especificação ARJI-GARCH ao longo do período amostral. Observa-se que 𝜆𝜆� tem 

uma amplitude em torno de 0,7 salto por dia, apresentando baixa persistência, isto é, há 

uma reversão rápida à volatilidade média do mercado, além de apresentar uma certa 

regularidade no número médio de saltos. 

 

Figura 5.2 
MODELO ARJI-GARCH: INTENSIDADE DOS SALTOS 

 
Fonte: Elaborada pelos autores. 

 

Assim sendo, este artigo complementa a literatura ao permitir que a média 

condicional e a variância condicional dos saltos sejam função dos retornos passados e da 

volatilidade GARCH. A Figura 5.3 traz os resultados estimados para as especificações 

���� � �����  e ���� � �� respectivamente. Em relação à terceira especificação, nota-se 

que o coeficiente 𝜁𝜁� é estatisticamente significante, porém 𝜁𝜁� não, portanto os retornos do 

período passado não definem a variância do tamanho dos saltos. Quanto à média 

condicional do tamanho do salto, as variações passadas do retorno do petróleo não 

interferem no tamanho do salto, o que pode ser justificado por questões geopolíticas, 

como a redução da guerra de preços entre Arábia Saudita e Opep e a menor dependência 

dos Estados Unidos em relação ao Oriente Médio. 
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Figure 5.3

ARJI — R 2t — 1 and ARJI — ht MODELS

Parameters ARJI — R 2t—1 ARJI — ht

µ 0.0523 (0.0427)* 0.09298 (0.0470)*

ϕi -0.0280 (0.0243)* -0.0326 (0.0220)*

ϖ 0.0144 (0.0059) 0.0118 (0.0059)

α 0.0313 (0.0060) 0.0296 (0.0061)

β 0.9536 (0.0086) 0.9541 (0.0087)

ζ0 3.2545 (0.7522) -0.8344 (2.0782)*

ζ1 0.0485 (0.1458)* 2.8784 (1.8105)*

η0 -1.8806 (0.6018) -1.7043 (0.4901)

η1 0.3949 (0.2161)* 0.3668 (0.1941)*

η2 -0.4832 (0.2396) -0.3643 (0.1936)*

(continue)
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Parameters ARJI — R 2t—1 ARJI — ht

λ0 0.0410 (0.0185) 0.0605 (0.0240)

ρ 0.4816 (0.1480) 0.4522 (0.1403)

γ 0.4816 (0.1480) 0.4522 (0.1403)

Qξ t
 (15) 14.56 {0.374} 15.33 {0.0775}

Log-likelihood -4050.9211 -4048.3419

Note: Standard errors are in parentheses, p-values of the Q test are in braces. The asterisk symbol denotes no 
significance at the 5% level. 

Source: Elaborated by the authors.

Figure 5.4 presents the time-varying jump intensity for the −− 2
1tARJI R  

model, which has a maximum value about 22% higher than that obtained 
for the ARJI-GARCH specification, providing a more accurate fit to the data 
and more significant impacts of extreme events on oil price volatility. 
However, it presents similar characteristics related to low persistence and 
regularity in the jump intensity, especially in moments that have a huge 
impact on the oil industry, such as the Deepwater Horizon offshore drilling 
unit explosion and the Arab Spring (Laurini et al., 2016). 

Figure 5.4

ARJI — R 2t — 1: JUMP INTENSITY

21 
 

Figura 5.4 

MODELO ���� � ����𝟐𝟐 : INTENSIDADE DOS SALTOS 
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entretanto permite que a variância da distribuição do tamanho dos saltos seja explicada 

exclusivamente pela volatilidade estimada �𝜁𝜁��.  
Novamente, 𝜂𝜂� � �, sugerindo que os saltos são responsáveis pela reversão à 

média da volatilidade do mercado, além de não apresentarem uma dinâmica temporal. 

Intuitivamente, isso significa que os choques negativos criarão uma maior volatilidade 

nos mercados de petróleo do tipo light do que os choques positivos, o que contraria a 
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Figure 5.3 (conclusion)

ARJI — R 2t — 1 and ARJI — ht MODELS
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The estimated values for the last extension, − ,tARJI h  suggest that this 
is the best model that fits the data7, which allows the conditional jump 
intensity to evolve according to an ARMA process. The statistical significance 
for both λ0  and ρ  parameters meets the evidence found in previous specifi-
cations, besides allowing the conditional variance of the jump size to be 
exclusively a function of estimated volatility ( )ζ1 .

Once again,η <0  0,  suggests that jumps are responsible for a rapid 
reversion to the average level of oil market volatility, although the model 
does not capture any time dynamics. Intuitively, this suggests that negative 
oil price shocks generate higher volatility on the global light oil market than 
positive ones, which is in contrast to the efficient market hypothesis. 
However, this effect is quickly absorbed by product prices, meeting the 
evidence provided by Bagchi (2017) and Oliveira and Pereira (2017). 

Figure 5.5 suggests that the jump intensity for the − tARJI h  specification 
is similar to −− 2

1tARJI R  model results, also reporting a maximum amplitude 
of one jump per day and increases in the average quantity of expected jumps 
at critical moments, especially during environmental disasters and wars, but 
with small differences at moments of higher stabilities when compared to 
the last model. 

In order to show how variations in the estimated value of λ  t have impor-
tant consequences on the Poisson distribution, which describes the number 
of jumps that arrive between periods −1t  and t, Figure 5.6 plots theoretical 
probabilities of the occurrence of jumps for the constant jump-intensity 
model and − tARJI h  specification for two different dates on which the com-
modity suffered severe movements in its price: April 20th, 2010 (Deepwater 
Horizon offshore drilling unit explosion) and June 18th, 2012 (downgrade 
of bank ratings). 

7	 To verify the robustness of the ARJI – ht model in relation to the estimated persistence of shocks (ρ) 
and conditional heteroscedasticity in oil prices, estimates were made for subsamples referring to 
periods of higher volatility, which were defined based on the data behaviour. The subsample periods 
are from 03/01/2010 to 10/01/2010; from 01/01/2011 to 31/12/2011; from 03/01/2012 to 11/01/2012; 
and from 01/07/2014 to 28/02/2016. In all situations, the GARCH parameters were significant and 
the values for ρ were similar.
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Figure 5.5

MODEL ARJI — ht :  JUMP INTENSITY
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A Figura 5.5 mostra que a intensidade dos saltos nesse modelo é semelhante à 

descrita pela especificação ���� � ��, indicando também uma amplitude máxima de 

cerca de um salto por dia e aumento do número médio de saltos esperados em períodos 

críticos do mercado, sobretudo em situações de desastre ambiental e guerras, mas com 

pequenas diferenças em momentos de maior estabilidade em comparação ao modelo 

anterior.  
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Figure 5.6

PROBABILITY OF JUMPS: CONSTANT MODEL × ARJI — ht
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This graphic shows that small changes in λt  can have important effects 
on forecasting the probability of jumps at the suggested dates, and it is clearly 
evident that the risk associated with the realization of jumps in the constant-
intensity model is considerably less than in the ARJI – ht specification. The 
last model estimated a probability of about 15% for at least one jump  
following the environmental accident and 7% due to the downgrade of inter-
national banks; however, in the constant-intensity model, the probability is 
negligible at both times. Hence, such results reinforce the insights presented 
by Hamilton (2011), Kilian (2014), and Laurini et al. (2016) about the 
importance of extreme events not to be directly linked to industry pricing 
strategies, mainly because oil demand is highly inelastic in the short term.
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Figure 5.7 displays predictive λ   for the entire month of June 2012. It 
can be noticed that there was a considerable increase in the likelihood of a 
jump in two periods: June 2nd – 5th and June 20th – 25th. At both moments, 
this effect dissipates rapidly, reflecting a mean reversal in the series volatility. 
Moreover, it can also be seen that, at the time of the Moody’s bank credit 
downgrade, there was an increase in the average intensity of jumps, rising 
from 0.509 at the first jump to 0.554, when the second jump occurred, that 
is, an increase of approximately 10% in jump strength. 

Here, jumps occur in the context of bringing the return rate towards  
its historical mean followed by a period of certain stability; additionally,  
the greater the number of jumps within a relatively short time window, the 
stronger the intensity of the effect caused by the subsequent jump compared 
to the one caused by the previous jump, but with a smoother descending path.

Figure 5.7

EFFECTS OF BANKING DOWNGRADE AT CONDITIONAL JUMP INTENSITY
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	 6.	CONCLUDING REMARKS

According to the literature, jumping models have proven to be a useful 
tool for dealing with extreme events and sudden price chances, and in 
addition they have been successfully applied to various types of financial 
market variables. This paper examined the jump dynamics on the light oil 
price return (WTI) for the period from January 2010 to December 2017 
through four specifications of conditional jump model proposed by Chan 
and Maheu (2002) and found strong evidence for the GARCH behaviour of 
the jump intensity variable in time.
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Consequently, we argue that the oil market is highly susceptible to the 
reception of new information and the occurrence of extreme events, so that 
oil price reactions tend to vary with different political and economic events 
and environmental disasters. According to figures 5.2, 5.4, and 5.5, the 
intensity of the jump in global oil prices peaked at the end of the Arab 
Spring in July 2011, and another big jump occurred in April 2010, when the 
Deepwater Horizon platform exploded. This demonstrates that the crude oil 
market experienced drastic ups and downs during the year and especially 
that sudden negative shocks create higher volatility in oil markets than do 
positive shocks. Between 2010 and 2017, shocks caused by production 
factors seem smaller but happened more frequently in comparison to shocks 
driven by geopolitical and environmental factors.

Regarding the econometric results, it was found that the ARJI – ht model 
is superior to others in terms of adherence data, which is confirmed by the 
value of the log-likelihood and the significance of the parameter ζ1  in a 
scenario of environmental disasters and geopolitical and financial crises. In 
addition, the jump intensity coefficients ( )ρ γ,   indicate that the jumps in oil 
returns follow a first-order autoregressive process and that it is reasonable 
to use the ARJI parameterization. The estimate of ρ  is close to 0.4, implying 
a low degree of persistence in the intensity of the jump, and the average size 
of the jumps is negative ( )η0 , suggesting that the jumps are responsible for 
the reversal of the average market volatility, in addition to not presenting a 
temporal dynamic. 

The analysis of the reduction in credit bond ratings of large banks in 
June 2012, Figure 5.7, confirms that the intensity of the jumps is directly 
related to market volatility. However, when the jump size variance is allowed 
to be a function of the predicted volatility, a smaller number of jumps 
explains the variation in oil prices, and over a short period of time the average 
intensity of subsequent jumps is greater than that indicated by the model’s 
predecessor, besides presenting a smoother decay.

Intuitively, the occurrence of extreme events causes significant short-
term changes. However, this effect is quickly absorbed by product prices. In 
this sense, the main contribution of this paper is to present an econometric 
framework that addresses the nature of the stochastic process underlying oil 
prices and the importance of components that drive this process, as well as 
to explain why investors, policymakers, and producers can consciously 
decide not to make hedges against extreme events, especially if there are 
informational costs for learning the structures that govern them.

The limitations of this research are threefold: none of the proposed 
specifications consider the problem of mutual dependence on the volatility 
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and intensity of the unexpected event (jump); despite the finding that there 
are evident asymmetries between good and bad news in the market, this 
difference has not been quantified; and because of the evidence that the 
effects of extreme events last for the short term, it is necessary to use tick-
by-tick data to examine its real impact over the volatility of oil returns.

For future research, it is recommended that investigators study the 
short and long-term relationship in the oil market context, as the omission 
of structural changes in the price level may lead to spurious statistical 
results, forecasting errors and insecurity about the specified model. Further 
studies are also recommended on the relationship, externalities, and 
response time of abrupt effects on commodities over the stock market and 
macroeconomic variables in the context of national economies, such as 
inflation, interest rates, and income. 

EVENTOS EXTREMOS E O MERCADO DE PETRÓLEO: 
ABORDAGEM DE SALTOS CONDICIONAIS

	

	 RESUMO

Objetivo: Esta pesquisa tem por objetivo analisar os movimentos de pre-
ços estimulados por eventos extremos, como explosão de plataforma e 
crises geopolíticas e financeiras no mercado de petróleo, e compreender 
a reação e a persistência desses efeitos sobre o preço da commodity. 
Originalidade/valor: A posição de destaque do petróleo gera preocupa-
ções de investidores, produtores e formuladores de política em razão do 
comportamento instável de seu nível de preço e padrão de volatilidade, 
o que justifica a necessidade de investigação de sua dinâmica para fins 
de formação de política econômica, estratégias de trading, estrutura de 
custos e receitas das empresas do setor e decisões de investimento em 
outras fontes de energia.
Design/metodologia/abordagem: Para modelar a ocorrência de saltos de 
volatilidade originada pela ocorrência de eventos extremos, foram utili-
zadas quatro especificações para a metodologia de saltos condicionais 
ARJI-GARCH, desenvolvida por Chan e Maheu (2002). Os dados con-
sistem em 2.008 registros diários do preço de fechamento do petróleo 
do tipo light (WTI) no período de janeiro de 2010 a dezembro de 2017, 
obtidos na NYMEX.
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Resultados: Dentre vários resultados, verificou-se que a ocorrência de 
eventos extremos provoca alterações significativas nos retornos do 
petróleo, contrariando a hipótese de mercados eficientes. Também se 
constatou que as variações no preço do petróleo podem ser especificadas 
por meio de saltos condicionais que são variantes no tempo, porém 
pouco sensíveis a choques passados e de persistência de curtíssimo prazo. 

	 PALAVRAS-CHAVE

Petróleo. Volatilidade. Eventos extremos. Modelos ARJI-GARCH. Saltos 
condicionais.
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