CHARACTERIZATION OF SEEDS, SEEDLINGS AND INITIAL GROWTH OF JACARANDA MIMOSIFOLIA D. DON. (BIGNONIACEAE)

CARACTERIZAÇÃO DE SEMENTES, PLÂNTULAS E CRESCIMENTO INICIAL DE JACARANDA MIMOSIFOLIA D. DON. (BIGNONIACEAE)

Jamille Rabêlo de Oliveira Clark Alberto Souza da Costa Antonio Marcos Esmeraldo Bezerra Haynna Fernandes Abud Eliseu Marlônio Pereira de Lucena About the authors

ABSTRACT

This research aimed to characterize the biometry of seeds, the morphology of seedlings and to evaluate the initial growth of blue jacaranda trees (Jacaranda mimosifolia D. Don.) in two environments with distinct luminosity. The biometry of 100 de-winged seeds was measured by their length, width and thickness. One hundred seeds were sown into 300 cm3 tubes and seedlings morphology was registered throughout the germination process using digital photographs disposed sequentially according to seedlings age. The initial growth analysis was performed in two environments, full sun and greenhouse, during nine periods, and arranged in a complete randomized design with subplots. The response variables were: number of leaves, plant height, collar diameter, root length, aerial and roots dry weight, and Dickson’s Quality Index (DQI). Biometry results showed seeds 7.09 - 9.26 mm long, 6.74 -9.39 mm wide, and 1.11 -1.89 mm thick. Germination is of hypogealphanerocotylar type, with first root arising six days after sown. Plants at full sun presented larger collar diameters, greater root dry weight and higher DQI as evaluation periods passed by. In conclusion, the biometry of seeds and the morphology of seedlings of blue jacaranda can be used to recognize this species in the field. Plants at full sun presented better development. Seedlings cultivated at full sun can be destined to recuperate forests and degraded areas just 36 weeks after sowed.

Keywords:
Morphobiometry; Types of germination; Seedlings quality

RESUMO

Objetivou-se nesta pesquisa fazer a caracterização biométrica das sementes, morfologia das plântulas de Jacaranda mimosifolia D. Don. e avaliar o crescimento inicial das mudas em dois ambientes distintos com diferentes níveis de luminosidade. Para a biometria de sementes, utilizou-se 100 sementes sem as partes aladas para a mensuração do comprimento, largura e espessura. Para a morfologia das plântulas, semeou-se 100 sementes em tubetes de 300 cm3, registrando-se os eventos do processo germinativo através de fotos digitais e dispondo-as de forma sequenciada de acordo com a idade das plântulas. A análise de crescimento inicial foi realizada em sol pleno e estufa agrícola durante nove épocas num esquema de parcelas subdivididas, em delineamento inteiramente casualizado. As variáveis respostas foram: número de folhas, altura da planta, diâmetro do coleto, comprimento da raiz, massa seca da parte aérea e raiz, bem como, o índice de qualidade de Dickson (IQD). O comprimento das sementes variou de 7,09 a 9,26 mm, a largura de 6,74 a 9,39 mm e a espessura de 1,11 a 1,89 mm. A germinação é do tipo fanerocotiledonar hipógea, com o surgimento da raiz primária ao sexto dia após a semeadura. O jacarandá-mimoso apresentou maiores valores de diâmetro do coleto, massa seca da raiz e IQD no transcorrer do tempo em sol pleno. Conclui-se que a caracterização biométrica de sementes e morfológica de plântulas de jacarandá-mimoso possibilita o reconhecimento da espécie em campo. As plantas produzidas em sol pleno apresentam melhor desenvolvimento. Após 36 semanas de desenvolvimento as mudas mantidas em sol pleno podem ser destinadas a recomposição vegetal e recuperação de áreas degradadas.

Palavras-Chave:
Morfobiometria; Tipos de germinação; Qualidade de mudas

1. INTRODUCTION

Bignoniacae Juss. is a botanical family with approximately 100 genres and 860 species (Fischer et al., 2004Fischer E, Theisen I, Lohmann LG. Bignoniaceae. In: Kubitzki K, Kadereit JW. The Families and Genera of Vascular. Plants. 2004;7:9-8.), from which the Jacaranda genre is widely used on landscaping and recovery of forested areas, e.g. Jacaranda brasiliana (Lam.) Pers., Jacaranda cuspidifolia Mart. and Jacaranda mimosifolia D. Don. (Costa et al., 2011Costa RS, Ortolani FA, Môro FV, Paula RC. Caracterização morfológica de folhas e flores de espécies de Jacaranda (Bignoniaceae), cultivadas em Jaboticabal - SP. Revista de Biologia e Ciências da Terra. 2011;11(1):169-81.).

The blue jacaranda (J. mimosifolia), known in Brazil as jacarandá-mimoso or carobaguaçu, is an exotic species, native from Argentina, Bolivia and Paraguay, though it can also be found in both tropical and temperate regions (Alves et al., 2010Alves GR, Peruchi A, Agostini K. Polinização em área urbana: o estudo de caso de Jacaranda mimosifolia D. Don (Bignoniaceae). Bioikos. 2010; 24(1):31-41). This tree is used in urban landscaping of both streets and parks due to their leaves delicacy, and also for the abundance and color of their flowers (Souza and Lorenzi, 2005Souza VC, Lorenzi H. Botanica sistemática: Guia ilustrado para identificação das famílias de angiospermas da flora brasileira, baseado em APG II. Nova Odessa: Instituto Plantarum; 2005.).

The amount of researches related to biometric characterization of seeds, and to seedlings morphology, increased during recent years, as well as the number of studies about the initial growth of arboreal species seedlings in different environments, all due to the increasing interest on using such trees to restore degraded areas, forests, and for landscaping.

Biometric characterization of seeds assists the identification of families, genres and species, it helps to understand dispersion and germination processes, and also to improve seeds processing, storage, and sowing methods (Paoli and Bianconi, 2008Paoli AAS, Bianconi A. Caracterização morfológica de frutos, sementes e plântulas de Pseudima frutescens (Aubl.) Radlk. (SAPINDACEAE). Revista Brasileira de Sementes. 2008;30(2):146-55.; Rego et al., 2010Rego SS, Nogueira AC, Kuniyoshi YS, Santos ÁF. Caracterização morfológica do fruto, da semente e do desenvolvimento da plântula de Blepharocalyx salicifolius (H. B. K.) Berg. e Myrceugenia gertii Landrum - Myrtaceae. Revista Brasileira de Sementes. 2010;32(3):52-60.; Diniz et al., 2015Diniz FO, Medeiros Filho S, Bezerra AME, Moreira FJC. Biometria e morfologia da semente e plântula de oiticica. Revista Verde de Agroecologia e Desenvolvimento Sustentável. 2015;10(2):183-7.). Likewise, studies on seedlings morphology help generating data used to classify germination types and to identify some species structures, enabling to perceive the functionalities of such structures in the ecosystem, and to subsidize programs of conservation and environmental restoration (Cosmo et al., 2017Cosmo NL, Gogosz AM, Rego SS, Nogueira AC, Kuniyoshi YS. Morfologia de fruto, semente e plântula, e germinação de sementes de Myrceugenia euosma (O. BERG) D. LEGRAND (MYRTACEAE). Floresta. 2017;47(4):479-88.).

Plants growth is influenced by abiotic environmental factors (Mota et al., 2012Mota LHS, Scalon SPQ, Heinz R. Sombreamento na emergência de plântulas e no crescimento inicial de Dipteryx alata Vog. Ciência Florestal. 2012;22(3):423-31.), and light is one of the most important, since it provides the energy used during photosynthesis, affecting carbohydrates production, dry mass accumulation and biomass increase (Dantas et al., 2009Dantas BF, Lopes AP, Silva FFSS, Lúcio AA, Batista PF, Pires MMML, Aragão CA. Taxas de crescimento de mudas de catingueira submetidas a diferentes substratos e sombreamentos. Revista Árvore. 2009;33(3):413-23.; Lone et al., 2009Lone AB, Takahashi LSA, Faria RT, Destro D. Desenvolvimento vegetativo de Melocactus bahiensis (cactaceae) sob diferentes níveis de sombreamento. Revista Ceres. 2009;56(2):199-203.; Cabanez et al., 2015Cabanez PA. Interferência da radiação solar na cultura do rabanete. Nucleus. 2015;12(2):257-62.). Consequently, growth analysis makes it possible to broadly comprehend how plants respond to these factors, being essential to understand how such factors are involved in the physiology of the growing process (Alves et al., 2016Alves LR, Oliveira RJ, Coimbra RR, Ferreira WM. Crescimento inicial de Parkia platycephala (Benth.) e Enterolobium timbouva (Mart.) sob condições de campo numa área de Cerrado. Revista Ceres. 2016;63(2):154-64.).

Despite the environmental, social and economic importance of blue jacaranda, there are still no studies about its seeds biometry, seedlings morphology and initial growth. Therefore, this research aimed to characterize the morphology of seeds and seedlings of blue jacaranda (Jacaranda mimosifolia D. Don.), as well as to evaluate the seedlings initial growth in two environments of distinct luminosity, targeting the use of this species for restoring forests and degraded areas.

2. MATERIAL AND METHODS

The fruits of blue jacaranda were harvested in the Fortaleza metropolitan area, and taken to be processed at the Urban Agriculture Teaching & Research Nucleus (NEPAU), inside the Department of Plant Science at the Agricultural Sciences Center (CCA) from the Federal University of Ceará (UFC).

The biometry of 100 de-winged seeds was characterized by measuring their length, width and thickness with a digital caliper (±0.01 mm). Histograms, frequency polygons and descriptive statistics were calculated for each of these variables. External aspects of the seeds were also recorded, e.g. color, shape and integument consistency. The weight of 1000 seeds was calculated according to Brasil (2009)Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília : Mapa/ACS; 2009..

Another 100 seeds were sown into 300 cm3 tubes filled with organic compost and vermiculite (1:1 v/v). These tubes were kept inside an agricultural greenhouse at NEPAU and under irrigation until 18 days after sowing (DAS), when all observations ceased. Morphological events were registered by digital photographs and described using terminologies proposed by Souza (2009)Souza LA. Sementes e plântulas: germinação, estrutura e adaptação. Ponta Grossa: Toda Palavra; 2009. 279p.. All images were processed using Photoshop software, and the germination process was registered by arranging the photographs according to seedlings age.

To evaluate initial growth, seeds were sown into polyethylene trays containing 162 cells, all filled with a mixture of vermiculite, organic compost and soil (1:1:1 v/v). These trays were kept inside a greenhouse and irrigated on a daily basis. Germination started after 6-7 DAS, and all seedlings presented 6 leaves 23 DAS. At this point, seedlings were replantedin to polyethylene bags (11 x 26 cm) filled with soil and organic compost (1:1 v/v) and placed at two environments, full sun and greenhouse, with water being supplied twice a day.

The full sun environment is an open area with no interference to sunlight incidence over all plants. The greenhouse is a metallic structure with an arch ceiling covered by an UVA plastic filter (0.15 mm width) with an underlying shading screen (50%) covering the whole surface and all sides. Average temperature, relative humidity and luminosity were, respectively, 35.4 ºC, 70.1% and 21719.8 lux at full sun, and 33.3 ºC, 69.2% and 4368.3 lux at greenhouse.

All factors were arranged in a completely randomized design with sextuplicates subplots containing four plants each, having environments as plots and evaluation periods (0, 15, 30, 45, 60, 75, 90, 105 e 120 days after replanting - DAR) as subplots. Plant variables were: number of leaves (NL), plant height (PH), collar diameter (CD), root length (RL), aerial dry weight (ADW), roots dry weight (RDW), and Dickson’s Quality Index - DQI, calculated by Equation 1 using the aforementioned variables plus plants total dry weight (TDW) (Dickson et al., 1960Dickson A, Leaf A, Hosner JF. Quality appraisal of white spruce and white pine stock in nurseries. Forestry Chronicle. 1960;36:10-3.).

(Eq1) DQI = TDW g PH cm CD mm + ADW g RDW g

Data were submitted to an analysis of variance to check effects of isolated factors and their interaction. When the interaction was significant, evaluation periods were unfolded within environments using regressions calculated by the orthogonal polynomials method.

3. RESULTS

Blue jacaranda seeds present cordiform to orbicular shape, with a hyaline wing whit brownish tonalities, and a brown membranous integument. The hilum and the micropyle are inconspicuous.

The seeds were 7.09-9.26 mm long, presenting average, variance and coefficient of variation (CV%), respectively, of 8.12 ±0.51 mm, 0.26 mm2 and 6.28%. Lengths frequency distribution was skewed right, with higher frequency of seeds (25%) around 8.33 mm long (Figure 1A). Their width ranged from 6.74 to 9.39 mm, with an 8.00 ± 0.54 mm average, 0.29 mm2 variance, and 6.75% CV%. This variable also showed a skewed right histogram, with higher frequency of seeds (29%) about 7.50 mmwide (Figure1B). Their thickness presented amplitude between 1.11 and 1.89 mm, averaging 1.51 ± 0.16 mm, with 0.02 mm2 variance and 10.60% CV%. This variable was skewed left, with higher frequency of seeds (32%) around 1.56 mm thick (Figure 1C).

The morphological development phases of blue jacaranda seedlings are shown in Figure 2. The dewinged seeds can be seen in Figure 2A. The hypogealphanerocotylar germination began with primary root emission 6 DAS (Figure 2B). Axial root was 18.74 mm long 8 DAS, and was cylindrical, glabrous and whitish, becoming light-yellow during growth (Figure 2C). The greenish apical hook emerged 9 DAS, measuring 4.65 mm long (Figure 2D). Integument liberation, and consequent cotyledons unfolding, happened 10 DAS, simultaneously to epicotyl elongation, which was cylindrical, pubescent and greenish. Unfolded cotyledons were opposite, fleshy, obcordate, yellowish, with short petiole (5.96 mm long and 7.13 mm wide). Cotyledons kept attached to seedlings until the appearance of the first metaphyll, and during this period the secondary whitish roots appeared (Figure 2E). The hypocotyl was too short and not very evident.

The first eophyll pair developed 11 DAS (Figure 2F). The epicotyl is reddish closer to the eophyll, allowing the differentiation between it and the whitish collar (Figure 2F). The first phase of seedlings formation cycle ended 12 DAS, when the first eophyll pair expanded completely, presenting all essential structures in perfect morphological conditions (Figure 2G). The first eophyll of the second phase appeared 15 DAS (Figure 2H).Seedlings presented six eophylls18 DAS, averaging a height of 64.60 mm, collar diameter of 1.22 mm, and with 100.49 mm longmain rootsabundant with secondary roots (Figure 2I). The eophyllsare pinnately compound leaves with petiole, imparipinnate, pubescent, presenting sessile serrated leaflets, coloredgreen, that are darker in the adaxial face. Leaves present a decussate arrangement, with the first eophyll pair presenting 3-5 leaflets, the second 11, and the third 13 (Figures 2G to 2D).

When observing the initial growth of blue jacaranda, the number of leaves (NL) significantly differed between environments from 75 DAR (performed 23 DAS) and the greenhouse showed the best results (Figure 3A). This environment also presented superior plants height (PH) from 60 DAR (Figure 3B).

Collar diameter (CD) was similar in both environments until 45 DAR, date from which larger values were computed by full sun plants (Figure 3C). This variable presented a quadratic regression with evaluation period in both environments, with coefficients of determination (R2) higher than 98 % (Figure 3C).

Root length (RL) did not present interaction between environment and evaluation period (Figure 3D). This isolated factor presented a quadratic regression with 99.31% R2 (Figure 3D). It was noticed a rapid root elongation until 60 DAR, however, changes were non-significant after, with roots reaching 28.18 cm 120 DAR.

Figure 4A shows a quadratic regression of aerial dry weight (ADW) along evaluation periods, with both environments presenting almost maximum R2. Seedlings of both environments presented similar accumulation in ADW until 90 DAR. After this period, the best results were observed at greenhouse, which averaged 6.80 g 120 DAR. At 45 DAR, full sun plants presented larger amounts of root dry weight (RDW) (Figure 4B). This tendency was also observed for Dickson’s Quality Index (DQI), which averaged 0.73 and 1.33 120 DAR at greenhouse and full sun, respectively (Figure 4C).

4. DISCUSSION

Seeds of blue jacarandá (Jacaranda mimosifolia) presented shape similar to J. decurrens subsp. symmetrifoliolata Farias & Proença (Sangalli et al., 2012Sangalli A, Vieira MC, Scalon SPQ, Zárate NAH, Silva CB, Ribeiro IS. Morfometria de frutos e sementes e germinação de carobinha (Jacaranda decurrens subsp. symmetrifoliolata Farias & Proença), após o armazenamento. Revista Brasileira de Plantas Medicinais. 2012;14(2):267-75.). Both species have winged seeds, which may facilitates dispersion by wind at great distances, representing a colonization advantage (Gogosz et al., 2015Gogosz AM, Boerger MRT, Cosmo NL, Nogueira AC. Morfologia de diásporos e plântulas de espécies arbóreas da floresta com araucária, no sul do Brasil. Floresta. 2015;45(4):819-32.).

However, biometric data and average number of seeds kg-1 differ between these congener species. J. decurrens subsp. symmetrifoliolata seeds are 5.9-13 mm long, 6.0-12.0 mm wide and 0.4-2.2 mm thick, with an average of 31,545 seeds kg-1 (Sangalli et al., 2012Sangalli A, Vieira MC, Scalon SPQ, Zárate NAH, Silva CB, Ribeiro IS. Morfometria de frutos e sementes e germinação de carobinha (Jacaranda decurrens subsp. symmetrifoliolata Farias & Proença), após o armazenamento. Revista Brasileira de Plantas Medicinais. 2012;14(2):267-75.), which are heavier than those from J. mimosifolia. These authors assure that is common to find morphometric variations between undomesticated species, e.g. J. decurrens subsp. symmetrifoliolata, indicating a high genetic variability within the population. This may be influenced by biotic and abiotic factors during fruits formation and seeds development (Dutra et al., 2017Dutra FV, Cardoso AD, Silva RM, Lima RS, Moraes OM, Rampazzo MC. Morfobiometria de frutos e sementes de Schizolobium amazonicum Huber ex Ducke. Revista Agropecuária Técnica. 2017;38(2):58-64.).

Moraes and Alves (2002)Moraes PLR, Alves MC. Biometria de frutos e diásporos de Cryptocarya aschersoniana Mez e Cryptocarya moschata Ness (Lauraceae). Biota Neotropica. 2002;2(1):1-11. affirm that seed size is an important factor, since larger seeds boost the chances of having a successful germination, and increase growth and seedling survival, also producing seedlings that are more vigorous and competitive.

Another feature that deserves attention is the germination type, which in the case of J. mimosifolia was hypogea-phanerocotylar. This differs from both J. copaia (Aubl.) D. Don. subsp. spectabilis (Mart. ex A. DC) Gentry (Gurgel et al., 2006Gurgel ESC, Santos JUM, Carvalho ACM, Bastos MNC. Jacaranda copaia (Aubl.) D. Don. subsp. spectabilis (Mart. ex A. DC) Gentry (Bignoniaceae): aspectos morfológicos do fruto, semente, germinação e plântula. Boletim Museu Paraense. Emílio Goeldi. Ciências Naturais. 2006;1(2):113-20.; Abensur et al., 2007Abensur FO, Melo MFF, Ramos MBP, Varela VP, Batalha LP. Tecnologia de sementes e morfologia da germinação de Jacaranda copaia D. Don. (Bignoniaceae). Revista Brasileira de Biociências. 2007;5(2)60-2.) and J. ulei Bureau and K. Schum. (Silveira et al., 2013Silveira CES, Fukuda WS, Miranda TD, Palhares D, Pereira LA R. Jacaranda ulei Bureau and K. Schum. (Bignoniaceae): in vitro seedling developmental study as contribution towards the domestication of this medicinal Brazilian savannah species. Journal of Pharmacognosy and Phytochemistry. 2013;2(4):85-9.), which present epigeous-phanerocotylar germination. J. mimosifolia also presented fleshy cotyledons, being the same observed for J. copaia (Gurgel et al., 2006Gurgel ESC, Santos JUM, Carvalho ACM, Bastos MNC. Jacaranda copaia (Aubl.) D. Don. subsp. spectabilis (Mart. ex A. DC) Gentry (Bignoniaceae): aspectos morfológicos do fruto, semente, germinação e plântula. Boletim Museu Paraense. Emílio Goeldi. Ciências Naturais. 2006;1(2):113-20.).

Radicle protrusion happened 6 DAS for J. mimosifolia, while J. copaia took 11 DAS (Abensur et al., 2007Abensur FO, Melo MFF, Ramos MBP, Varela VP, Batalha LP. Tecnologia de sementes e morfologia da germinação de Jacaranda copaia D. Don. (Bignoniaceae). Revista Brasileira de Biociências. 2007;5(2)60-2.). Leaves morphological analysis revealed mutual elements amongst congener species, e.g. J. copaia (Gurgel et al., 2006Gurgel ESC, Santos JUM, Carvalho ACM, Bastos MNC. Jacaranda copaia (Aubl.) D. Don. subsp. spectabilis (Mart. ex A. DC) Gentry (Bignoniaceae): aspectos morfológicos do fruto, semente, germinação e plântula. Boletim Museu Paraense. Emílio Goeldi. Ciências Naturais. 2006;1(2):113-20.), J. brasiliana (Lam.) Pers. and J. cuspidifolia Mart. (Costa et al., 2011Costa RS, Ortolani FA, Môro FV, Paula RC. Caracterização morfológica de folhas e flores de espécies de Jacaranda (Bignoniaceae), cultivadas em Jaboticabal - SP. Revista de Biologia e Ciências da Terra. 2011;11(1):169-81.).

The axial root system presented faster development than aerial shoots, which may be considered as an ecological advantage that provides a better use of substrate resources.

J. mimosifolia presented larger number of leaves and higher average plant height inside the greenhouse.

Similar results were found for J. puberula Cham. (Almeida et al., 2005aAlmeida LS, Maia N, Ortega AR, Angelo AC. Crescimento de mudas de Jacaranda puberula Cham. em viveiro submetidas a diferentes níveis de luminosidade. Ciência Florestal. 2005a;15(3)323-9.). This pattern is explained by plants capacity of growing fast when shadowed, constituting an important adaptation mechanism for this species as a strategy to escape low luminosity conditions (Almeida et al., 2005bAlmeida SMZ, Soares AM, Castro EM, Vieira CV, Gajego EB. Alterações morfológicas e alocação de biomassa em plantas jovens de espécies florestais sob diferentes condições de sombreamento. Ciência Rural. 2005b;35(1):62-8.; Pacheco et al., 2013Pacheco FV, Pereira CR, Silva RL, Alvarenga ICA. Crescimento inicial de Dalbergia nigra (Vell.) Allemão ex. Benth. (FABACEAE) e Chorisia speciosa A.St.-Hil (MALVACEAE) sob diferentes níveis de sombreamento. Revista Árvore. 2013;37(5):945-53.).

Full sun environment significantly influenced J. mimosifolia collar diameter, likewise results found for Tabebuia aurea (Silva Manso) Benth. & Hook. f. ex S. Moore (Oliveira and Perez, 2012Oliveira AKM, Perez SCJGA. Crescimento inicial de Tabebuia aurea sob três intensidades luminosas. Ciência Florestal. 2012;22(2):263-73.). The higher radiation of this environment provides a larger production o photassimilates, which accumulates inside plants stalk (Siebeneichler et al., 2008Siebeneichler SC, Freita GA, Silva RR, Adorian GC, Capellari D. Características morfofisiológicas em plantas de Tabebuia heptaphyilla (vell.) tol. em condições de luminosidade. Acta Amazonica. 2008;38(3):467-72.; Ferreira et al., 2016Ferreira SD, Bulegon LG, Yassue RM, Echer MM. Efeito da adubação nitrogenada e da sazonalidade na produtividade de Ocimum basilicum L. Revista Brasileira de Plantas Medicinais. 2016;18(1):67-73.). Câmara and Endres (2008)Câmara CA, Endres L. Desenvolvimento de mudas de duas espécies arbóreas: Mimosa caesalpiniifolia Benth. e Sterculia foetida L. sob diferentes níveis de sombreamento em viveiro floresta. Floresta. 2008;38(1):43-51. sustain that this variable is a strong quality indicator for seedlings, since larger collars improve plants equilibrium and provides a better development to aerial shoots.

There were no differences between root lengths in the two environments along evaluation periods. This was probably due to physical impediment caused by the size of the recipients used for seedlings production, which was only 26 cm long (Vallone et al., 2010Vallone HS, Guimarães RJ, Mendes ANG, Souza CAS, Cunha RL, Dias FP. Diferentes recipientes e substratos na produção de cafeeiros. Ciência e Agrotecnologia. 2010;34(1):55-60.; Antoniazzi et al., 2013Antoniazzi AP, Binotto B, Neumann GM, Sausen TL, Budke JC. Eficiência de recipientes no desenvolvimento de mudas de Cedrela fissilis Vell. (Meliaceae). Revista Brasileira de Biociência. 2013;11(3):313-7.).

Aerial dry weight presented better results inside greenhouse, since plants in this environment were taller. However, full sun presented larger values of root dry weight. Probably, luminosity intensity favored photosynthesis, which directed more photassimilates to the root system (Freitas et al., 2012Freitas GA, Vaz-de-Melo A, Pereira MAB, Andrade CAO, Lucena GN, Silva RR. Influência do sombreamento na qualidade de mudas de Sclerolobium paniculatum Vogel para recuperação de área degradada. Journal of Biotechnology and Biodiversity. 2012;3(3):5-12.). The same authors believe that seedlings with well-developed roots have more chances of surviving in the field, since seedlings with longer aerial shoots have more chances of tipping, altering the quality pattern.

Dickson’s Quality Index (DQI) stood out for full sun seedlings. DQI includes important characteristics that interfere on plants survival and seedlings quality (Bonamigo et al., 2016Bonamigo T, Scalon SPQ, Pereira ZV. Substratos e níveis de luminosidade no crescimento inicial de mudas de Tocoyena formosa (Cham. & Schltdl.) K. Schum. (RUBIACEAE). Ciência Florestal. 2016;26(2):501-11.), since it takes into consideration biomass distribution and robustness, pondering several important parameters (Melo and Cunha, 2008Melo RR, Cunha MCL. Crescimento inicial de mudas de mulungu (Erythrina velutina wild.) sob diferentes níveis de luminosidade. Ambiência. 2008;4(1):67-77.).

5. CONCLUSIONS

The characterization of seeds biometry and morphology of seedlings of blue jacaranda (Jacaranda mimosifolia D. Don.) make it possible to recognize this species in the field, since its morphological characters are homogeneous. These information permit to plan laboratorial activities, to improve seeds processing and to identify this plant during its juvenile phase.

Plants cultivated at full sun presented better development and higher vigor, and this environment is the most recommended to the production of seedlings of this species.

Seedlings produced at full sun can be destined to recuperate forests and degraded areas just 36 weeks after sowing.

6. REFERENCES

  • Abensur FO, Melo MFF, Ramos MBP, Varela VP, Batalha LP. Tecnologia de sementes e morfologia da germinação de Jacaranda copaia D. Don. (Bignoniaceae). Revista Brasileira de Biociências. 2007;5(2)60-2.
  • Almeida LS, Maia N, Ortega AR, Angelo AC. Crescimento de mudas de Jacaranda puberula Cham. em viveiro submetidas a diferentes níveis de luminosidade. Ciência Florestal. 2005a;15(3)323-9.
  • Almeida SMZ, Soares AM, Castro EM, Vieira CV, Gajego EB. Alterações morfológicas e alocação de biomassa em plantas jovens de espécies florestais sob diferentes condições de sombreamento. Ciência Rural. 2005b;35(1):62-8.
  • Alves GR, Peruchi A, Agostini K. Polinização em área urbana: o estudo de caso de Jacaranda mimosifolia D. Don (Bignoniaceae). Bioikos. 2010; 24(1):31-41
  • Alves LR, Oliveira RJ, Coimbra RR, Ferreira WM. Crescimento inicial de Parkia platycephala (Benth.) e Enterolobium timbouva (Mart.) sob condições de campo numa área de Cerrado. Revista Ceres. 2016;63(2):154-64.
  • Antoniazzi AP, Binotto B, Neumann GM, Sausen TL, Budke JC. Eficiência de recipientes no desenvolvimento de mudas de Cedrela fissilis Vell. (Meliaceae). Revista Brasileira de Biociência. 2013;11(3):313-7.
  • Bonamigo T, Scalon SPQ, Pereira ZV. Substratos e níveis de luminosidade no crescimento inicial de mudas de Tocoyena formosa (Cham. & Schltdl.) K. Schum. (RUBIACEAE). Ciência Florestal. 2016;26(2):501-11.
  • Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília : Mapa/ACS; 2009.
  • Cabanez PA. Interferência da radiação solar na cultura do rabanete. Nucleus. 2015;12(2):257-62.
  • Câmara CA, Endres L. Desenvolvimento de mudas de duas espécies arbóreas: Mimosa caesalpiniifolia Benth. e Sterculia foetida L. sob diferentes níveis de sombreamento em viveiro floresta. Floresta. 2008;38(1):43-51.
  • Cosmo NL, Gogosz AM, Rego SS, Nogueira AC, Kuniyoshi YS. Morfologia de fruto, semente e plântula, e germinação de sementes de Myrceugenia euosma (O. BERG) D. LEGRAND (MYRTACEAE). Floresta. 2017;47(4):479-88.
  • Costa RS, Ortolani FA, Môro FV, Paula RC. Caracterização morfológica de folhas e flores de espécies de Jacaranda (Bignoniaceae), cultivadas em Jaboticabal - SP. Revista de Biologia e Ciências da Terra. 2011;11(1):169-81.
  • Dantas BF, Lopes AP, Silva FFSS, Lúcio AA, Batista PF, Pires MMML, Aragão CA. Taxas de crescimento de mudas de catingueira submetidas a diferentes substratos e sombreamentos. Revista Árvore. 2009;33(3):413-23.
  • Dickson A, Leaf A, Hosner JF. Quality appraisal of white spruce and white pine stock in nurseries. Forestry Chronicle. 1960;36:10-3.
  • Diniz FO, Medeiros Filho S, Bezerra AME, Moreira FJC. Biometria e morfologia da semente e plântula de oiticica. Revista Verde de Agroecologia e Desenvolvimento Sustentável. 2015;10(2):183-7.
  • Dutra FV, Cardoso AD, Silva RM, Lima RS, Moraes OM, Rampazzo MC. Morfobiometria de frutos e sementes de Schizolobium amazonicum Huber ex Ducke. Revista Agropecuária Técnica. 2017;38(2):58-64.
  • Ferreira SD, Bulegon LG, Yassue RM, Echer MM. Efeito da adubação nitrogenada e da sazonalidade na produtividade de Ocimum basilicum L. Revista Brasileira de Plantas Medicinais. 2016;18(1):67-73.
  • Fischer E, Theisen I, Lohmann LG. Bignoniaceae. In: Kubitzki K, Kadereit JW. The Families and Genera of Vascular. Plants. 2004;7:9-8.
  • Freitas GA, Vaz-de-Melo A, Pereira MAB, Andrade CAO, Lucena GN, Silva RR. Influência do sombreamento na qualidade de mudas de Sclerolobium paniculatum Vogel para recuperação de área degradada. Journal of Biotechnology and Biodiversity. 2012;3(3):5-12.
  • Gogosz AM, Boerger MRT, Cosmo NL, Nogueira AC. Morfologia de diásporos e plântulas de espécies arbóreas da floresta com araucária, no sul do Brasil. Floresta. 2015;45(4):819-32.
  • Gurgel ESC, Santos JUM, Carvalho ACM, Bastos MNC. Jacaranda copaia (Aubl.) D. Don. subsp. spectabilis (Mart. ex A. DC) Gentry (Bignoniaceae): aspectos morfológicos do fruto, semente, germinação e plântula. Boletim Museu Paraense. Emílio Goeldi. Ciências Naturais. 2006;1(2):113-20.
  • Lone AB, Takahashi LSA, Faria RT, Destro D. Desenvolvimento vegetativo de Melocactus bahiensis (cactaceae) sob diferentes níveis de sombreamento. Revista Ceres. 2009;56(2):199-203.
  • Melo RR, Cunha MCL. Crescimento inicial de mudas de mulungu (Erythrina velutina wild.) sob diferentes níveis de luminosidade. Ambiência. 2008;4(1):67-77.
  • Moraes PLR, Alves MC. Biometria de frutos e diásporos de Cryptocarya aschersoniana Mez e Cryptocarya moschata Ness (Lauraceae). Biota Neotropica. 2002;2(1):1-11.
  • Mota LHS, Scalon SPQ, Heinz R. Sombreamento na emergência de plântulas e no crescimento inicial de Dipteryx alata Vog. Ciência Florestal. 2012;22(3):423-31.
  • Oliveira AKM, Perez SCJGA. Crescimento inicial de Tabebuia aurea sob três intensidades luminosas. Ciência Florestal. 2012;22(2):263-73.
  • Pacheco FV, Pereira CR, Silva RL, Alvarenga ICA. Crescimento inicial de Dalbergia nigra (Vell.) Allemão ex. Benth. (FABACEAE) e Chorisia speciosa A.St.-Hil (MALVACEAE) sob diferentes níveis de sombreamento. Revista Árvore. 2013;37(5):945-53.
  • Paoli AAS, Bianconi A. Caracterização morfológica de frutos, sementes e plântulas de Pseudima frutescens (Aubl.) Radlk. (SAPINDACEAE). Revista Brasileira de Sementes. 2008;30(2):146-55.
  • Rego SS, Nogueira AC, Kuniyoshi YS, Santos ÁF. Caracterização morfológica do fruto, da semente e do desenvolvimento da plântula de Blepharocalyx salicifolius (H. B. K.) Berg. e Myrceugenia gertii Landrum - Myrtaceae. Revista Brasileira de Sementes. 2010;32(3):52-60.
  • Sangalli A, Vieira MC, Scalon SPQ, Zárate NAH, Silva CB, Ribeiro IS. Morfometria de frutos e sementes e germinação de carobinha (Jacaranda decurrens subsp. symmetrifoliolata Farias & Proença), após o armazenamento. Revista Brasileira de Plantas Medicinais. 2012;14(2):267-75.
  • Siebeneichler SC, Freita GA, Silva RR, Adorian GC, Capellari D. Características morfofisiológicas em plantas de Tabebuia heptaphyilla (vell.) tol. em condições de luminosidade. Acta Amazonica. 2008;38(3):467-72.
  • Silveira CES, Fukuda WS, Miranda TD, Palhares D, Pereira LA R. Jacaranda ulei Bureau and K. Schum. (Bignoniaceae): in vitro seedling developmental study as contribution towards the domestication of this medicinal Brazilian savannah species. Journal of Pharmacognosy and Phytochemistry. 2013;2(4):85-9.
  • Souza LA. Sementes e plântulas: germinação, estrutura e adaptação. Ponta Grossa: Toda Palavra; 2009. 279p.
  • Souza VC, Lorenzi H. Botanica sistemática: Guia ilustrado para identificação das famílias de angiospermas da flora brasileira, baseado em APG II. Nova Odessa: Instituto Plantarum; 2005.
  • Vallone HS, Guimarães RJ, Mendes ANG, Souza CAS, Cunha RL, Dias FP. Diferentes recipientes e substratos na produção de cafeeiros. Ciência e Agrotecnologia. 2010;34(1):55-60.

Publication Dates

  • Publication in this collection
    08 Nov 2018
  • Date of issue
    2018

History

  • Received
    27 Feb 2018
  • Accepted
    09 July 2018
Sociedade de Investigações Florestais Universidade Federal de Viçosa, CEP: 36570-900 - Viçosa - Minas Gerais - Brazil, Tel: (55 31) 3612-3959 - Viçosa - MG - Brazil
E-mail: rarvore@sif.org.br