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Photosynthetic properties of three Brazilian seaweeds
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ABSTRACT – (Photosynthetic properties of three Brazilian seaweeds). Photosynthetic performance of distinct marine macroalgae, 
Ulva fasciata Delile (green alga), Lobophora variegata (J. V. Lamouroux) Womersley ex E. C. Oliveira (brown alga), and 
Plocamium brasiliensis (Greville) M. A. Howe & W. R. Taylor (red alga), were compared using a pulse amplitude-modulated 
fl uorometer. The maximum quantum yield (Fv/Fm) ranged from 0.80 to 0.51, and the lowest value was found in P. brasiliensis. 
Under 400 μmol photons m-2 s-1 irradiance, the highest value of photochemical quenching (qP = 0.92 ± 0.13) was observed for 
U. fasciata. The red alga P. brasiliensis dissipated high amounts of excitation energy (qN = 0.56 ± 0.09), resulting in relatively 
low values for the effective quantum yield of PS-II (0.23 ± 0.04), as well as for the relative electron transport rate (3.3 ± 0.7). The 
high photosynthetic potential found for U. fasciata partially explains the species ability for rapid growth and high productivity.
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RESUMO – (Propriedades fotossintéticas de três macroalgas marinhas brasileiras). O desempenho fotossintético de três grupos 
distintos de macroalgas marinhas, Ulva fasciata Delile (alga verde), Lobophora variegata (J. V. Lamouroux) Womersley ex 
E. C. Oliveira (alga parda) e Plocamium brasiliensis (Greville) M. A. Howe & W. R. Taylor (alga vermelha), foi comparado 
com auxílio de um fl uorímetro de pulso e amplitude modulada. O potencial fotoquímico máximo do PS II (Fv/Fm) variou de 
0,80 a 0,51, sendo que os menores valores foram observados em P. brasiliensis. Sob a irradiância de 400 μmol fótons m-2 s-1, 
o maior valor de dissipação fotoquímica (qP = 0,92 ± 0,13) foi observado para U. fasciata. A alga vermelha P. brasiliensis 
dissipou elevada quantidade de energia de excitação (qN = 0,56 ± 0,09), resultando em valores baixos de potencial fotoquímico 
efetivo do PS II (0,23 ± 0,04), e também de taxa relativa de transporte de elétrons (3,3 ± 0,7). O elevado potencial fotossintético 
encontrado para U. fasciata explica, parcialmente, a capacidade da espécie de crescimento rápido e de alta produtividade.
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Introduction

Chlorophyll fl uorescence analysis allows 
noninvasive and fast measurements of key aspects of 
photosynthetic light capture and electron transport. 

For biological systems at room temperature, the 
overall chlorophyll fl uorescence yield is usually low 
and most of the fl uorescence emission originates 
from PSII antenna pigments (Krause & Weis 1991). 
Although PSII fl uorescence is a minor pathway for 
excitation dissipation, it competes with the quantitatively 
more important energy dissipation routes of PSII 
photochemistry, such as excitation transfer to PSI and 
heat dissipation. Therefore, changes in photochemistry 
or in the two nonphotochemical routes (energy and heat 
emission) cause changes in the fl uorescence yield from 
PSII (Krause & Weis 1991; Bolhàr-Nordenkampf & 
Öquist 1993).

Pulse amplitude-modulated (PAM) fl uorescence 
measuring systems, originally developed for higher plants, 
have been used to measure chlorophyll fl uorescence 
from algae and cyanobacteria (Schreiber et al. 1986, 
Büchel & Wilhelm 1993, Schreiber et al. 1995, Mouget 
& Tremblin 2002, Molina-Montenegro et al. 2005), as 
well as from photosymbiont-containing invertebrates 
such as corals (Yellowlees et al. 2003) and sponges (Beer 
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& Ilan 1998). In this study, a pulse amplitude-modulated 
fl uorometer was used to assess photosynthetic properties 
of three tropical seaweeds (green, brown and red algae). 
Lobophora variegata (J.V. Lamouroux) Womersley ex 
E. C. Oliveira (Heterokontophyta) and Ulva fasciata 
Delile (Chlorophyta) are widely distributed along the 
Brazilian coast from shallow waters up to depths of 
26 and 13 m, respectively (Horta 2000). In contrast, 
Plocamium brasiliensis (Greville) M. A. Howe & W. 
R. Taylor (Rhodophyta) is restricted to the southern 
and southeastern coast of Brazil, growing from the 
intertidal zone to depths of 22 m (Horta 2000). The 
thalli of the fi rst two species are foliose and expanded 
while P. brasiliensis thallus is foliose and abundantly 
branched. Comparative studies on the photosynthetic 
responses of different groups of tropical seaweeds are 
scarce (Necchi Júnior 2004), and this study was initiated 
as a contribution to reduce this gap.

Material and methods

Algal material – Specimens of the green alga Ulva fasciata, 
the brown alga Lobophora variegata and the red alga 
Plocamium brasiliensis were collected from Praia do Forno 
(Búzios, Rio de Janeiro State, Brazil – 22°46’ S, 42°53’ W) 
in March 2006. U. fasciata occurred in the intertidal and 
upper sub-littoral zone of rocky shores, while L. variegata 
and P. brasiliensis were found in the upper sub-littoral 
zone of the beach. Samples were collected from the rocky 
shore at 1 m depth and immediately placed in a vessel with 
seawater at 22 °C (ambient seawater temperature). The vessel 
was maintained in darkness for at least 20 minutes prior to 
fl uorescence measurements. Three thalli of each species were 
used for measurements.

Chlorophyll-a fl uorescence measurements – Chlorophyll 
fl uorescence parameters were measured using a submersible 
diving-PAM system (Walz, Effeltrich, Germany), equipped 
with a blue LED (470 nm). The minimal fl uorescence level 
in the dark-adapted state (Fo) was elicited by a weak probe 
of modulated light, whereas the maximum fl uorescence level 
(Fm) was detected after a saturating pulse of actinic light 
(10,000 μmol photons m-2 s-1), which is suffi cient to close 
all reaction centers and drive photochemical quenching to 
zero. Variable fl uorescence of dark-adapted samples (Fv) was 
calculated from Fm-Fo, and the maximum quantum effi ciency 
of PS-II photochemistry was obtained from the ratio Fv/Fm. 
Samples were also exposed to 400 μmol photons m-2 s-1 until 
steady-state fl uorescence emission (Fs) was obtained, and 
maximum fl uorescence signal (Fm’) of light-adapted samples 
was determined after a saturating pulse of actinic light. The 
effective quantum effi ciency of PS-II (ΦPS-II = Fm’-Fs / Fm’) 
was obtained from light-adapted samples. The proportion of 
open PSII reaction centers under actinic light was determined 

by the photochemical quenching coeffi cient, qP = (Fm’-Fs)/
(Fm’-Fo), and the nonphotochemical quenching coeffi cient 
calculated from qN = (Fm-Fm’)/(Fm-Fo). The relative electron 
transport rate (rETR) was computed by using the equation 
ETR = PAR 0.5 ΦPS-II 0.84 (Genty et al. 1989).

Statistics – Mean values were compared using Kruskal Wallis 
non-parametric ANOVA at 5% signifi cance level (P < 0,05), 
using the software GraphPadInStat 3.01 (GraphPad Software 
Inc.).

Results and discussion

The three seaweed species showed signifi cantly 
different responses in fl uorescence parameters, although 
they occurred at similar positions on the boulders, and 
were, therefore, exposed to similar irradiances. Maximum 
quantum effi ciency (Fv/Fm of dark-adapted samples) was 
signifi cantly lower in P. brasiliensis and higher in U. 
fasciata than in L. variegata (fi gure 1A), suggesting 
that the red alga was photoinhibited at the highest light 
levels around noontime. In addition, the highest values 
observed in U. fasciata (0.80-0.83), seem to indicate an 
increased PSII function in comparison with the other 
two species.

The values for qP were not signifi cantly different 
among the three species (fi gure 1B). Given that qP 
refl ects the proportion of the PSII reaction centers in 
the open state, high values of qP can result either from 
high rates of electron transfer around PSII (high rates 
of QA re-oxidation) or from the occurrence of high 
nonphotochemical quenching processes. As qN describes 
any nonphotochemical process that reduces the yield of 
variable fl uorescence, the lowest values for this parameter 
in U. fasciata (fi gure 1B) confi rm that this alga effi ciently 
utilizes trapped light energy. This is in agreement with 
high values of both photochemical yield of electron 
transport around PSII (ΦPS-II, fi gure 1C) and relative 
electron transport rate (rETR, fi gure 1D) observed for 
this species. In contrast, it is evident in fi gure 1B that 
a higher amount of excitation energy is dissipated by 
nonphotochemical processes in P. brasiliensis than in 
the other two species, resulting in low values of ΦPS-II 
and rETR (fi gure 1C and 1D). These results suggest that 
P. brasiliensis is a shade adapted species in accordance 
with the results found for another red alga Palmaria 
palmata (Linnaeus) Kuntze from the French coastline 
(Mouget & Trembling 2002). Under light intensities 
ranging from 10 to 150 μmol m-2 s-1, P. palmata exhibited 
the lowest ΦPS-II and qP values, as well as the highest 
level of energy dissipation through nonphotochemical 
quenching, in comparison to Ulva sp. and the brown alga 
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L. variegata were close to those found in the green alga, 
an effi cient photosynthetic apparatus is also assumed to 
occur in this Dictyotales. Similar results were previously 
observed in L. variegata sampled from deep-water near 
Bermuda (Peckol & Ramus 1992).

Our results support the view of rapid growth 
potential and high net primary productivity of the 
opportunistic macroalgae U. fasciata as previously 
reported (Littler & Littler 1980, Mouget & Tremblin 
2002). The sampling site can be subjected to drastic 
changes in water temperature during the summer, due to 
the upwelling phenomenon that occurs in the proximity 
(Valentin et al. 1978). High solar irradiation allied to 
cold water can change photosynthetic rates and increase 
photoinhibition (Gomez et al. 2001). Such conditions 
represent a natural laboratory for studies in the tropics and 
a better understanding of the photosynthetic responses of 
the macroalgal community is of major importance in the 
present scenario of potential global weather changes.
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Figure 1. Photosynthetic parameters of three seaweeds: Ulva 
fasciata, Lobophora variegata and Plocamium brasiliensis. 
A. Fv/Fm, the maximum PS-II quantum effi ciency of dark-
adapted samples. B. qP and qN, the photochemical and 
nonphotochemical quenching coeffi cients, respectively. 
C. ΦPS-II, the effective PS-II quantum effi ciency of illuminated 
samples. D. rETR, the relative electron transport rate. Distinct 
low caption letters represent statistically different means at 
P < 0.05, and bars represent standard deviations.
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