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ABSTRACT: Ultisols are the most common soil order in the Brazilian Amazon. The Legal 
Amazon (LA) has an area of 5 × 106 km2, with few accessible areas, which restricts 
studies of soils at a detailed level. The pedological properties can be estimated more 
efficiently using statistical procedures and machine learning techniques, tools which are 
capable of recognizing patterns in a large soil database. We analyzed the main chemical 
and physical properties of the B horizons of the Ultisols of the Brazilian Amazon, as well 
as the spatial variability of the most explanatory properties of these horizons. Physical 
and chemical data of 1,068 profiles of the RadamBrasil Project were used. A principal 
component analysis (PCA) was applied and the most explanatory variables were separated 
by morphostructural units and climate zones. The technique of machine learning was 
used for spatialization of the explanatory variables based on predictive covariates. 
In general, the horizons are thick, clay, with a predominance of negative charges, and 
low levels of exchangeable cations. The variables retained in the PCA were: sum of bases 
(SB), Al3+, degree of flocculation (Floc), ∆pH, and organic carbon content (C). Areas of 
greater precipitation have low SB, with higher values in the basement complex (BC) and 
in areas under the Andean influence. Higher levels of Al3+ and degrees of flocculation 
were also associated with greater precipitation. However, the soils are predominantly 
electronegative, showing a kaolinitic mineralogy. The C contents in general were low, 
with an increase in more humid zones due to the process of mineralization and illuviation 
(podzolization), and in the BC due to the protection of C by the aggregation of clay. The 
use of multivariate analysis allowed a better understanding of the Ultisols’ main properties 
in different morphostructural and climatic domains, and its spatialization facilitated the 
interpretation of properties and their relationships with environmental characteristics 
in the Legal Amazon.

Keywords: Legal Amazon, principal component analysis, morphostructural domains, 
climatic zones. 
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INTRODUCTION 
The Legal Amazon (LA) consists of an administrative region of 5.2 × 106 km², which 
includes the Lowland Amazon Forest and Cerrado biomes. Despite the overall dominance 
of rainforest ecosystems (Ab’saber, 2002), it is now recognized that the region presents 
much more varied systems (Almeida et al., 2010), ranging from sandy ecosystems with 
dwarf plants (Mendonça et al., 2015) to transitional ecotones between Cerrado and Forest 
(Marimon et al., 2006) and Dense Equatorial Forest (ombrophilus). 

Due to the extensive territorial dimensions and the limited accessibility, studies of soils in 
the Amazon have mainly been based on local scales and on toposequences (Chauvel, 1981; 
Bernoux et al., 1998; Feitosa et al., 2016). However, in the 1970s an exploratory survey 
of the soils of this region was conducted, called the RADAM project (Brasil, 1973), and 
contributed significantly to increasing the knowledge on the soils and their environmental 
interpretations (Sanchez et al., 1982; Rodrigues, 1996; Nepstad et al., 2004).

Subjected to wet, hot climates, Amazon soils are highly developed, with a predominance of 
Oxisols, Ultisols, Plinthosols (Plintaquults) according to the system Soil Survey Staff (2014), 
mostly dystrophic, and with few primary minerals and nutrient reserves (Sanchez et al., 
1982; Curi and Franzmeier, 1984; Vale Júnior et al., 2011). Unlike the Oxisols, the Ultisols, 
which match the order Argissolos in the Brazilian Soil Classification System (Santos et al., 
2013), have characteristics such as less structural development at the subsurface and 
a textural gradient attributed to clay losses at the surface. Like the Amazon Oxisols, 
Ultisols have similar chemical and physical properties, and parent materials.

The study of soils in large areas can be effective if homogeneous zones can be recognized, 
allowing the extrapolation of properties influenced by the dominant characteristics 
(Trangmar et al., 1986; Corá et al., 2004), for example, the climate, which is key factor in the 
landscape evolution and pedogenesis of the Amazon (Yaalon, 1983; Stockmann et al., 2014; 
Delarmelinda et al., 2017). The local landform is also an excellent stratifier of environments, 
translating into similar hydrological and geological characteristics that have a direct influence 
on the pedological properties (Mulla and McBratney, 2001; Park and Burt, 2002). 

Studies of large territorial dimensions and databases need robust methods of analysis. 
In this regard, statistical procedures can help with the identification of patterns and dataset 
groupings, as recently reported in soil studies (Gomes et al., 2004; Carvalho Junior et al., 
2008). In addition, the use of techniques of machine learning algorithms (MLA) has recently 
gained strength. These are a set of models that are able to find patterns in data and perform 
predictions (Witten et al., 2016) and have already been applied in pedology (Bui and Moran, 
2003; Behrens et al., 2005; Kovačević et al., 2010; Brungard et al., 2015; Forkuor et al., 2017).

Although the distribution of Amazon soils and their associations in relation to certain environmental 
characteristics are recognized on a generalized scale, no study has yet evaluated the relationship 
between the soil properties of a given order in relation to the different morphoclimatic domains, 
by using statistical tools and machine learning techniques in a regional approach. The objective 
of this study was to (i) determine and select the main chemical and physical properties that 
characterize the diagnostic Bt horizon of the Amazon Ultisols (Argissolos) through principal 
component analysis, and (ii) determine the spatial variability of the selected properties, in 
order to deepen the understanding of the spatial relationships with the geomorphology and 
landforms, helping to understand how Ultisols vary across the Amazon. 

MATERIALS AND METHODS 

Characterization of the study area 

The study area comprises all the territory of the Legal Amazon Region (Figure 1). It 
is located between the coordinates 5° 28’ N and – 18° 04’ S latitude, and – 73° 10’ 
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to – 44° 00’ W longitude, with an area of approximately 5 × 106 km², corresponding 
to 61 % of the Brazilian territory. The climate is humid to sub-humid equatorial, with 
rainfall ranging from 1,400 to 3,500 mm yr-1, with climatic types Af, Am until Aw (Vale 
Júnior et al., 2011). The average air temperature varies from 22 to 28 °C. In this research, 
the divisions of climatic zones considered were: semi-arid (SemiA); semi-humid (SemiU); 
humid (H), and super-humid (SU) (Figure 1a).

At a macroscale, the area has three geotectonic units (morphostructural domains) 
(Figure 1b): crystalline basement complex (BC) represented by granites and gneisses 
rocks related to the Brazilian crystalline basement, forming hills, mountains, crystalline 
massifs, plateaus and depressions; sedimentary deposits (SD), the unit mainly having 
Quaternary sediments, notably the Içá and Boa Vista Formations, which form low plateaus, 
tablelands, depressions and, at the edges, occasionally have sediment of the Alter do 
Chão Formation (Cretaceous); sedimentary Basins (SB), mainly related to the alluvial plain 
of the Amazon, having floodplain, mangroves, and terraces deposits (Sombroek, 2000).

The Ultisols occupy 1.79 million km2 (Santos et al., 2011), representing 35 % of the area of 
the Legal Amazon and concentrated mainly in the state of Amazonas and Pará (Figure 1c). 

Selection of the variables

Data from 1,068 profiles of Ultisols were used (considering only the horizon Bt), of the soil 
survey RADAM project (Brasil, 1973). We analyzed: depth (m); silt, clay, and sand (g kg-1); 
degree of flocculation (Floc); pH(H2O); total organic carbon (C, g kg-1); exchangeable 
calcium (Ca2+, cmolc dm-3); magnesium (Mg2+, cmolc dm-3); potassium (K+, cmolc dm-3); 
sodium (Na+, cmolc dm-3); exchangeable aluminum (Al3+, cmolc dm-3); cation exchange 
capacity (CEC, cmolc dm-3); sum of bases (SB, cmolc dm-3); bases saturation (V, %), 
aluminum saturation (m, %), and the difference between pH(H2O) and pH( KCl) (∆pH). 

The Ultisols order was selected as it presented great expressivity in the region, in addition 
to which the soil showed evolutionary characteristics that better preserve properties 
related to climate, geology, and landforms, especially when compared to the Oxisols, 
which have a much greater development stage. 

A descriptive statistical analysis was performed to identify the main characteristics of the 
Ultisols. The chemical and physical properties dataset was also submitted to principal 
component analysis (PCA) (Abdi and Williams, 2010) in order to reduce the number of variables 
and select those that are more explanatory on the characterization of the Bt horizon.

The Kaiser criterion (Kaiser, 1960) was used to reduce the number of variables and 
main components, where components with eigenvalue ≤1.00 are discarded. In filtered 
components, the variable with the greatest percentage of explanation/importance was 
analyzed separately by morphostructural and climatic units. 

Spatial variability

The spatialization of properties was based on the Extremely randomized trees algorithm 
(Extra-Trees ET), which is a variant of the Random Forest (RF) introduced by Geurts et al. 
(2006), with an added layer of randomness, because instead of seeking the ideal division, 
the extra-tree uses a limit of random division during the decision trees training (Maier et al., 
2016). Extra-Trees shows good performance in data analysis, because it can improve 
accuracy and reduces the computational complexity (Geurts et al., 2006; Wehenkel et al., 
2006; Devaney et al., 2015). The whole procedure was performed in software R (R Core 
Team, 2017). 

A database was elaborated with predictive covariates, originated from the Digital Elevation 
Model (DEM) SRTM (30 m) (Shuttle Radar Topography Mission) and data on the geology, 
geomorphology, and pedology available in the Brazilian Institute of Geography and 
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Statistics (IBGE, 2017), 19 items (Bioclimatic variables)  of spatial information from 
the climatic data of WorldClim (Hijmans et al., 2005), the NDVI (Normalized Difference 
Vegetation Index) calculated from satellite images from the MODIS sensor, and also 
41 geomorphometric data extracted from MDE using the software RSAGA (Brenning, 
2008), associated with R, a method already applied by Hengl et al. (2008), Olaya and 
Conrad (2009), and Brungard et al. (2015). The individual definition of the variables can 
be found in Wilson and Gallant (2000) and MacMillan and Shary (2008). The raster files 
were sampled again for the cell size of 1 km2. 

From the predictors database, only 15 were selected, since with fewer predictors, the time and 
computational complexity are reduced (Kuhn and Johnson, 2013; Forkuor et al., 2017). The 
selection of predictors (numerical) is performed in two steps, the first based on the level of 
correlation (function findcorrelation- package caret) (Kuhn and Johnson, 2013), which analyzes 
the absolute values of the correlations between the predictors, which are analyzed in pairs, 
concomitantly; these are compared with all other predictors (numerical) of the database, 
and the one that exhibits the highest correlation with the database is thus eliminated.
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Figure 1. Location of the Legal Amazon with limits of the States, with an emphasis on morphostructural domains (a); climate zones 
(b), and profiles and domain of the Ultisols (c). Data (a) and (b) are available at IBGE (2017).
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The limit of correlation to eliminate the predictor was >95 % (a value defined by the 
operator). The second step employed the function Random Forest-Recursive Feature 
Elimination (RF-RFE) (Guyon et al., 2002), with the objective of selecting the smallest 
possible subset of predictors and with a certain spatialization capacity. To do this, 
we chose to select the subset that had lower performance than 3 % below the best R2 
found, because the best R2 can be a reflection of the excess of predictors; furthermore, 
using fewer predictors ensures simplicity in the method and this factor can be essential 
so that the mapping is efficient, particularly for large territorial extensions (McKenzie 
and Gallant, 2006; Hartemink et al., 2008). 

The training process/prediction was applied 100 times, where the classifier each time 
separated randomly a share of 75 % of the samples for training and 25 % for validation, 
also generating statistical data for each routine and a map by means of the results. The 
application of this procedure may provide a better estimate because it evaluates with 
different groups of data (Kohavi, 1995; Grimm et al., 2008; Kuhn and Johnson, 2013). 
Every procedure is represented briefly in figure 2.

RESULTS

General characterization of the Bt horizon

In relation to the general properties of the Ultisols - Cambissolos (Table 1), it was observed 
that the Bt horizon of the Ultisols of Legal Amazon has an average thickness of 1.34 m, with 
mean clay content of clay of 406.6 g kg-1. However, the data show that these values can 
reach up to 2.90 m depth, and the clay content up to 870.0 g kg-1. The pH values range 
from 1.6 to 7.5 (mean of 4.91). Organic carbon contents were low, with an average of 
3.6 g kg-1 and maximum value of 40.0 g kg-1. The levels of Ca2+ and Mg2+ can reach 54.27 and 
9.35 cmolc dm-3, respectively. In general, the degree of flocculation is 76.22 % and the Al3+ 
content is 2.33 cmolc dm-3. The majority of Bt horizons are dystrophic (V = 23.32 %), with 
mean aluminum saturation (m) of 57.40 %. The ∆pH indicated a predominance of negative 
charges in most of the analyzed Bt horizons, despite the low activity clay. 

Multivariate analysis

The results of the PCA (Table 2) showed that only the first five main components were retained for 
analysis, based on the Kaiser criterion (main component with eigenvalue ≥1.0) (Kaiser, 1960).

Selection of Predictors** Selected PredictorsRFE***

Training and Prediction
100 runsUnselected Predictors 100 predicted maps

Map average (final map)

Statistical data
 R2, RMSE****
training and

external validation

Ultisols profiles
Geology
Geomorphometry*
Climate
Soils

Soil and covariates dataset

NumericCategorical

Figure 2. Flow chart representing the steps of selection of covariates and spatialization of properties of the Ultisols using the 
software R. Elements in the figure: * Data of the MDE-SRMT; ** findcorrelation function = refers to the data elimination that present 
collinearity (>97 %); *** Recursive Feature Elimination; **** Root-mean-square error.
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The retained components explain about 70 % of the total variability in the data set. The 
variables with the greatest percentage of explanation/importance for each component 
were: SB (18.60 %) - CP1, Al (19.44 %) - CP2, Floc (22.51 %) - CP3, ∆pH (19.22 %) - 
CP4, and C (36.70 %) - CP5. These variables are considered the most explanatory ones 
among the data set and that effectively describe the chemical and physical properties 
of the Bt horizon Ultisols of the Legal Amazon.

Table 1. Descriptive statistics considering all profiles of Ultisols (Bt horizon) described by survey of RADAMBrazil.
Statistic Depth Silt Clay Sand Floc C Ca2+ Mg2+ K+ Na+ Al3+ CEC SB V m pH(H2O) ∆pH

m g kg-1 % g kg-1 cmolc dm-3 %

Minimum 0.10 10.0 20.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.06 0.33 0.00 1.60 -5.70

Maximum 2.90 610 870 940 100.0 40.0 53.27 9.35 1.63 1.61 26.04 63.00 58.68 100.00 99.24 7.50 2.80

1st quartile 1.10 100 290 250 61.0 2.00 0.02 0.01 0.02 0.01 0.25 2.76 0.22 4.89 22.73 4.50 -1.00

Median 1.40 170 400 400 95.0 3.00 0.14 0.08 0.04 0.02 1.00 4.43 0.44 11.47 69.77 4.80 -0.70

3rd quartile 1.60 270 510 550 99.3 4.40 0.50 0.36 0.10 0.03 2.90 7.48 1.19 32.14 89.29 5.30 -0.50

Mean 1.35 196 407 397 76.2 3.60 0.94 0.47 0.10 0.05 2.33 6.44 1.62 23.32 57.40 4.91 -0.84

Variance 1261.7 147.0 226.0 406.6 1055.4 0.08 10.46 1.20 0.02 0.01 11.70 43.34 16.43 690.57 1271.20 0.43 0.49

Standard deviation 35.5 12.1 15.0 20.2 32.5 0.29 3.23 1.09 0.16 0.09 3.42 6.58 4.05 26.28 35.65 0.66 0.70

CV 0.30 0.60 0.4 0.5 0.4 0.79 3.42 2.31 1.63 2.06 1.47 1.02 2.50 1.13 0.62 0.13 -0.84

Asymmetry -0.20 0.90 0.3 0.1 -1.2 5.29 8.58 4.26 4.41 9.08 2.55 3.50 7.01 1.45 -0.52 0.73 -3.41

Kurtosis 0.10 0.26 -0.41 -0.79 -0.31 52.91 99.13 21.49 26.12 121.17 8.05 17.39 67.99 0.95 -1.27 1.38 19.27

Standard error 1.10 0.36 0.46 0.61 1.04 0.01 0.10 0.03 0.00 0.00 0.10 0.20 0.12 0.80 1.09 0.02 0.02

Floc = flocculation; C = organic Carbon; Ca2+ = exchangeable calcium; Mg2+ = exchangeable magnesium; Na+ = exchangeable sodium; Al3+ = 
exchangeable aluminum; CEC = effective cation exchange capacity; SB = sum of base; V = base saturation; m = Al3+ saturation; ∆pH (H2O - KCl) 
(Donagema et al., 2011). CV = coefficient of variation.

Table 2. Eigenvalue, variability, and percentage explained for the first five principal components 
selected according to the Kaiser criterion

Soil properties
Principal Components

CP1 CP2 CP3 CP4 CP5
%

Depth 0.53 0.01 0.78 15.48 16.62
Silt 2.78 10.56 0.87 1.52 1.27
Clay 0.86 7.02 19.94 12.71 6.18
Sand 2.84 15.39 7.51 11.54 1.44
Floc 1.48 0.54 22.51 4.57 13.50
pH 4.45 11.81 0.65 8.92 3.48
C 0.24 1.21 12.23 0.00 36.70
Ca2+ 15.49 0.00 0.17 6.37 1.47
Mg2+ 15.55 0.00 0.27 2.05 0.00
K+ 5.09 0.96 0.05 3.17 5.69
Na+ 3.96 0.20 0.11 6.43 0.89
Al3+ 0.71 19.44 4.28 0.06 0.03
CEC 10.21 9.51 2.05 1.69 0.47
SB 18.60 0.00 0.26 5.46 0.74
V 10.52 8.35 3.25 0.22 0.55
m 5.63 14.03 7.12 0.57 0.00
∆pH 1.06 0.98 17.94 19.22 10.97
Eigenvalue 4.49 3.34 1.68 1.33 1.07
Variability (%) 26.41 19.67 9.87 7.83 6.27
Cumulative variability (%) 26.41 46.08 55.95 63.78 70.05

Floc = flocculation; C = organic carbon; CV = coefficient of variation; CEC = cation exchangeable capacity; 
SB = sum of bases; V = base saturation; m = aluminum saturation; and ∆pH = difference between H2O and KCl pH.
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Comparison between morphostructural units

With regard to morphostructural units (Figure 3), Amazon Ultisols tend to decrease the 
sum of bases (SB) from the crystalline basement complex (BC) for the sedimentary 
deposits (SD) that presented mean values of 1.33 and 0.82 cmolc dm-3, respectively. The 
amplitudes of 50 % of the core values (1st quartile and 3rd quartile) of these properties 
were 0.18 and 0.68 cmolc dm-3 in the SD and 0.26 and 1.50 cmolc dm-3 in the BC. In 
the SD area, the values of the 1st quartile and 3rd quartile are in the range 0.19 and 
0.94 cmolc dm-3, i.e., lower than in the BC areas. 

In relation to the Al3+, the highest levels tended to occur in the SD, with an average value 
of 5.25 cmolc dm-3 and central values distributed between 1.41 and 8.48 cmolc dm-3. The 
other morphostructural units had lower levels of Al3+ (3.33 and 0.91 cmolc dm-3 in the SB 
and BC, respectively). The flocculation decreased in the order BC>SD>SB, with mean values 
83.43, 77.00, and 68.90 %. The most electronegative Bt horizons were observed in the SB, 
presenting ∆pH means of -0.88. The other morphostructural units showed similar values 
(0.78 and -0.79). Outstanding variations were not observed in organic carbon contents in 
morphostructural units, with higher mean values for the BC (4.0 g kg-1).

Comparison among different climates

The analysis of Ultisols by climate units (Figure 3) indicated a decreasing sum of bases 
with increasing levels of rainfall, which corresponds on average to 2.92, 2.57, 1.43, and 
1.17 cmolc dm-3, respectively from the hydric regimes semi-arid (SemiA), semi-humid 
(SemiH), humid (H), and super-humid (SH). The opposite behavior was observed for the 
levels of Al3+, which increased with greater rainfall, showing respectively the averages 
0.55, 0.71, 1.77, and 4.96 cmolc dm-3 for the same regions respectively.

There is a tendency of increase in the degree of flocculation of Bt horizons with increased 
rainfall. The averages were 48.6, 64.7, 79.9, and 78.0 % from the driest index to the most 
humid. The data of ∆pH showed consistent decrease of electronegativity with increased 
rainfall, with mean values of -1.06, -1.00, -0.83, and -0.70 from the driest to the wettest. 
All Ultisols, however, had a predominance of negative charges in the Bt horizons. Similar 
behavior was also observed for the amounts of soil organic carbon, although with less 
difference. The average contents were 2.9, 3.3, 3.6, and 4.0 g kg-1 for the SemiA, SemiH, 
H, and SH regimes respectively. The central limiting values were 2.5 and 2.9 g kg-1; 2.0 and 
4.1 g kg-1; 2.1 and 4.3 g kg-1, and 2.4 and 5.0 g kg-1, from the driest to the wettest regime, 
indicating that most Bt horizons have low organic carbon contents.

Spatial variability

The use of machine learning algorithms allowed us to consider various predictive 
covariates; however, the function (findcorrelation) excluded data with high correlation, 
since a common limitation of the regression models is the multicollinearity that occurs 
when there is a significant correlation among the predictors (Forkuor et al., 2017). 
Based on the selected predictors, values of R2 were obtained, with a higher value for 
Al3+ (R2 = 0.47) and lower for carbon (R2 = 0.06). Among the predictors used, the most 
explanatory were those related to climatic factors, which influenced the mapping of the 
variables degree of flocculation, organic carbon contents, and sum of bases. On the 
other hand, the predictors that best explained the distribution of Al3+ were those related 
to landforms (Table 3). 

The results of the training and validation process, run 100 times (Table 4), showed that 
the average of R2 of the training and the validation did not exhibit large variations, which 
indicates a low effect of overfitting, since the technique of machine learning is able to 
reduce this statistical problem (Drake et al., 2006; Were et al., 2015). The values of the 
coefficient of variation in the training process did not exhibit large variations for Al3+, 
Floc, and ∆pH, and were high for sum of bases (CV = 24 %) and carbon (CV = 29 %). 
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Figure 3. Mean, median, 1st, and 3rd quartile, near and distant outliers, maximum and minimum 
values of the variables among the groups of morphostructural domains: SB = sedimentary basins; 
SD = sedimentary deposits; BC = basement complex. Climate units: SemiA = semi-arid; SemiH = 
semi-humid; H = humid; SH = super-humid. SB = sum of bases (cmolc dm-3); Al3+ = exchangeable 
aluminum (cmolc dm-3); Flocculation = degree of flocculation (%); C = organic carbon (g kg-1).
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Table 3. Geostatistical results and covariates selection for predicting soil properties

Soil properties Ncov R2 RMSE
Degree of importance

1 2 3 4 5 6 7

Floc 5 0.20 27.37 MRVBF Bio 4 Bio 9 Bio 5 Bio 2 NA NA

C 5 0.03 0.28 Wetness Index Bio 14 Bio 15 Bio 12 DEM NA NA

Al3+ 5 0.47 2.54 MRVBF MRRTF Bio 15 Slope Height Valley Depth NA NA

SB 7 0.23 3.31 DEM Bio 4 Bio 11 bio_2 MRVBF MRRTF

ΔpH 7 0.24 0.62 Bio 12 MRRTF MRVBF Bio 4 DEM Terrain.S.C Bio 15

Ncov = number of covariates; Floc = degree of flocculation; SB = sum of bases; R2 = coefficient of determination; RMSE = root-mean-square error. 
Covariables derived from the RSAGA package: MRVBF = multiresolution index of valley bottom flatness; MRRTF = multiresolution index of ridge top 
flatness; Slope Heigth = vertical distance between base and slope ridge; DEM = digital elevation model; Terrain.S.C = Terrain surface convexity; 
Bioclimatic variables of WorldClim: Bio 4, Bio 5, Bio 9, Bio 11, Bio 12, Bio 14, Bio 15. 

The spatial distribution (Figure 4) revealed that the values of sum of bases tend to be 
higher in the southwestern region, extending from the state of Acre to Mato Grosso 
State. These areas have either high elevations associated with the basement complex, 
or areas under the influence of Andean sediments, which are richer in primary minerals 
(Gama et al., 1992; Lips and Duivenvoorden, 1996; Lima et al., 2006; Guyot et al., 2007; 
Schaefer et al., 2017). On the other hand, in lowland areas of the sedimentary basins, 
the values of the sum of bases decrease, increasing the exchangeable Al3+. It should be 
emphasized that, although the values of Al3+ could reach 26.0 cmolc dm-3, in the training/
prediction process little importance is assigned to the extreme values, because the extra-
trees algorithm is based on the distribution of higher frequency data, eliminating extremes. 

The degree of flocculation means the level of non-dispersible clay, which is usually higher 
in areas of more weathered soils, where Al and Fe-oxides favor the flocculation of clay 
particles. In lowland areas, sedimentary basins and sedimentary deposits, the degree of 
flocculation was not high, and is unrelated to Al3+ levels, which is consistent with higher 
rainfall, as observed. The least flocculated Ultisols tend to occur in the peripheral region 
of the Legal Amazon, covering the southern regions of the state of Acre, Rondônia, and 
Mato Grosso State, and tend to rise in the easternmost area between Tocantins and 
Maranhão State. In relation to pH, the most electronegative soils are distributed in the 
eastern portion of the Legal Amazon, associated with areas of lesser rainfall. The highest 
amounts of organic carbon were recorded in the northeastern Legal Amazon, where 
crystalline rocks usually favor the formation of more clayey soils (Sombroek, 2000). 

DISCUSSION
Statistical analysis indicated that the vast majority of the Bt horizon of the Legal Amazon 
(LA) Ultisols are generally deep, loamy, electronegative, and with low exchangeable cations 
contents. These properties are strongly influenced by climatic conditions. Although the LA 
region presents a wide variety of environments, it is also marked by a wide lithological variety 
(Quesada et al., 2011). Thus, the long process of chemical weathering under a humid to 
super-humid equatorial climate, associated with small temperature oscillations during all 
the Neogene period, has resulted in a very deep mantle of leached soils (Costa et al., 1997). 

The predictors that best explain the distribution of the Ultisols properties were the 
bioclimatic variables, as also confirmed by multivariate analysis. For landform data, the 
predictors flatness, valley incision and concavities were more explanatory predictors; 
this result is consistent with the fact that the LA soils do not show large variations of 
altimetry, in a general way (Quesada et al., 2011). 
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The statistical data of the maps (Table 4) demonstrated a higher R2 (0.48) for Al3+, 
which can also be explained by climatic variables, while the lowest value of R2 (0.06) 
was observed for organic carbon (C), which can be explained by the low variation of the 
values of C on the Bt horizon, which presents low values in relation to the upper horizons. 

Table 4. Descriptive statistics of estimated parameters and statistical cross-validation by machine 
learning algorithm (Extremely randomized trees) after 100-fold repetition

Statistics Training Validation
R2 RMSE MAE R2 RMSE MAE

Observations number 100.00 100.00 100.00 100.00 100.00 100.00
Sum of bases (cmolc dm-3)

Minimum 0.10 2.41 0.84 0.03 1.84 1.10
1st quartile 0.21 3.06 1.22 0.12 2.84 1.39
Median 0.24 3.28 1.39 0.18 3.49 1.51
3rd quartile 0.30 3.58 1.61 0.27 4.08 1.62
Maximum 0.42 4.01 2.46 0.51 6.47 2.23
Mean 0.25 3.29 1.44 0.20 3.53 1.51
Coefficient of variation (%) 24.06 10.09 22.62 51.54 25.12 12.87
Standard deviation (n-1) 0.06 0.33 0.33 0.10 0.89 0.19

Exchangeable aluminum (cmolc dm-3)
Minimum 0.43 2.40 1.18 0.32 2.06 1.34
1st quartile 0.46 2.52 1.44 0.41 2.40 1.48
Median 0.48 2.57 1.51 0.47 2.53 1.55
3rd quartile 0.50 2.64 1.66 0.52 2.74 1.64
Maximum 0.54 2.71 2.02 0.64 3.22 2.00
Mean 0.48 2.58 1.56 0.46 2.56 1.57
Coefficient of variation (%) 5.42 3.00 11.26 15.65 9.74 8.25
Standard deviation (n-1) 0.03 0.08 0.18 0.07 0.25 0.13

Flocculation (%)
Minimum 0.15 26.01 16.76 0.06 23.97 17.78
1st quartile 0.19 26.93 18.83 0.15 26.76 19.31
Median 0.20 27.41 19.83 0.19 27.56 20.33
3rd quartile 0.22 27.80 20.97 0.23 28.71 21.01
Maximum 0.27 28.55 24.32 0.33 31.26 22.37
Mean 0.20 27.37 20.01 0.19 27.72 20.22
Coefficient of variation (%) 11.90 2.08 8.43 29.65 4.99 5.03
Standard deviation (n-1) 0.02 0.57 1.69 0.06 1.38 1.02

∆pH
Minimum 0.16 0.49 0.29 0.03 0.41 0.31
1st quartile 0.25 0.58 0.34 0.14 0.57 0.36
Median 0.28 0.59 0.37 0.22 0.61 0.38
3rd quartile 0.31 0.62 0.40 0.32 0.68 0.40
Maximum 0.38 0.67 0.48 0.46 0.84 0.47
Mean 0.28 0.59 0.37 0.23 0.62 0.38
Coefficient of variation (%) 15.00 6.00 11.74 48.01 14.15 8.13
Standard deviation (n-1) 0.04 0.04 0.04 0.11 0.09 0.03

Organic carbon (g kg-1)
Minimum 0.02 0.20 0.12 0.00 0.18 0.13
1st quartile 0.05 0.25 0.15 0.01 0.22 0.16
Median 0.06 0.26 0.16 0.03 0.27 0.16
3rd quartile 0.07 0.28 0.19 0.05 0.33 0.17
Maximum 0.12 0.30 0.23 0.14 0.43 0.20
Mean 0.06 0.26 0.16 0.04 0.28 0.16
Coefficient of variation (%) 29.77 7.46 15.57 79.02 23.92 8.53
Standard deviation (n-1) 0.02 0.02 0.03 0.03 0.07 0.01

R2 = coefficient of determination; RMSE = root-mean-square Error; MAE = mean absolute error.
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Figure 4. Thematic maps obtained by machine learning of soil attributes: sum of bases (a), aluminum (b), degree of flocculation 
(c), ∆pH (d), carbon (e). Map of altitude and location of the states for correlation of the attributes of soils mapped with geographical 
location and altitude (f). 



Souza et al. Multivariate analysis and machine learning in properties of Ultisols…

12Rev Bras Cienc Solo 2018;42:e0170419

The predictors used are not suitable to predict variable C in the subsurface. According 
to Grimm et al. (2008), topographic data are better for the prediction of organic carbon 
in layers from 0.00-0.10 m, considering also that the data must have better resolution.

In general, the values of R2 were satisfactory, since for spatial quantitative models of 
soil, R2 values higher than 0.70 are uncommon and values of 0.50 or less are common 
(Malone et al., 2009); in addition, the statistical results are equivalent to applied studies 
with different spatialization methods (Tarr et al., 2005; Kumar et al., 2012; Vaysse and 
Lagacherie, 2015) and considering that the scale adopted was 1 km. 

The statistical results of machine learning can be interpreted as the result of a deficit of 
predictive information related to soils (Vaysse and Lagacherie, 2015). The choice of the 
analyzed information, which is only the Bt horizons of Ultisols for the entire extension 
of Legal Amazon, is a factor that can negatively interfere in the model.

When considering the explanatory variables retained in each component in the PCA, the 
results indicate that SB tends to be higher in the BC areas. This domain exhibits crystalline, 
metamorphic rocks or metasediments, which are characterized by gneisses-granite lands, 
with a predominance of gneisses with granodioritic to granitic composition; subordinately, 
there are amphibolites, trondhjemites, and granulites (Oliveira Junior and Corrêa, 2002), 
richer parent materials compared to other domains. However, the climatic factor in the BC 
region, in general, should contribute to the lower SB, while on the other hand, the rainfall 
regime can also cause erosion of surface soil layers, rejuvenating the soil profile. 

In the Amazon, 78 % of soils are acid and have low natural fertility (Sanchez, 1977; 
Delarmelinda et al., 2017), characteristics well represented in the areas in the central 
part of the SB and SD domains. This chemical poverty is directly influenced by climatic 
factors, since the highest rainfall in the central portion of the state of Amazonas, promotes 
the greatest leaching. According to Schaefer et al. (2000) and Melo et al. (2006), the 
exceptions concerning higher fertility in the Amazon region occur in the floodplain Aquents 
(Gleissolos) of the Amazonas river alluvial plain, in the soils of low plateaus, and terraces 
of the basins of Acre and Solimões/ Upper Amazon, both influenced by carbonate-rich 
or Andean sediments, or scattered areas of outcrops of mafic rocks. 

The levels of sum of bases are higher mainly in the western part of the states from Acre 
to Mato Grosso, a fact that is related to the influence of the Andean region. The Solimões 
Formation (Miocene-Pliocene) is a late Cenozoic sedimentation associated with the 
Andes orogenesis, and general subsidence of the basin (Westaway, 2006). The soils of 
this region are characterized by the presence of 2:1 minerals (smectites, vermiculites, 
and chlorites), with high amounts of exchangeable Al3+, Ca2+, and Mg2+ (Volkoff et al., 
1989; Lima et al., 2006). 

Another aspect that denotes an influence of the Andes on Amazon soils is the chemical 
features of floodplains in rivers coming from Andean sources, often having higher 
levels of nutrients (Ca, P, and Mg) compared to other tributaries (Gaillardet et al., 1997; 
Guyot et al., 2007; McClain and Naiman, 2008). The SB values tend to rise again in the 
easternmost part of the LA, associated with the semi-humid and semi-arid climate and 
less weathered soils. 

The levels of Al3+ were higher in the areas of higher precipitation (super-humid) and also 
in the SD domain. These results are closely associated among themselves, since the 
origin material is subjected to intense removal of basis by the rainfall regime. However, 
the Amazon soils usually have a clay mineralogy dominated by kaolinite, with minor 
chloritized vermiculite (Demattê and Demattê, 1993; Cornu et al., 1998; Marques et al., 
2002). Silica leaching is reduced by cycling of Si promoted by the forest vegetation, 
which contributes to the maintenance of kaolinite at the surface soils (Lucas et al., 1993; 
Rose et al., 1993; Lucas, 2001; Kleber et al., 2007). 
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Soils with a low degree of flocculation in areas of lower rainfall (semi-humid and semi-arid) 
indicate younger Ultisols. Despite the role of Al3+ in flocculation phenomena (Goldberg et al., 
1990; Itami and Kyuma, 1995; Pedrotti et al., 2003), soils of the basement complex (BC) 
showed a higher flocculation with low levels of Al3+, indicating an oxidic mineralogy and 
high weathering. This result is related more with the amphoteric character of Al and 
Fe-oxides than with the Al3+ content (Andrade et al., 1997). In addition, the association 
between Fe/Al oxides and kaolinite generates soil with a neutral reaction between the 
high pH of zero-point charge of oxides (Fontes et al., 2001). Moreover, the reduction in 
the Al3+ activity is related to organic matter complexation, which is not evaluated here 
(Lima and Anderson, 1997; Moreira and Costa, 2004). 

In sedimentary domains, Al3+ contents were high, but with a lower flocculation, which 
can be explained by the kaolinitic mineralogy, which provides less stable aggregates 
(Ferreira et al., 1999; Schaefer, 2001). In addition, clayey and less weathered soils, 
for example, under Andean influence and in regions of lower rainfall, have higher 
levels of water-dispersible clay, and a lower degree of flocculation in the Bt horizon 
(Muller et al., 2001).

The variable ΔpH [pH(H2O) - pH(KCl)] demonstrated the predominance of surfaces of 
negative charge in the Bt horizons of the Ultisols of the Legal Amazon. The low CEC and 
the negative ΔpH are characteristic of soils with kaolinitic mineralogy (Mekaru and Uehara, 
1972; Benedetti et al. 2011). However, when compared by climatic zones, it has been 
observed that the maintenance of negative charge in soils has a close relationship with 
the lower rainfall; there is a direct association among more electronegative Bt horizons 
in arid areas and semi-humid rainfall zones

The areas with ΔpH with positive trends are also associated with the regions to the south 
of the Legal Amazon, which coincide with areas with a predominance of the Cerrado 
(Brazilian savanna), and this fact can be associated with the predominant mineralogy 
of the soils of this region, which have oxides of Al and Fe in crystalline form (gibbsite, 
hematite, and goethite) that contribute to low values of  Ki index  and characterize the 
soils as electropositive (Demattê and Demattê, 1993; Motta et al., 2002). In addition, 
although the pH of some soils from the Cerrado may be around 6.0, the levels of SB 
(Ca2+ and Mg2+) mainly in the lower layers are low, and thus the values of sum of bases 
for the same region were low. 

In relation to the levels of carbon in the Ultisols, these were low in all areas and the highest 
levels occur in the BC domain, which features rocks related mainly to the crystalline 
basement, which develop soils with higher clay contents. Studies in the Amazon region 
corroborate these results and describe positive correlations among the content of clay, 
organic matter, and biomass (Laurance et al., 1999; McGrath et al., 2001; Telles et al., 
2003; Novaes Filho et al., 2007). 

Although Amazon soils can have considerable amounts of organic carbon (Neill et al., 1997), 
it is often concentrated at the superficial layer, and the authors Batjes and Dijkshoorn 
(1999) argue that approximately 50 % of the pool of organic carbon is maintained within 
0.3 m depth. Besides, in the Ultisols the incorporation of organic carbon into the subsurface 
is limited by the Bt horizon. However, some areas identified with higher levels of carbon 
coincide with the mapping performed by Schaefer et al. (2008), who observed stock C 
that was higher for the region of the state of Acre and Rio Negro, with lower values in 
the central part of the Amazon valley. 

In relation to the climatic zones, areas with higher rainfall showed greater amounts of 
carbon, because they have a greater intensity of organic matter mineralization, a process 
that facilitates the illuviation of C and incorporation into sub-horizons (Tognon et al., 
1998). In zones considered to be semi-arid, the amounts of carbon are even lower, since 
this transitional zone (Ab’Sáber, 1970) has high seasonality in litter levels deposited in 
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the soil, with a peak during the dry season (Silva et al., 2007; Sanches et al., 2009). 
These results highlight that the litter production and amounts of soil carbon are closely 
associated with temperature and rainfall, and consequently this trend is manifested in 
the macro scale, where low rainfall is accompanied by low levels of carbon in the soil.

CONCLUSIONS

A large database of soils was effectively treated by multivariate analysis, which identified 
the variables that best explain the properties of the Bt horizons of the Ultisols of the 
Legal Amazon (SB, Al3+, Floc, ΔpH, and organic carbon).

The machine learning algorithm (Extremely randomized trees) led to the spatial prediction 
of properties of the Ultisols, which was based on 70 covariables (predictors). The prediction 
was consistently more accurate for the property Al3+ and less efficient for organic carbon. 
The predictors that best explain the distribution were associated with climate and 
landforms. We assume that the predictions can be improved by the inclusion of covariates 
linked more strongly to soils, and the results are improved when working with higher 
resolution data. However, the results of this research were considered satisfactory, due 
to the high variability of the environments of the Legal Amazon.

The climatic factor is most influential on the Ultisols properties. Greater rainfall leads to 
lower SB, higher Al3+, and higher degree of flocculation. The separation by morphostructural 
domains indicates that the soils developed on crystalline rocks of the basement 
complex have a frequency of Bt horizons with higher SB, organic carbon accumulation, 
electronegativity, and lower content of Al3+.

Although there is a domain of low fertility Ultisols, those under the influence of Andean 
sediments in the western part have a higher sum of bases, despite the elevated levels 
of Al3+ and high rainfall. 

The results of the machine learning technique presented here help to clarify the 
relationships between soils, climate and landforms at the macro scale. Future work with 
other classes of soils may be conducted regionally and will certainly contribute to the 
mapping at more detailed scales, meeting a growing need for environmental, urban, 
and agricultural planning. 
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