Acessibilidade / Reportar erro

Soil macrofauna, mesofauna and microfauna and their relationship with soil quality in agricultural areas in northern Colombia: ecological implications

ABSTRACT

Soil fauna is an essential component of the soil ecosystem for maintaining nutrient cycling and biological soil fertility. This study assessed the soil biodiversity (macrofauna, mesofauna, and microfauna) to define strategies for the sustainable management of tropical agricultural soils. The study was carried out in 200 agricultural production units in the Department of Sucre, in northern Colombia. Physicochemical properties (organic matter, nitrogen, phosphorus, and pH) were determined for each soil sample. The Berlesse-Tullgren method was used to determine the composition of macrofauna and mesofauna, while the sown surface plate counting method was applied for microfauna. Community biodiversity was quantified with diversity indices, and Pearson correlation was carried out to determine the relationships between soil fauna and soil quality indicators. For the macrofauna, 1330 individuals were found, distributed in 22 orders and 65 families; the families Tenebrionidae, Formicidae, Staphylinidae, Scarabaeidae and Julide presented the highest abundance and distribution. Mesofauna presented 1,171 individuals, distributed in the classes Arachnida with seven families and Collembola with four families; the Scheloribatidae, Isotomidae and Galumnidae families presented the highest abundance and distribution. The indices of richness, Shannon-Wiener diversity and Simpson dominance indicated that biodiversity was higher for macrofauna. Pearson’s correlation indicated significant correlations between soil mesofauna and soil organic matter (R2 = 0.87; p≤0.05) and phosphorous (R2 = 0.70; p≤0.05). The relationships between fauna and soil chemical properties indicate that soil biological diversity is sensitive to changes in the soil environment. This study revealed the importance of investigating the three components of soil fauna (macrofauna, mesofauna, and microfauna), since all three contribute to soil enrichment to grow nourished crops that allow plants to survive under climate change. Finally, this study may serve as a baseline to define strategies for sustainable management of tropical agricultural soils.

soil quality; agricultural units; sustainable systems; land-use; conservation

INTRODUCTION

Soil is the most important natural resource to support agricultural production systems (De Alba et al., 2003De Alba S, Torri D, Borselli L, Lindstrom M. Degradación del suelo y modificación de los paisajes agrícolas por erosión mecánica (Tillage erosion). J Soil Sci. 2003;10:93-101.; Martínez-Mera et al., 2019Martínez-Mera EA, Torregroza-Espinosa AC, Crissien-Borrero TJ, Marrugo-Negrete JL, González-Márquez LC. Evaluation of contaminants in agricultural soils in an irrigation district in Colombia. Heliyon. 2019;5:e02217. https://doi.org/10.1016/j.heliyon.2019.e02217
https://doi.org/10.1016/j.heliyon.2019.e...
). Soil results from transformations by various physical, chemical, and biological processes (Lehman et al., 2015Lehman R, Cambardella C, Stott D, Acosta-Martinez V, Manter D, Buyer J, Maul J, Smith J, Collins H, Halvorson J, Kremer R, Lundgren J, Ducey T, Jin V, Karlen D. Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability. 2015;7:988-1027. https://doi.org/10.3390/su7010988
https://doi.org/10.3390/su7010988...
). Anthropogenic activities, such as mining, land-use change due to agricultural intensification, and the use of agrochemicals in conventional agriculture have altered soil physicochemical properties (Kiani et al., 2017Kiani M, Hernandez-Ramirez G, Quideau S, Smith E, Janzen H, Larney FJ, Puurveen D. Quantifying sensitive soil quality indicators across contrasting long-term land management systems: Crop rotations and nutrient regimes. Agric Ecosyst Environ. 2017;248:123-35. https://doi.org/10.1016/j.agee.2017.07.018
https://doi.org/10.1016/j.agee.2017.07.0...
). These changes can modify soil microorganisms’ distribution, diversity, and abundance (Gupta and Roper, 2010Gupta VVSR, Roper MM. Protection of free-living nitrogen-fixing bacteria within the soil matrix. Soil Till Res. 2010;109:50-4. https://doi.org/10.1016/j.still.2010.04.002
https://doi.org/10.1016/j.still.2010.04....
; Martínez-Mera et al., 2017Martínez-Mera EA, Torregroza-Espinosa AC, Valencia-García A, Rojas-Gerónimo L. Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia. Soil environ. 2017;36:174-81. https://doi.org/10.25252/SE/17/51202
https://doi.org/10.25252/SE/17/51202...
). Soil quality and ecosystem development status can be objectively and directly reflected by quantitative evaluations of soil physical, chemical, and biological indicators (Valani et al., 2020Valani GP, Vezzani FM, Cavalieri-Polizeli KMV. Soil quality: Evaluation of on-farm assessments in relation to analytical index. Soil Till Res. 2020;198:104565. https://doi.org/10.1016/j.still.2019.104565
https://doi.org/10.1016/j.still.2019.104...
; Vasu et al., 2021Vasu D, Tiwari G, Sahoo S, Dash B, Jangir A, Sharma RP, Naitam R, Tiwary P, Karthikeyan K, Chandran P. A minimum data set of soil morphological properties for quantifying soil quality in coastal agroecosystems. Catena. 2021;198:105042. https://doi.org/10.1016/j.catena.2020.105042
https://doi.org/10.1016/j.catena.2020.10...
).

Biological biodiversity has a critical role in supporting soil functionality because soil-dwelling organisms are responsible for biogeochemical transformations (Pino et al., 2019Pino V, McBratney A, Fajardo M, Wilson N, Deaker R. Understanding soil biodiversity using two orthogonal 1000km transects across new south wales, Australia. Geoderma. 2019;354:113860. https://doi.org/10.1016/j.geoderma.2019.07.018
https://doi.org/10.1016/j.geoderma.2019....
). Macro and microorganisms are the main providers of nutritional substrates for the soil, and they are in constant interaction. They affect nutrient cycles, organic matter regulation, greenhouse gas emission, and carbon capture, and they can change soil physical structure (Guzmán et al., 2012Guzmán A, Obando M, Rivera D, Bonilla R. Selección y caracterización de rizobacterias promotoras de crecimiento vegetal (RPCV) asociadas al cultivo de algodón (Gossypium hirsutum). Rev Colomb Biotecnol. 2012;14:182-90.). The ecological functions of soil microorganisms include benefits such as the nutrients mineralization, organic matter decomposition, degradation of toxic compounds, and regulation of pathogenic agents (Castellanos et al., 2015). Their abundance in the soil is associated with moisture and nutrient availability, which enables biomass production and biodiversity conservation, among other ecosystem services (Safaei et al., 2019Safaei M, Bashari H, Mosaddeghi MR, Jafari R. Assessing the impacts of land use and land cover changes on soil functions using landscape function analysis and soil quality indicators in semi-arid natural ecosystems. Catena. 2019;177:260-71. https://doi.org/10.1016/j.catena.2019.02.021
https://doi.org/10.1016/j.catena.2019.02...
). The role of soil biodiversity in regulating multiple ecosystem functions is poorly understood, limiting our ability to predict how soil biodiversity loss might affect ecosystem sustainability (Delgado-Baquerizo et al., 2020Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He J, Hseu Z, Hu H, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang J, Weber-Grullon L, Williams MA, Singh BK. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210-20. https://doi.org/10.1038/s41559-019-1084-y
https://doi.org/10.1038/s41559-019-1084-...
).

Previous research results indicated that macrofauna activity is influenced by soil properties, climate, and organic residues (Castro-Huerta et al., 2015Castro-Huerta RA, Falco LB, Sandler RV, Coviella CE. Differential contribution of soil biota groups to plant litter decomposition as mediated by soil use. PeerJ. 2015;3:e826. https://doi.org/10.7717/peerj.826
https://doi.org/10.7717/peerj.826...
; Asfaw and Zewude, 2021). These organisms are affected by complex interactions between abiotic and biotic factors and their spatiotemporal variations (Tibbett et al., 2019Tibbett M, Gil-Martínez M, Fraser T, Green ID, Duddigan S, De Oliveira VH, Raulund-Rasmussen K, Sizmur T, Diaz A. Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena. 2019;180:401-15. https://doi.org/10.1016/j.catena.2019.03.013
https://doi.org/10.1016/j.catena.2019.03...
; Wang et al., 2019Wang C, Zhou X, Guo D, Zhao J, Yan L, Feng G, Gao Q, Yu H, Zhao L. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann Microbiol. 2019;69:1461-73. https://doi.org/10.1007/s13213-019-01529-9
https://doi.org/10.1007/s13213-019-01529...
). Soil arthropods have been studied as biological indicators in natural ecosystems and agricultural production areas (Baretta et al., 2011Baretta D, Santos JCP, Segat JC, Geremia EV, Oliveira Filho LCI, Alves MV. Fauna edáfica e qualidade do solo. Tópicos Ci Solo. 2011;8:119-70.; Morrison et al., 2018Morrison WR, Waller JT, Brayshaw AC, Hyman DA, Johnson MR, Fraser AM. Evaluating multiple arthropod taxa as indicators of invertebrate diversity in old fields. Gt Lakes Entomol. 2018;45:56-68.; Duran-Bautista et al., 2020Duran-Bautista EH, Armbrecht I, Acioli ANS, Suárez JC, Romero M, Quintero M, Lavelle P. Termites as indicators of soil ecosystem services in transformed Amazon landscapes. Ecol Indic. 2020;117:106550. https://doi.org/10.1016/j.ecolind.2020.106550
https://doi.org/10.1016/j.ecolind.2020.1...
). Some studies have addressed the relationship between soil fauna diversity and soil physicochemical properties to determine the relationship between soil fertility and land-use (Murillo-Cuevas et al., 2019Murillo-Cuevas FD, Adame J, Cabrera H, Fernández JA. Fauna y microflora edáfica asociada a diferentes usos de suelo. Ecosist Recur Agropec. 2019;6:23-33. https://doi.org/10.19136/era.a6n16.1792
https://doi.org/10.19136/era.a6n16.1792...
; Royero-Mesino, 2019Royero-Mesino SY. Macrofauna edáfica y características físicas y químicas del suelo en áreas con diferentes sistemas de manejo en el departamento del Atlántico. Colombia: Universidad Nacional de Colombia; 2019.; Zavaleta, 2019Zavaleta MA. Macrofauna y propiedades físicas y químicas del suelo en cultivos de café del Distrito de Jepelacio- Moyobamba. Perú: Universidad Nacional de Trujillo; 2019.; Travez, 2020Travez KA. Diversidad de los macroinvertebrados edáficos y su relación con la calidad del suelo en un gradiente de intensidad de uso de la tierra en La Esperanza-Pedro Moncayo-Ecuador. Ecuador: Universidad Central del Ecuador; 2020.).

To establish sustainable agricultural systems, it is necessary to have a fundamental knowledge of the different components that comprise the system (Vasu et al., 2021Vasu D, Tiwari G, Sahoo S, Dash B, Jangir A, Sharma RP, Naitam R, Tiwary P, Karthikeyan K, Chandran P. A minimum data set of soil morphological properties for quantifying soil quality in coastal agroecosystems. Catena. 2021;198:105042. https://doi.org/10.1016/j.catena.2020.105042
https://doi.org/10.1016/j.catena.2020.10...
). Few studies have been carried out on this subject in Colombia (e.g., Mantilla-Paredes et al., 2009Mantilla-Paredes A, Cardona G, Peña-Venegas C, Murcia U, Rodríguez M, Zambrano M. Distribución de bacterias potencialmente fijadoras de nitrógeno y su relación con parámetros fisicoquímicos en suelos con tres coberturas vegetales en el sur de la Amazonia colombiana. Rev Biol Trop. 2009;57:915-27. https://doi.org/10.15517/rbt.v57i4.5436
https://doi.org/10.15517/rbt.v57i4.5436...
), particularly in agricultural areas (Martínez-Mera et al., 2017Martínez-Mera EA, Torregroza-Espinosa AC, Valencia-García A, Rojas-Gerónimo L. Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia. Soil environ. 2017;36:174-81. https://doi.org/10.25252/SE/17/51202
https://doi.org/10.25252/SE/17/51202...
), where these soil services have been affected by the loss of vegetation cover, generated by climate change and human activities. Qualitative and quantitative information concerning soil biodiversity is scarce, and there are no reports on this aspect. Thus, it is necessary to generate information on the health of agricultural soils, and analyze its ecological implications. Therefore, the present study assessed soil biodiversity (macro, meso, and microfauna) in agricultural areas in northern Colombia.

MATERIALS AND METHODS

Study area

The study was carried out in the Department of Sucre, which is part of the Colombian Caribbean region in northern Colombia. Its surface covers 10,917 km2, which represents 0.95 % of the Colombian territory (PNUD, 2015Programa de las Naciones Unidas para el Desarrollo - PNUD. Perfil productivo, municipio de Corozal, Sucre. Bogotá: PNUD; 2015.). Five municipalities were prioritized based on the subregions that exist in the Department, namely: San Onofre (Morrosquillo), Morroa (Montes de María), Corozal (Sabanas), San Marcos (San Jorge) and Majagual (Mojana) (Figure 1). Table 1 describes the relevant characteristics of the studied subregions and municipalities in the Department of Sucre. The soils in the sampled municipalities of Sucre are classified as Alfisols, Inseptisols, Mollisols, Ultisols, Vertisols, and Histosols (IUSS Working Group WRB, 2015; IGAC, 2016Instituto Geográfico Agustín Codazzi - IGAC. Suelos y tierras de Colombia, subdirección de agrología. Colombia: IGAC; 2016.).

Figure 1
Geographic location of the prioritized municipalities in the five subregions.

Table 1
Characteristics of the five sub-regions of the Department of Sucre, in northern Colombia (Ingeominas, 2002Instituto Colombiano de Geología y Minería - Ingeominas. Memoria técnica del mapa de aguas subterráneas del departamento de sucre en escala 1:250.000. Bogotá: Ministerio de minas y energía, Instituto colombiano de geología y minería; 2002.)

Sucre is the Department of Colombia with the highest percentage of area under land-use conflicts. It is known that 75.5 % of its soils present inappropriate use due to overuse and underutilization. Agricultural production in this Department is affected because small producers do not use traditional technology, practice poor soil management, and make inappropriate use of agrochemicals (DNP, 2003Departamento Nacional de Planeación - DNP. Programa de Desarrollo sostenible de la región de La Mojana. Bogotá: Departamento Nacional de Planeación; 2003. (Informe Terminal).). The livelihoods of the small farm families consist primarily of diversified agricultural systems, which are more at the subsistence than the commercial farming level (Abera et al., 2020Abera W, Assen M, Budds J. Determinants of agricultural land management practices among smallholder farmers in the Wanka watershed, northwestern highlands of Ethiopia. Land Use Policy. 2020;99:104841. https://doi.org/10.1016/j.landusepol.2020.104841
https://doi.org/10.1016/j.landusepol.202...
; Phondani et al., 2020Phondani PC, Maikhuri RK, Rawat LS, Negi VS. Assessing farmers’ perception on criteria and indicators for sustainable management of indigenous agroforestry systems in Uttarakhand. India. Environ Sustain Indic. 2020;5:100018. https://doi.org/10.1016/j.indic.2019.100018
https://doi.org/10.1016/j.indic.2019.100...
). The prevailing crops are mechanized and manual-cropping rice (Oryza sativa L., 1753), mechanized and traditional corn (Zea mays L., 1753), Ñame (Dioscórea villosa L., 1753), sweet and industrial yucca (Manihot esculenta Crantz, 1766), plantain (Musa sp. L., 1753), watermelon (Citrullus lanatus [Thunb] Matsum and Nakai, 1920), among others (República de Colombia Departamento de Sucre, 2020República de Colombia Departamento de Sucre. Plan departamental de extensión agropecuaria Sucre, una gran empresa agroproductiva. Colombia: Gobernación Secretaría de Desarrollo Económico y Medio Ambiente; 2020.).

Sample collection and laboratory analyses

We selected 200 AUs (agricultural units) throughout the Department of Sucre, distributed in 40 AUs for each prioritized municipality. The experiment was established in each AUs using a randomized complete block design. The samples, collected in triplicate to determine the precision of tests and sample handling, were stored in sterile polyethylene bags and kept at 4 °C for transport.

Macrofauna and mesofauna individuals were counted and classified up to the family level (Oliveira et al., 2021Oliveira CM, Afonso GT, Carolino MA, Frizzas MR. Diversity of soil arthropods in sugarcane in the Brazilian Cerrado: Influence of tillage systems, extraction methods, and sampling time. Eur J Soil Biol. 2021;103:103274. https://doi.org/10.1016/j.ejsobi.2020.103274
https://doi.org/10.1016/j.ejsobi.2020.10...
). To this end, using the Berlesse-Tullgren method (Oliveira et al., 2021Oliveira CM, Afonso GT, Carolino MA, Frizzas MR. Diversity of soil arthropods in sugarcane in the Brazilian Cerrado: Influence of tillage systems, extraction methods, and sampling time. Eur J Soil Biol. 2021;103:103274. https://doi.org/10.1016/j.ejsobi.2020.103274
https://doi.org/10.1016/j.ejsobi.2020.10...
), the sample was moistened during the first 72 h, and as the samples dried, the individuals began to concentrate in the lower part of the funnel and dropped into a collector located at the end of the funnel, which contained alcohol 70 % as fixing and conserving agent. The seeded surface plate count method was used (Wehr and Frank, 2004Wehr HM, Frank JH. Standard methods for the microbiological examination of dairy products. 17th ed. Washington, DC: American Public Health Association; 2004.; AOAC, 2016Association of Analytical Communities - AOAC. Official methods of analysis AOAC International. 20th ed. Arlington: AOAC International; 2016.) for microfauna (bacteria, actinomycetes, fungi, N-fixing bacteria, phosphate solubilizing bacteria and cellulolytic microorganisms),.

Physicochemical properties such as organic matter (OM), nitrogen (N), phosphorus (P), and pH were determined in the laboratory for each soil sample. Soil OM was determined by the Walkley – Black method; total nitrogen was measured by the Kjeldahl method; total P was determined by Bray II method; and pH was measured by the electrometric method (Icontec, 2018Instituto Colombiano de Normas Tecnicas y Certificación - Icontec. Norma Técnica Colombiana (NTC) 6299, Calidad del suelo, Determinación de la textura por Bouyoucos. Bogotá: Icontec; 2018.).

Data analysis

Community structure of macrofauna, mesofauna and microfauna was estimated using percentage stacked bar chart. The diversity of soil fauna communities was quantified using the Shannon–Wiener diversity index (H) (Shannon, 1948Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948...
), Simpson dominance index (D) (Simpson, 1949Simpson EH. Measurement of diversity. Nature. 1949;163:688. https://doi.org/10.1038/163688a0
https://doi.org/10.1038/163688a0...
), Pielou evenness index (J) (Pielou, 1969Pielou EC. An introduction to mathematical ecology. New York: John Wiley & Sons; 1969.), taxonomic richness (S is the number of taxa in the sample) (Bobrowsky and Ball, 1989Bobrowsky P, Ball B. The theory and mechanics of ecological diversity in archaeology. Cambridge: Cambridge University Press; 1989.), and individual rarefaction is displayed on a graph (Bobrowsky and Ball, 1989Bobrowsky P, Ball B. The theory and mechanics of ecological diversity in archaeology. Cambridge: Cambridge University Press; 1989.). Diversity indexes were calculated with the software EstimateS, 9.1.0 (Colwell, 2019Colwell RK. EstimateS 9.1.0 [software]. Boulder: Robert K. Colwell; 2019 [cite 2022 May 05]. Available from: https://www.robertkcolwell.org/pages/estimates.
https://www.robertkcolwell.org/pages/est...
). Software R (R Development Core Team, 2020) was used to perform the Pearson correlation and principal component analysis (PCA) to determine the relationship between soil fauna and soil chemical properties.

RESULTS

Macrofauna, mesofauna and macrofauna community structure

A total of 1,330 macrofauna individuals were found, distributed in 7 classes, 22 orders and 65 families. The class Insecta was the most representative in terms of abundance and wealth. The families Tenebrionidae, Formicidae, Staphylinidae, Scarabaeidae and Julide displayed the greatest abundance and distribution in the municipalities (Figure 2a). The families Anapidae, Ascalaphidae, Blattellidae, Buthidae, Cantharidae, Chrysomelidae, Coreidae, Cydnidae, Dermestidae, Elateridae, Elipsocidae, Endomychidae, Erotylidae, Gnaphosidae, Gryllidae, Ixodidae, Largidae, Lepismatidae, Lygaeidae, Meloidae, Neobisiidae, Nitidulidae, Palpimanidae, Paradoxosomatidae, Pentatomidae, Porcellionidae, Ptilodactylidae, Reduviidae, Salticidae, Scolopendridae, Scolytidae, Scytodidae, Silphidae, Stratiomyidae, Teratembiidae, Tetrablemmidae, Theraphosidae, Theridiidae, Thyreocoridae, Zalmoxidae and Zodariidae presented frequencies lower than 1 %.

Figure 2
Macrofauna, mesofauna and macrofauna community structure. (a) Families macrofauna (families excluded with percentages less than 1 %); (b) Families mesofauna; and (c) Groups microfauna.

A total of 1171 mesofauna individuals were found, distributed in the classes Arachnida with seven families and Collembola with four families. The families Scheloribatidae, Isotomidae and Galumnidae displayed the greatest abundance and distribution in the municipalities (Figure 2b). The Heterotrophic and Actinomycetes bacteria were the nitrogen-fixing organisms with the highest abundance (Figure 2c).

The taxonomic richness (S), Simpson dominance index (D), Shannon–Wiener diversity index (H), and Pielou evenness index (J) of the soil macrofauna were greater than for the soil mesofauna and microfauna (Table 2). Because the diversity results were similar between municipalities, in the subsequent analyses, the average was used. Individual-based rarefaction indicates the number of operational taxonomic units (OTU) expected in different sample sizes. Figure 3 shows that as the number of samples increases, the richness stabilizes.

Figure 3
Individual-based rarefaction curves, with their respective confidence intervals, for (a) macrofauna and (b) mesofauna.

Table 2
Diversity indices of the soil macrofauna, mesofauna and microfauna

Quality parameters of soil and correlation analysis

Nitrogen and P presented average values of 21.65 ± 10.65 and 40.35 ± 67.21 mg kg-1, respectively. Soil pH presented a maximum value of 7.68 and a minimum of 4.19, with an average of 6.05 ± 0.80. The OM presented an average value of 1.05 ± 0.51 % (Table 3).

Table 3
Soils properties of the Department of Sucre, in northern Colombia

Pearson correlation indicated statistically significant correlations between some of the variables analyzed (p≤0.05). There was a high positive correlation between soil mesofauna and OM (R2 = 0.87; p≤0.05) and P (R2 = 0.70; p≤0.05) (Table 4). The PCA used soil chemical properties as independent variables and soil fauna as a dependent variable. The first two principal components explained 65 % of the total variance of the data set. A relationship was found between pH and the microfauna abundance (Figure 4).

Table 4
Pearson correlation matrix between soil fauna and quality parameters of agricultural soils of the Department of Sucre, in northern Colombia

Figure 4
Principal component analysis (PCA) between soil biological diversity and soil chemical properties. Macro: macrofauna, Meso: mesofauna, Micro: microfauna.

DISCUSSION

Our study revealed the importance of investigating the three components of soil fauna (macrofauna, mesofauna and microfauna), since all three contribute to soil enrichment to grow nourished crops that survive climate change conditions. In this research, 1330 individuals of macrofauna were found in the studied agricultural soils. The overall density of soil macrofauna tends to decrease to low levels on cultivated land (Rossi et al., 2005). The values found in our study coincide with those reported in the literature. Densities ranging from 429 to 592 individuals of macrofauna in crops analyzed in Colombia were reported by Decaëns et al. (1994)Decaëns T, Lavelle P, Jimenez JJ, Escobar G, Rippstein G. Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. Eur J Soil Biol. 1994;30:157-68.. A recent study carried out in the Andes (Colombia) reported 1317 individuals in farming systems (Galindo et al., 2022Galindo V, Giraldo C, Lavelle P, Armbrecht I, Fonte SJ. Land use conversion to agriculture impacts biodiversity, erosion control, and key soil properties in an Andean watershed. Ecosphere. 2022;13:e397. https://doi.org/10.1002/ecs2.3979
https://doi.org/10.1002/ecs2.3979...
). The order Coleoptera was the most representative in terms of abundance and biological richness, whereas Tenebrionidae, Formicidae and Staphylinidae were the most abundant families.

Tenebrionidae family predominates throughout the five municipalities because they have similar environmental characteristics that enable their growth and development. They are considered bio-indicators of soil quality (Velasquez and Lavelle, 2019Velasquez E, Lavelle P. Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes. Acta Oecol. 2019;100:103446. https://doi.org/10.1016/j.actao.2019.103446
https://doi.org/10.1016/j.actao.2019.103...
). These individuals have morphological, physiological, and etiological adaptations to live in these environments with temperatures ranging between 26 and 35 °C, or even higher (Duncan and Dickman, 2009Duncan FD, Dickman CR. Respiratory strategies of tenebrionid beetles in arid australia: Does physiology beget nocturnality? Physiol Entomol. 2009;34:52-60. https://doi.org/10.1111/j.1365-3032.2008.00651.x
https://doi.org/10.1111/j.1365-3032.2008...
). The Formicidae family also presented high abundance in the Department of Sucre. Individuals from this family are considered soil engineers and indicators of disturbance of the edaphic environment; they improve soil structure, thus allowing aeration, drainage, decomposition, and predation of insects (Cabrera, 2012Cabrera G. La macrofauna edáfica como indicador biológico del estado de conservación/perturbación del suelo. Resultados obtenidos en Cuba. Pastos y Forrajes. 2012;35:349-63.; Machado-Cuellar et al., 2021).

Staphylinidae family also stands out in the five prioritized municipalities, with very similar values among them. These individuals are general predators that are very common in agricultural soils, and they feed on ants, aphids, caterpillars, and insect eggs, among others. They also limit the growth of certain populations of crops pests (Martins et al., 2013Martins ICF, Cividanes FJ, Ide S, Haddad GQ. Diversity and habitat preferences of carabidae and staphylinidae (Coleoptera) in two agroecosystems. Bragantia. 2013;71:471-80. https://doi.org/10.1590/S0006-87052013005000009
https://doi.org/10.1590/S0006-8705201300...
). Galindo et al. (2022)Galindo V, Giraldo C, Lavelle P, Armbrecht I, Fonte SJ. Land use conversion to agriculture impacts biodiversity, erosion control, and key soil properties in an Andean watershed. Ecosphere. 2022;13:e397. https://doi.org/10.1002/ecs2.3979
https://doi.org/10.1002/ecs2.3979...
reported in their study carried out in the Colombian Andes that the most representative group was Formicidae (47.4 % of the individuals collected), while Coleoptera was the third most abundant group with 5 % of the total individuals collected.

Oonopidae was the most abundant family of the order Araneae. The presence of this family has been reported in other studies carried out in tropical forests and cultivated areas (Rosa et al., 2018Rosa MG, Santos JCP, Brescovit AD, Mafra AL, Baretta D. Spiders (Arachnida:Araneae) in agricultural land use systems in subtropical environments. Rev Bras Cienc Solo. 2018;42:e0160576. https://doi.org/10.1590/18069657rbcs20160576
https://doi.org/10.1590/18069657rbcs2016...
; Pereira et al., 2021Pereira JM, Cardoso E, Brescovit A, Oliveira L, Segat J, Duarte J, Baretta D. Soil spiders (Arachnida: Araneae) in native and reforested Araucaria forests. Sci Agric. 2021;78:e20190198. https://doi.org/10.1590/1678-992X-2019-0198
https://doi.org/10.1590/1678-992X-2019-0...
). Dupérré and Tapia (2017)Dupérré N, Tapia E. The goblin spiders (Araneae, Oonopidae) of the OTONGA Nature Reserve in Ecuador, with the description of seven new species. Evol Syst. 2017;1:87-109. https://doi.org/10.3897/evolsyst.1.14969
https://doi.org/10.3897/evolsyst.1.14969...
also found that the Oonopidae family was the most abundant and concluded that this family is a very important component in Neotropical forests. Li et al. (2018)Li X, Liu Y, Duan M, Yu Z, Axmacher JC. Different response patterns of epigaeic spiders and carabid beetles to varying environmental conditions in fields and semi-natural habitats of an intensively cultivated agricultural landscape. Agric Ecosyst Environ. 2018;264:54-62. https://doi.org/10.1016/j.agee.2018.05.005
https://doi.org/10.1016/j.agee.2018.05.0...
proved the hypothesis that spiders are more diverse in semi-natural habitats, because of the greater diversity of plants than in plantation lands with lower vegetation and subject to poor agricultural practices. This behvaior may be related to the low number of individuals found in these municipalities. This family plays an important role in crops, acting as biological control of other predatory pests by feeding on them, and it has characteristics that are useful for detecting different environmental and anthropogenic changes (Simó et al., 2011Simó M, Laborda A, Caroilna J, Castro M. Las arañas en agroecosistemas: Bioindicadores terrestres de calidad ambiental. Innotec. 2011;6:51-5. https://doi.org/10.26461/06.11
https://doi.org/10.26461/06.11...
; Ibarra-Núñez, 2014Ibarra-Núñez G. Las arañas como bioindicadores. In: González CA, Vallarino A, Pérez JC, Low A, editors. Bioindicadores: guardianes de nuestro futuro ambiental. México: El Colegio de la Frontera Sur (ECOSUR), Instituto Nacional de Ecología y Cambio Climático (INECC); 2014. p. 273-90.). The disturbances caused by inadequate agricultural practices, such as the use of insecticides, herbicides, fungicides, fertilizers, and pruning, among others, also reduce the population of these insects by altering the habitat, which puts constant pressure on spiders and reduces their population (Benamú et al., 2017Benamú MA, Lacava M, García LF, Santana M, Viera C. Spiders associated with agroecosystems: Roles and perspectives. In: Viera C, Gonzaga MO, editors. Behaviour and ecology of spiders. Cham: Springer International Publishing; 2017. p. 275-302.). Dias et al. (2005)Dias MFR, Brescovit AD, Menezes M. Aranhas de solo (Arachnida: Araneae) em diferentes fragmentos florestais no sul da Bahia, Brasil. Biota Neotrop. 2005;5:BN010051a2005. https://doi.org/10.1590/S1676-06032005000200012
https://doi.org/10.1590/S1676-0603200500...
showed that oonopids constituted more than 20 % of the captured adult spiders and more than 9 % of the total species diversity, being the second group after Salticidae, both in abundance and diversity.

A total of 1171 individuals of mesofauna were found in this study, and the families Isotomidae and Scheloribatidae were the most representative. Fekkoun et al. (2021)Fekkoun S, Chebouti-Meziou N, El Kawas H, Slimani I, Khettabi M, Ghezal H. Comparative study of the biodiversity of soil mites between two forests in eastern Algeria. Ukr J Ecol. 2021;11:39-43. https://doi.org/10.15421/2021_292
https://doi.org/10.15421/2021_292...
found that the Scheloribatidae family was the most abundant, with 48 % of the total abundance. The family Isotomidae stands out in the Collembola class because of its frequency in the five municipalities. Like in this study, Gómez-Anaya et al. (2010)Gómez-Anaya JA, Palacios-Vargas JG, Castaño-Meneses G. Abundancia de colémbolos (Hexapoda:Collembola) y parámetros edáficos de una selva baja caducifolia. Rev Colomb Entomol. 2010;36:96-105. reported that the most dominant family was Isotomidae, with 29.3 % of the total abundance. Similarly, Villarreal-Rosas et al. (2014)Villarreal-Rosas J, Palacios-Vargas JG, Maya Y. Microarthropod communities related with biological soil crusts in a desert scrub in northwestern Mexico. Rev Mex Biodivers. 2014;85:513-22. https://doi.org/10.7550/rmb.38104
https://doi.org/10.7550/rmb.38104...
reported that, among the Collembola, the most abundant family was Isotomidae. These organisms are recognized by their slim bodies covered with abundant fungi, and by their bodies covered with silk or scales (Daghighi et al., 2013Daghighi E, Hajizadeh J, Hosseini R, Moravvej A. A checklist of Iranian Collembola with six new records from family Isotomidae (Collembola: Isotomidae). Entomofauna. 2013;11:149-56.; Palacios-Vargas, 2014Palacios-Vargas JG. Biodiversidad de Collembola (Hexapoda: Entognatha) en México. Rev Mex Biodivers. 2014;85:220-31. https://doi.org/10.7550/rmb.32713
https://doi.org/10.7550/rmb.32713...
). They adapt easily to different habitats, with different temperature and rainfall levels, such as forests and desertic shrubs (Villarreal-Rosas et al., 2011), and live in soil, fallen leaves, tree bark, moss and under stones, among others (Montejo-Cruz et al., 2018Montejo-Cruz M, Palacios-Vargas J, Castaño-Meneses G. Diversidad de Isotomidae y Neanuridae (Hexapoda: Collembola) de cuatro asociaciones vegetales en la formación Citlaltépetl, Veracruz, México. Entom Mex. 2018;5:239-45.). Scheloribatidae species are the most frequently collected oribatid mites (Knee, 2017Knee W. A new Paraleius species (Acari, Oribatida, Scheloribatidae) associated with bark beetles (Curculionidae, Scolytinae) in Canada. ZooKeys. 2017;667:51-65. https://doi.org/10.3897/zookeys.667.12104
https://doi.org/10.3897/zookeys.667.1210...
).

Heterotrophic and Actinomycetes bacteria were the most abundant group of microfauna. Xia et al. (2022)Xia T, Li L, Li B, Dou P, Yang H. Heterotrophic bacteria play an important role in endemism of Cephalostachyum pingbianense, a full-year shooting woody bamboo. Forests. 2022;13:121. https://doi.org/10.3390/f13010121
https://doi.org/10.3390/f13010121...
found that the relative abundance of heterotrophic bacteria was significantly higher compared to other groups of microfauna. This group has a wide diversity of demands in carbonated substrates; the majority are saprophytes common in the soil and effective at transforming edaphic substrates into biomass (Terrado et al., 2017Terrado R, Pasulka AL, Lie AA, Orphan VJ, Heidelberg KB, Caron DA. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis. ISME J. 2017;11:2022-34. https://doi.org/10.1038/ismej.2017.68
https://doi.org/10.1038/ismej.2017.68...
). These bacteria feed on organic compounds and, thanks to their reproductive capacity, they generate large populations in a short time, rapidly colonizing degradable substrates. They are also responsible for increasing or reducing the supply of nutrients. Unfortunately, poor agricultural practices by farmers, such as continuous mechanization, monoculture planting, irrigation systems, application of synthetic agrochemicals and fertilizers, soil compaction, and residue burning decrease the microbial flora, which can drastically reduce soil fertility (Terrado et al., 2017Terrado R, Pasulka AL, Lie AA, Orphan VJ, Heidelberg KB, Caron DA. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis. ISME J. 2017;11:2022-34. https://doi.org/10.1038/ismej.2017.68
https://doi.org/10.1038/ismej.2017.68...
). Slaughter (2021)Slaughter L. Rhizosphere. In: Gentry TJ, Fuhrmann JJ, Zuberer DA, editors. Principles and applications of soil microbiology. United States: Elsevier; 2021. p. 269-301. indicated that bacteria, including actinomycetes, are the most numerous rhizosphere inhabitants, although they represent only a smaller portion of the total biomass due to their small size.

The diversity index indicated that macrofauna was the most diverse. This result is consistent with those obtained in other studies in Colombia (Stanturf et al., 2014Stanturf JA, Palik BJ, Dumroese RK. Contemporary forest restoration: A review emphasizing function. For Ecol Manag. 2014;331:292-323. https://doi.org/10.1016/j.foreco.2014.07.029
https://doi.org/10.1016/j.foreco.2014.07...
; Tulande et al., 2018Tulande M, Barrera-Cataño E, Alonso-Malaver JA, Morantes-Ariza CE, Basto C, Salcedo-Reyes JC. Soil macrofauna in areas with different ages after Pinus patula clearcutting. Univ Sci. 2018;23:383-417. https://doi.org/10.11144/javeriana.sc23-3.smia
https://doi.org/10.11144/javeriana.sc23-...
). Gongalsky (2021)Gongalsky KB. Soil macrofauna: Study problems and perspectives. Soil Biol Biochem. 2021;159:108281. https://doi.org/10.1016/j.soilbio.2021.108281
https://doi.org/10.1016/j.soilbio.2021.1...
stated that the macrofauna accounts for most of the total soil animal biomass in some ecosystems, and substantially contributes to soil food-web functioning. Additionally, the macrofauna can be among the most diverse groups in the soil environment. According to Shannon (1948)Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948...
, the diversity value of the macrofauna is high (H’>3) and, according to the rarefaction curve based on individuals of the macrofauna, it is estimated that the total richness is good compared to the expected total richness. Soil fauna diversity is related to increased available food resources of plant roots and litter inputs into soils (Heinze et al., 2010Heinze S, Raupp J, Joergensen RG. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil. 2010;328:203-15. https://doi.org/10.1007/s11104-009-0102-2
https://doi.org/10.1007/s11104-009-0102-...
).

Soil physical and chemical properties determine the community structure of soil fauna (Nisa et al., 2021Nisa RU, Tantray AY, Kouser N, Allie KA, Wani SM, Alamri SA, Alyemeni MN, Wijaya L, Shah AA. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi J Biol Sci. 2021;28:3049-59. https://doi.org/10.1016/j.sjbs.2021.02.046
https://doi.org/10.1016/j.sjbs.2021.02.0...
). Several studies have evaluated correlations between the physicochemical properties and the edaphic fauna (Martínez-Mera et al., 2017Martínez-Mera EA, Torregroza-Espinosa AC, Valencia-García A, Rojas-Gerónimo L. Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia. Soil environ. 2017;36:174-81. https://doi.org/10.25252/SE/17/51202
https://doi.org/10.25252/SE/17/51202...
; Wang et al., 2019Wang C, Zhou X, Guo D, Zhao J, Yan L, Feng G, Gao Q, Yu H, Zhao L. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann Microbiol. 2019;69:1461-73. https://doi.org/10.1007/s13213-019-01529-9
https://doi.org/10.1007/s13213-019-01529...
; Galindo et al., 2022Galindo V, Giraldo C, Lavelle P, Armbrecht I, Fonte SJ. Land use conversion to agriculture impacts biodiversity, erosion control, and key soil properties in an Andean watershed. Ecosphere. 2022;13:e397. https://doi.org/10.1002/ecs2.3979
https://doi.org/10.1002/ecs2.3979...
). Soil mesofauna was significantly and positively correlated with organic matter (OM) and P. Soil fauna influence soil physical and chemical properties related to soil fertility (Tantachasatid et al., 2017Tantachasatid P, Boyer J, Thanisawanyankura S, Séguy L, Sajjaphan K. Soil macrofauna communities under plant cover in a no-till system in Thailand. Agric Nat Resour. 2017;51:1-6. https://doi.org/10.1016/j.anres.2016.08.004
https://doi.org/10.1016/j.anres.2016.08....
). These organisms are the main ones responsible for fragmentation and incorporation of OM in the soil, to promote favorable conditions for activity of soil microorganism and distribution, and their activities lead to the formation of biogenic structures (galleries, chambers, fecal pellets and casts), thus influencing soil aggregation, water properties and OM assimilation (Lavelle et al., 1997Lavelle P, Bignell D, Lepage M, Wolters W, Roger P, Ineson P, Dhillion O. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur J Soil Biol. 1997;33:159-93.).

Phosphorus is a limiting factor in the early stage of the litter decomposition process (Bargali et al., 2015Bargali SS, Shukla K, Singh L, Ghosh L, Lakhera M. Leaf litter decomposition and nutrient dynamics in four tree species of dry deciduous forest. Trop Ecol. 2015;56:191-200.). The dynamics of P during litter decomposition can be strongly affected by soil fauna, and such effects could be moderated by nutrient availability and environmental conditions (Peng et al., 2019Peng Y, Yang W, Yue K, Tan B, Wu F. Impacts of soil fauna on nitrogen and phosphorus release during litter decomposition were differently controlled by plant species and ecosystem type. J For Res. 2019;30:921-30. https://doi.org/10.1007/s11676-018-0664-z
https://doi.org/10.1007/s11676-018-0664-...
). Wang et al. (2016)Wang S, Chen HYH, Tan Y, Fan H, Ruan H. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Sci Rep. 2016;6:20816. https://doi.org/10.1038/SREP20816
https://doi.org/10.1038/SREP20816...
also found an association between soil fauna with organic matter and phosphorus, which suggests that soil diversity is associated with the availability of soil nutrients.

According to the PCA, soil pH was related to soil microfauna. Xia et al. (2022)Xia T, Li L, Li B, Dou P, Yang H. Heterotrophic bacteria play an important role in endemism of Cephalostachyum pingbianense, a full-year shooting woody bamboo. Forests. 2022;13:121. https://doi.org/10.3390/f13010121
https://doi.org/10.3390/f13010121...
obtained this same relationship from the results of a correlation analysis, finding that soil pH was the most important factor related to the soil bacterial community. Generally, the results indicate that soil pH is more important than nutrients in shaping bacterial communities in agricultural soils, including their ecological functions and biogeographic distribution (Wang et al., 2019Wang C, Zhou X, Guo D, Zhao J, Yan L, Feng G, Gao Q, Yu H, Zhao L. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann Microbiol. 2019;69:1461-73. https://doi.org/10.1007/s13213-019-01529-9
https://doi.org/10.1007/s13213-019-01529...
). Soil properties determine invertebrates’ functional characteristics and population dynamics. A previous study on the global topsoil microbiome also revealed that environmental factors, especially soil pH, had a greater impact on the soil bacterial community than geographic distance (Bahram et al., 2018Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, van Bodegom P, Bengtsson-Palme J, Ansla S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P. Structure and function of the global topsoil microbiome. Nature. 2018;560:233-7. https://doi.org/10.1038/s41586-018-0386-6
https://doi.org/10.1038/s41586-018-0386-...
). Low pH affects microfauna community organization and other components of the soil food web (Matute et al., 2013Matute MM, Manning YA, Kaleem MI. Community structure of soil nematodes associated with solanum tuberosum. J Agric Sci. 2013;5:44-53. https://doi.org/10.5539/jas.v5n1p44
https://doi.org/10.5539/jas.v5n1p44...
). In some related studies, pH between 5 and 7 seems favorable for fauna soil (Warner, 2009Warner F. Soil fertility, pH, texture and nematodes. Diagnostic services. Michigan: Michigan State University; 2009.).

CONCLUSIONS

Soil physicochemical properties influenced the community structure of the edaphic fauna in tropical agricultural soils, with the relationship varying according to the edaphic fauna group. Macrofauna was influenced by organic matter, mesofauna by P, and microfauna by pH. The diversity index indicated that macrofauna was the most diverse group, and this group presented variations in the analyzed municipalities. Finally, this research can serve as a baseline to define strategies for the sustainable management of tropical agricultural soils.

ACKNOWLEDGEMENT

This study was part of the project “Application of engineering techniques that increase the resilience of agroecosystems to climate variability in the Department of Sucre” [Project BPIN2017000100029] and was funded by the government of Sucre (Colombia) through royalty system and executed by the University de la Costa and the University of Sucre (Colombia).

REFERENCES

  • Abera W, Assen M, Budds J. Determinants of agricultural land management practices among smallholder farmers in the Wanka watershed, northwestern highlands of Ethiopia. Land Use Policy. 2020;99:104841. https://doi.org/10.1016/j.landusepol.2020.104841
    » https://doi.org/10.1016/j.landusepol.2020.104841
  • Association of Analytical Communities - AOAC. Official methods of analysis AOAC International. 20th ed. Arlington: AOAC International; 2016.
  • Asfaw A, Zewudie S. Soil macrofauna abundance, biomass and selected soil properties in the home garden and coffee-based agroforestry systems at Wondo Genet, Ethiopia. Environ Sustain Indic. 2021;12:100153. https://doi.org/10.1016/j.indic.2021.100153
    » https://doi.org/10.1016/j.indic.2021.100153
  • Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, van Bodegom P, Bengtsson-Palme J, Ansla S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P. Structure and function of the global topsoil microbiome. Nature. 2018;560:233-7. https://doi.org/10.1038/s41586-018-0386-6
    » https://doi.org/10.1038/s41586-018-0386-6
  • Baretta D, Santos JCP, Segat JC, Geremia EV, Oliveira Filho LCI, Alves MV. Fauna edáfica e qualidade do solo. Tópicos Ci Solo. 2011;8:119-70.
  • Bargali SS, Shukla K, Singh L, Ghosh L, Lakhera M. Leaf litter decomposition and nutrient dynamics in four tree species of dry deciduous forest. Trop Ecol. 2015;56:191-200.
  • Benamú MA, Lacava M, García LF, Santana M, Viera C. Spiders associated with agroecosystems: Roles and perspectives. In: Viera C, Gonzaga MO, editors. Behaviour and ecology of spiders. Cham: Springer International Publishing; 2017. p. 275-302.
  • Bobrowsky P, Ball B. The theory and mechanics of ecological diversity in archaeology. Cambridge: Cambridge University Press; 1989.
  • Cabrera G. La macrofauna edáfica como indicador biológico del estado de conservación/perturbación del suelo. Resultados obtenidos en Cuba. Pastos y Forrajes. 2012;35:349-63.
  • Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob Change Biol. 2015;21:3200-9. https://doi.org/10.1111/gcb.12982
    » https://doi.org/10.1111/gcb.12982
  • Castro-Huerta RA, Falco LB, Sandler RV, Coviella CE. Differential contribution of soil biota groups to plant litter decomposition as mediated by soil use. PeerJ. 2015;3:e826. https://doi.org/10.7717/peerj.826
    » https://doi.org/10.7717/peerj.826
  • Colwell RK. EstimateS 9.1.0 [software]. Boulder: Robert K. Colwell; 2019 [cite 2022 May 05]. Available from: https://www.robertkcolwell.org/pages/estimates
    » https://www.robertkcolwell.org/pages/estimates
  • Daghighi E, Hajizadeh J, Hosseini R, Moravvej A. A checklist of Iranian Collembola with six new records from family Isotomidae (Collembola: Isotomidae). Entomofauna. 2013;11:149-56.
  • De Alba S, Torri D, Borselli L, Lindstrom M. Degradación del suelo y modificación de los paisajes agrícolas por erosión mecánica (Tillage erosion). J Soil Sci. 2003;10:93-101.
  • Decaëns T, Lavelle P, Jimenez JJ, Escobar G, Rippstein G. Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. Eur J Soil Biol. 1994;30:157-68.
  • Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He J, Hseu Z, Hu H, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang J, Weber-Grullon L, Williams MA, Singh BK. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210-20. https://doi.org/10.1038/s41559-019-1084-y
    » https://doi.org/10.1038/s41559-019-1084-y
  • Departamento Nacional de Planeación - DNP. Programa de Desarrollo sostenible de la región de La Mojana. Bogotá: Departamento Nacional de Planeación; 2003. (Informe Terminal).
  • Dias MFR, Brescovit AD, Menezes M. Aranhas de solo (Arachnida: Araneae) em diferentes fragmentos florestais no sul da Bahia, Brasil. Biota Neotrop. 2005;5:BN010051a2005. https://doi.org/10.1590/S1676-06032005000200012
    » https://doi.org/10.1590/S1676-06032005000200012
  • Duncan FD, Dickman CR. Respiratory strategies of tenebrionid beetles in arid australia: Does physiology beget nocturnality? Physiol Entomol. 2009;34:52-60. https://doi.org/10.1111/j.1365-3032.2008.00651.x
    » https://doi.org/10.1111/j.1365-3032.2008.00651.x
  • Dupérré N, Tapia E. The goblin spiders (Araneae, Oonopidae) of the OTONGA Nature Reserve in Ecuador, with the description of seven new species. Evol Syst. 2017;1:87-109. https://doi.org/10.3897/evolsyst.1.14969
    » https://doi.org/10.3897/evolsyst.1.14969
  • Duran-Bautista EH, Armbrecht I, Acioli ANS, Suárez JC, Romero M, Quintero M, Lavelle P. Termites as indicators of soil ecosystem services in transformed Amazon landscapes. Ecol Indic. 2020;117:106550. https://doi.org/10.1016/j.ecolind.2020.106550
    » https://doi.org/10.1016/j.ecolind.2020.106550
  • Fekkoun S, Chebouti-Meziou N, El Kawas H, Slimani I, Khettabi M, Ghezal H. Comparative study of the biodiversity of soil mites between two forests in eastern Algeria. Ukr J Ecol. 2021;11:39-43. https://doi.org/10.15421/2021_292
    » https://doi.org/10.15421/2021_292
  • Galindo V, Giraldo C, Lavelle P, Armbrecht I, Fonte SJ. Land use conversion to agriculture impacts biodiversity, erosion control, and key soil properties in an Andean watershed. Ecosphere. 2022;13:e397. https://doi.org/10.1002/ecs2.3979
    » https://doi.org/10.1002/ecs2.3979
  • Gómez-Anaya JA, Palacios-Vargas JG, Castaño-Meneses G. Abundancia de colémbolos (Hexapoda:Collembola) y parámetros edáficos de una selva baja caducifolia. Rev Colomb Entomol. 2010;36:96-105.
  • Gongalsky KB. Soil macrofauna: Study problems and perspectives. Soil Biol Biochem. 2021;159:108281. https://doi.org/10.1016/j.soilbio.2021.108281
    » https://doi.org/10.1016/j.soilbio.2021.108281
  • Gupta VVSR, Roper MM. Protection of free-living nitrogen-fixing bacteria within the soil matrix. Soil Till Res. 2010;109:50-4. https://doi.org/10.1016/j.still.2010.04.002
    » https://doi.org/10.1016/j.still.2010.04.002
  • Guzmán A, Obando M, Rivera D, Bonilla R. Selección y caracterización de rizobacterias promotoras de crecimiento vegetal (RPCV) asociadas al cultivo de algodón (Gossypium hirsutum). Rev Colomb Biotecnol. 2012;14:182-90.
  • Heinze S, Raupp J, Joergensen RG. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil. 2010;328:203-15. https://doi.org/10.1007/s11104-009-0102-2
    » https://doi.org/10.1007/s11104-009-0102-2
  • Ibarra-Núñez G. Las arañas como bioindicadores. In: González CA, Vallarino A, Pérez JC, Low A, editors. Bioindicadores: guardianes de nuestro futuro ambiental. México: El Colegio de la Frontera Sur (ECOSUR), Instituto Nacional de Ecología y Cambio Climático (INECC); 2014. p. 273-90.
  • Instituto Colombiano de Geología y Minería - Ingeominas. Memoria técnica del mapa de aguas subterráneas del departamento de sucre en escala 1:250.000. Bogotá: Ministerio de minas y energía, Instituto colombiano de geología y minería; 2002.
  • Instituto Colombiano de Normas Tecnicas y Certificación - Icontec. Norma Técnica Colombiana (NTC) 6299, Calidad del suelo, Determinación de la textura por Bouyoucos. Bogotá: Icontec; 2018.
  • Instituto Geográfico Agustín Codazzi - IGAC. Suelos y tierras de Colombia, subdirección de agrología. Colombia: IGAC; 2016.
  • Kiani M, Hernandez-Ramirez G, Quideau S, Smith E, Janzen H, Larney FJ, Puurveen D. Quantifying sensitive soil quality indicators across contrasting long-term land management systems: Crop rotations and nutrient regimes. Agric Ecosyst Environ. 2017;248:123-35. https://doi.org/10.1016/j.agee.2017.07.018
    » https://doi.org/10.1016/j.agee.2017.07.018
  • Knee W. A new Paraleius species (Acari, Oribatida, Scheloribatidae) associated with bark beetles (Curculionidae, Scolytinae) in Canada. ZooKeys. 2017;667:51-65. https://doi.org/10.3897/zookeys.667.12104
    » https://doi.org/10.3897/zookeys.667.12104
  • Lavelle P, Bignell D, Lepage M, Wolters W, Roger P, Ineson P, Dhillion O. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur J Soil Biol. 1997;33:159-93.
  • Lehman R, Cambardella C, Stott D, Acosta-Martinez V, Manter D, Buyer J, Maul J, Smith J, Collins H, Halvorson J, Kremer R, Lundgren J, Ducey T, Jin V, Karlen D. Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability. 2015;7:988-1027. https://doi.org/10.3390/su7010988
    » https://doi.org/10.3390/su7010988
  • Li X, Liu Y, Duan M, Yu Z, Axmacher JC. Different response patterns of epigaeic spiders and carabid beetles to varying environmental conditions in fields and semi-natural habitats of an intensively cultivated agricultural landscape. Agric Ecosyst Environ. 2018;264:54-62. https://doi.org/10.1016/j.agee.2018.05.005
    » https://doi.org/10.1016/j.agee.2018.05.005
  • Machado-Cuellar L, Rodríguez L, Murcia V, Orduz SA, Ordoñez CM, Suárez JC. Macrofauna del suelo y condiciones edafoclimáticas en un gradiente altitudinal de zonas cafeteras, Huila, Colombia. Rev Biol Trop. 2020;69:102-12.
  • Mantilla-Paredes A, Cardona G, Peña-Venegas C, Murcia U, Rodríguez M, Zambrano M. Distribución de bacterias potencialmente fijadoras de nitrógeno y su relación con parámetros fisicoquímicos en suelos con tres coberturas vegetales en el sur de la Amazonia colombiana. Rev Biol Trop. 2009;57:915-27. https://doi.org/10.15517/rbt.v57i4.5436
    » https://doi.org/10.15517/rbt.v57i4.5436
  • Martínez-Mera EA, Torregroza-Espinosa AC, Crissien-Borrero TJ, Marrugo-Negrete JL, González-Márquez LC. Evaluation of contaminants in agricultural soils in an irrigation district in Colombia. Heliyon. 2019;5:e02217. https://doi.org/10.1016/j.heliyon.2019.e02217
    » https://doi.org/10.1016/j.heliyon.2019.e02217
  • Martínez-Mera EA, Torregroza-Espinosa AC, Valencia-García A, Rojas-Gerónimo L. Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia. Soil environ. 2017;36:174-81. https://doi.org/10.25252/SE/17/51202
    » https://doi.org/10.25252/SE/17/51202
  • Martins ICF, Cividanes FJ, Ide S, Haddad GQ. Diversity and habitat preferences of carabidae and staphylinidae (Coleoptera) in two agroecosystems. Bragantia. 2013;71:471-80. https://doi.org/10.1590/S0006-87052013005000009
    » https://doi.org/10.1590/S0006-87052013005000009
  • Matute MM, Manning YA, Kaleem MI. Community structure of soil nematodes associated with solanum tuberosum. J Agric Sci. 2013;5:44-53. https://doi.org/10.5539/jas.v5n1p44
    » https://doi.org/10.5539/jas.v5n1p44
  • Montejo-Cruz M, Palacios-Vargas J, Castaño-Meneses G. Diversidad de Isotomidae y Neanuridae (Hexapoda: Collembola) de cuatro asociaciones vegetales en la formación Citlaltépetl, Veracruz, México. Entom Mex. 2018;5:239-45.
  • Morrison WR, Waller JT, Brayshaw AC, Hyman DA, Johnson MR, Fraser AM. Evaluating multiple arthropod taxa as indicators of invertebrate diversity in old fields. Gt Lakes Entomol. 2018;45:56-68.
  • Murillo-Cuevas FD, Adame J, Cabrera H, Fernández JA. Fauna y microflora edáfica asociada a diferentes usos de suelo. Ecosist Recur Agropec. 2019;6:23-33. https://doi.org/10.19136/era.a6n16.1792
    » https://doi.org/10.19136/era.a6n16.1792
  • Nisa RU, Tantray AY, Kouser N, Allie KA, Wani SM, Alamri SA, Alyemeni MN, Wijaya L, Shah AA. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi J Biol Sci. 2021;28:3049-59. https://doi.org/10.1016/j.sjbs.2021.02.046
    » https://doi.org/10.1016/j.sjbs.2021.02.046
  • Oliveira CM, Afonso GT, Carolino MA, Frizzas MR. Diversity of soil arthropods in sugarcane in the Brazilian Cerrado: Influence of tillage systems, extraction methods, and sampling time. Eur J Soil Biol. 2021;103:103274. https://doi.org/10.1016/j.ejsobi.2020.103274
    » https://doi.org/10.1016/j.ejsobi.2020.103274
  • Palacios-Vargas JG. Biodiversidad de Collembola (Hexapoda: Entognatha) en México. Rev Mex Biodivers. 2014;85:220-31. https://doi.org/10.7550/rmb.32713
    » https://doi.org/10.7550/rmb.32713
  • Peng Y, Yang W, Yue K, Tan B, Wu F. Impacts of soil fauna on nitrogen and phosphorus release during litter decomposition were differently controlled by plant species and ecosystem type. J For Res. 2019;30:921-30. https://doi.org/10.1007/s11676-018-0664-z
    » https://doi.org/10.1007/s11676-018-0664-z
  • Pereira JM, Cardoso E, Brescovit A, Oliveira L, Segat J, Duarte J, Baretta D. Soil spiders (Arachnida: Araneae) in native and reforested Araucaria forests. Sci Agric. 2021;78:e20190198. https://doi.org/10.1590/1678-992X-2019-0198
    » https://doi.org/10.1590/1678-992X-2019-0198
  • Phondani PC, Maikhuri RK, Rawat LS, Negi VS. Assessing farmers’ perception on criteria and indicators for sustainable management of indigenous agroforestry systems in Uttarakhand. India. Environ Sustain Indic. 2020;5:100018. https://doi.org/10.1016/j.indic.2019.100018
    » https://doi.org/10.1016/j.indic.2019.100018
  • Pielou EC. An introduction to mathematical ecology. New York: John Wiley & Sons; 1969.
  • Pino V, McBratney A, Fajardo M, Wilson N, Deaker R. Understanding soil biodiversity using two orthogonal 1000km transects across new south wales, Australia. Geoderma. 2019;354:113860. https://doi.org/10.1016/j.geoderma.2019.07.018
    » https://doi.org/10.1016/j.geoderma.2019.07.018
  • Programa de las Naciones Unidas para el Desarrollo - PNUD. Perfil productivo, municipio de Corozal, Sucre. Bogotá: PNUD; 2015.
  • R Development Core Team. The R project for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014 [cited 2014 Dec 30]. Available from: http://www.R-project.org/
    » http://www.R-project.org/
  • República de Colombia Departamento de Sucre. Plan departamental de extensión agropecuaria Sucre, una gran empresa agroproductiva. Colombia: Gobernación Secretaría de Desarrollo Económico y Medio Ambiente; 2020.
  • Rosa MG, Santos JCP, Brescovit AD, Mafra AL, Baretta D. Spiders (Arachnida:Araneae) in agricultural land use systems in subtropical environments. Rev Bras Cienc Solo. 2018;42:e0160576. https://doi.org/10.1590/18069657rbcs20160576
    » https://doi.org/10.1590/18069657rbcs20160576
  • Rossi J-P, Blanchart E. Seasonal and land-use induced variations of soil macrofauna composition in the Western Ghats, southern India. Soil Biol Biochem. 2005;37:1093-104. https://doi.org/10.1016/j.soilbio.2004.11.008
    » https://doi.org/10.1016/j.soilbio.2004.11.008
  • Royero-Mesino SY. Macrofauna edáfica y características físicas y químicas del suelo en áreas con diferentes sistemas de manejo en el departamento del Atlántico. Colombia: Universidad Nacional de Colombia; 2019.
  • Safaei M, Bashari H, Mosaddeghi MR, Jafari R. Assessing the impacts of land use and land cover changes on soil functions using landscape function analysis and soil quality indicators in semi-arid natural ecosystems. Catena. 2019;177:260-71. https://doi.org/10.1016/j.catena.2019.02.021
    » https://doi.org/10.1016/j.catena.2019.02.021
  • Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
    » https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  • Simó M, Laborda A, Caroilna J, Castro M. Las arañas en agroecosistemas: Bioindicadores terrestres de calidad ambiental. Innotec. 2011;6:51-5. https://doi.org/10.26461/06.11
    » https://doi.org/10.26461/06.11
  • Simpson EH. Measurement of diversity. Nature. 1949;163:688. https://doi.org/10.1038/163688a0
    » https://doi.org/10.1038/163688a0
  • Slaughter L. Rhizosphere. In: Gentry TJ, Fuhrmann JJ, Zuberer DA, editors. Principles and applications of soil microbiology. United States: Elsevier; 2021. p. 269-301.
  • Stanturf JA, Palik BJ, Dumroese RK. Contemporary forest restoration: A review emphasizing function. For Ecol Manag. 2014;331:292-323. https://doi.org/10.1016/j.foreco.2014.07.029
    » https://doi.org/10.1016/j.foreco.2014.07.029
  • Tantachasatid P, Boyer J, Thanisawanyankura S, Séguy L, Sajjaphan K. Soil macrofauna communities under plant cover in a no-till system in Thailand. Agric Nat Resour. 2017;51:1-6. https://doi.org/10.1016/j.anres.2016.08.004
    » https://doi.org/10.1016/j.anres.2016.08.004
  • Terrado R, Pasulka AL, Lie AA, Orphan VJ, Heidelberg KB, Caron DA. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis. ISME J. 2017;11:2022-34. https://doi.org/10.1038/ismej.2017.68
    » https://doi.org/10.1038/ismej.2017.68
  • Tibbett M, Gil-Martínez M, Fraser T, Green ID, Duddigan S, De Oliveira VH, Raulund-Rasmussen K, Sizmur T, Diaz A. Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena. 2019;180:401-15. https://doi.org/10.1016/j.catena.2019.03.013
    » https://doi.org/10.1016/j.catena.2019.03.013
  • Travez KA. Diversidad de los macroinvertebrados edáficos y su relación con la calidad del suelo en un gradiente de intensidad de uso de la tierra en La Esperanza-Pedro Moncayo-Ecuador. Ecuador: Universidad Central del Ecuador; 2020.
  • Tulande M, Barrera-Cataño E, Alonso-Malaver JA, Morantes-Ariza CE, Basto C, Salcedo-Reyes JC. Soil macrofauna in areas with different ages after Pinus patula clearcutting. Univ Sci. 2018;23:383-417. https://doi.org/10.11144/javeriana.sc23-3.smia
    » https://doi.org/10.11144/javeriana.sc23-3.smia
  • Valani GP, Vezzani FM, Cavalieri-Polizeli KMV. Soil quality: Evaluation of on-farm assessments in relation to analytical index. Soil Till Res. 2020;198:104565. https://doi.org/10.1016/j.still.2019.104565
    » https://doi.org/10.1016/j.still.2019.104565
  • Vasu D, Tiwari G, Sahoo S, Dash B, Jangir A, Sharma RP, Naitam R, Tiwary P, Karthikeyan K, Chandran P. A minimum data set of soil morphological properties for quantifying soil quality in coastal agroecosystems. Catena. 2021;198:105042. https://doi.org/10.1016/j.catena.2020.105042
    » https://doi.org/10.1016/j.catena.2020.105042
  • Velasquez E, Lavelle P. Soil macrofauna as an indicator for evaluating soil based ecosystem services in agricultural landscapes. Acta Oecol. 2019;100:103446. https://doi.org/10.1016/j.actao.2019.103446
    » https://doi.org/10.1016/j.actao.2019.103446
  • Villarreal-Rosas J, Palacios-Vargas JG, Maya Y. Microarthropod communities related with biological soil crusts in a desert scrub in northwestern Mexico. Rev Mex Biodivers. 2014;85:513-22. https://doi.org/10.7550/rmb.38104
    » https://doi.org/10.7550/rmb.38104
  • Wang C, Zhou X, Guo D, Zhao J, Yan L, Feng G, Gao Q, Yu H, Zhao L. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann Microbiol. 2019;69:1461-73. https://doi.org/10.1007/s13213-019-01529-9
    » https://doi.org/10.1007/s13213-019-01529-9
  • Wang S, Chen HYH, Tan Y, Fan H, Ruan H. Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Sci Rep. 2016;6:20816. https://doi.org/10.1038/SREP20816
    » https://doi.org/10.1038/SREP20816
  • Warner F. Soil fertility, pH, texture and nematodes. Diagnostic services. Michigan: Michigan State University; 2009.
  • Wehr HM, Frank JH. Standard methods for the microbiological examination of dairy products. 17th ed. Washington, DC: American Public Health Association; 2004.
  • Xia T, Li L, Li B, Dou P, Yang H. Heterotrophic bacteria play an important role in endemism of Cephalostachyum pingbianense, a full-year shooting woody bamboo. Forests. 2022;13:121. https://doi.org/10.3390/f13010121
    » https://doi.org/10.3390/f13010121
  • Zavaleta MA. Macrofauna y propiedades físicas y químicas del suelo en cultivos de café del Distrito de Jepelacio- Moyobamba. Perú: Universidad Nacional de Trujillo; 2019.

Edited by

Editors: José Miguel Reichert
Julio Neil Cassa Louzada

Publication Dates

  • Publication in this collection
    15 July 2022
  • Date of issue
    2022

History

  • Received
    20 Sept 2021
  • Accepted
    05 May 2022
Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br