Acessibilidade / Reportar erro

Differential Behavior of Young Eucalyptus Clones in Response to Nitrogen Supply

Comportamento Diferenciado de Clones Jovens de Eucalipto em Resposta ao Suprimento de Nitrogênio

Abstracts

Eucalyptus requires large amounts of nitrogen (N); however, it responds in diverse manners to the application of this nutrient. The aim of this study was to evaluate the differential performance in growth, mineral nutrition, and gas exchanges of N-fertilized Eucalyptus clones. The treatments consisted of two Eucalyptus clones (VM-01 and I-144) and six N application rates (0, 0.74, 2.93, 4.39, 5.85, and 8 mmol L-1 NH4NO3) arranged in a randomized complete block design with five replications. VM-01 had greater plant height and greater height/collar diameter ratio, as well as higher leaf concentrations of all macronutrients and of Cu, Fe, Mo, and Zn. In terms of total and root dry matter production, root/shoot ratio, and collar diameter, as well as stomatal conductance and transpiration, I-144 performed better. The performance of the clones was clearly differentiated, and the growth of I-144, despite lower leaf N concentration, was in general better than VM-01.

gas exchange; growth; nutrient solution; nutritional efficiency


O nitrogênio é requerido em grandes quantidades pelo eucalipto; entretanto, as repostas à aplicação desse nutriente são divergentes. O objetivo deste trabalho foi avaliar o comportamento diferenciado em crescimento, na nutrição mineral e nas trocas gasosas de clones de eucalipto supridos com N. Os tratamentos consistiram de dois clones de eucalipto (VM-01 e I-144) e seis doses de N (0; 0,74; 2,93; 4,39; 5,85; e 8 mmol L-1 de NH4NO3), dispostos em delineamento de blocos casualizados com cinco repetições. O clone VM-01 foi superior em altura e altura/diâmetro do colo e teve maiores concentrações foliares de todos os macronutrientes e de Cu, Fe, Mo e Zn. Em termos de produção de matéria seca da raiz e total, raiz/parte aérea e diâmetro do colo, bem como em condutância estomática e transpiração, o clone I-144 teve melhor performance. O desempenho dos clones foi claramente diferenciado, e o crescimento do I-144, independetemente de menor concentração foliar de N, foi em geral melhor que do VM-01.

crescimento; eficiência nutricional; solução nutritiva; trocas gasosas


INTRODUCTION

Brazil is one of the largest producers of Eucalyptus pulp and paper worldwide (SBS, 2006Sociedade Brasileira de Silvicultura - SBS. Facts and numbers of forestry in Brazil. São Paulo [Brasil]: 2006.). Eucalyptus is the most widely planted forest species of the country, grown on nearly 4.9 million hectares in 2011 (Abraf, 2012Associação Brasileira de Produtores de Florestas Plantadas - Abraf. Anuário estatístico ABRAF: ano base 2011. Brasília: 2012.). Most of these Eucalyptus forests are planted on low fertility soils, frequently resulting in growth limitations due to insufficient nutrient supply (Barros and Novais, 1996Barros NF, Novais RF. Eucalyptus nutrition and fertilizer regimes in Brazil. In: Attiwill PM, Adams MA, editors. Nutrition of Eucalyptus. Melbourne: CSIRO; 1996. p.335-55.; Leite et al., 2011Leite FP, Silva IR, Novais RF, Barros NF, Neves JCL, Villani EMA. Nutrient relations during an Eucalyptus cycle at different population densities. R Bras Ci Solo. 2011;35:949-59.), and nutritional deficiencies have been documented (Silveira et al., 1995Silveira RLVA, Gonçalves AN, Silveira RI, Branco EF. Levantamento nutricional de florestas de Eucalyptus grandis na região de Itatinga-SP: I. Macronutrientes e II Micronutrientes. In: Congresso Brasileiro de Ciência do Solo, 1995, Viçosa. Anais... Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 1995. p.896-901.). Consequently, Brazil is the country in which Eucalyptus responds best to mineral fertilization (Pinto, 2009Pinto SIC. Cinética de absorção conjunta de fósforo, potássio, cálcio e magnésio e eficiência nutricional de macronutrientes de clones de eucalipto [tese]. Lavras: Universidade Federal de Lavras; 2009.), and there is the need for high fertilizer applications to increase yields (Barros et al., 2004Barros NF, Neves JCL, Novais RF. Mineral fertilizer recommendations for Eucalyptus plantations. In: Gonçalves JLM, Benedetti V, editors. Forest nutrition and fertilization. Piracicaba: Institute of Forestry Research; 2004. p.269-305.).

Lack of N is one of the factors that most limits plant growth and development (Majerowicz et al., 2000Majerowicz N, Kerbauy GB, Nievola CC, Suzuki RM. Growth and nitrogen metabolism of Catasetum fimbriatum (Orchidaceae) grown with different nitrogen sources. Environ Exp Bot. 2000;44:195-206.), and it is required in large amounts (Marschner, 2012Marschner P. Mineral nutrition of higher plants. London: Academic Press; 2012.). However, for Eucalyptus, the effects of its application on dry matter production are sometimes positive (Smethurst et al., 2004Smethurst PJ, Holza G, Moronia M, Baillie C. Nitrogen management in Eucalyptus nitens plantations. For Ecol Manage. 2004;193:63-80.; Jesus et al., 2012Jesus GL, Barros NF, Silva IR, Neves JCL, Henriques EP, Lima VC, Fernandes LV, Soares EMB. Doses e fontes de nitrogênio na produtividade do eucalipto e nas frações da matéria orgânica em solo da região do cerrado de Minas Gerais. R Bras Ci Solo. 2012;36:201-14.) but, in other cases, ineffective (Stape and Benedetti, 1997Stape JL, Benedetti V. Decréscimo da produtividade e resposta da brotação de Eucalyptus grandis à fertilização com macronutrientes em areia quartzosa no Estado de São Paulo-Brasil. In: Anais Iufro Conference on Silviculture and Improvement of Eucalypts, 1997; Salvador, [Br]. Salvador, [Br]: Embrapa; 1997. p.112-7.; Garategui, 2002Garategui AL. Study of the nitrogen response of Eucalyptus dunnii Maiden for biomass production [dissertação]. Montevideo [Uruguay]: Universidad de la Republica; 2002.; Pulito, 2009Pulito AP. Resposta à fertilização nitrogenada e estoque de nitrogênio biodisponível em solos usados para plantações de Eucalyptus [dissertação]. Piracicaba: Escola Superior de Agricultura Luiz de Queiroz; 2009.). Gonçalves et al. (2000)Gonçalves JLM, Stape JL, Benedetti V, Fessel VAG, Gava JL. Reflexos do cultivo mínimo e intensivo do solo em sua fertilidade e na nutrição das árvores. In: Gonçalves JLM, Benedetti V, editores. Nutrição e fertilização florestal. Piracicaba: Instituto de Pesquisas Florestais; 2000. p.1-58. reported that the intensity of Eucalyptus response to N fertilization is low. Furthermore, some studies have reported nutritional differences among Eucalyptus species (Furtini Neto et al., 1996Furtini Neto AE, Barros NF, Godoy MF, Novais RF. Eficiência nutricional de mudas de Eucalyptus em relação a fósforo. R Árvore. 1996;20:17-28.; Santana et al., 2002Santana RC, Barros NF, Neves JCL. Eficiência de utilização de nutrientes e sustentabilidade da produção em procedências de Eucalyptus grandis e Eucalyptus saligna em sítios florestais do Estado de São Paulo. R Árvore. 2002;26:447-57.), e.g., in terms of response to N fertilization - as indicated by Pinto et al. (2011)Pinto SIC, Furtini Neto AE, Neves, JCL, Faquin V, Moretti BS. Eficiência nutricional de clones de eucalipto na fase de mudas cultivados em solução nutritiva. R Bras Ci Solo. 2011;35:523-33., who also mentioned the importance of information on nutrient demand and the efficiency of clones in converting the nutrients taken up into biomass. The intra- and interspecific variability in Eucalyptus species is wide, especially in characteristics such as biomass production and growth rate (Chaperon, 1987Chaperon H. Vegetative propagation of Eucalyptus. In: Simpósio de Melhoramento y Mejoramiento de Especies Forestales. Buenos Aires: CIEF; 1987. p.215-32.). Changes in the root/shoot ratio in response to nutrient availability may be related to the maximization of uptake and use of available nutrients and carbohydrates for plant growth (Cruz et al., 1993Cruz C, Lips SH, Martins-Loução MA. Nitrogen assimilation and transport in carob plants. In: Kylin A, editor. Proceedings of the Third International Symposium on Inorganic Nitrogen Assimilation. Tiberias, [Israel]: 1993. p.524-31.; Majerowicz and Kerbauy, 2002Majerowicz N, Kerbauy GB. Effects of nitrogen forms on dry matter partitioning and nitrogen metabolism in two contrasting genotypes of Catasetum fimbriatum (Orchidaceae). Environ Exp Bot. 2002;47:249-58.). The understanding of the mechanisms that control the partitioning of carbohydrates and nutrients between different plant parts is still limited (Marschner et al., 1996Marschner H, Kirkby EA, Cakmak I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot. 1996;47:1255-63.).

Nitrogen deficiency rapidly inhibits plant growth and, in most species, older leaves become chlorotic, with necrosis and subsequent leaf drop in the case of severe deficiency (Marschner, 2012Marschner P. Mineral nutrition of higher plants. London: Academic Press; 2012.). The main effect of low N availability is a decrease in the rate of photosynthesis (Hay and Porter, 2006Hay RKM, Porter JR. The physiology of crop yield. 2nd.ed. Oxford: Blackwell; 2006.), with reduction in chlorophyll and RuBisCO leaf concentrations (Bungard et al., 1997Bungard RA, Mcneil D, Morton JD. Effects of nitrogen on the photosynthetic apparatus of Clematis vitalba growth at several irradiances. Aust J Plant Physiol. 1997;24:205-14.). N is an essential component of proteins, chlorophyll, and thylakoids (Raven et al., 1986Raven PH, Evert RF, Eichhom SE. Biology of plants. New York: Worth Publishers; 1986.) and the distribution of leaf N throughout the canopy maximizes the whole-canopy carbon gain, because of differences in irradiance (Field, 1983Field C. Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia. 1983;56:341-7.). The formation of new shoot tissue raises the demand for N for protein synthesis (Majerowicz and Kerbauy, 2002Majerowicz N, Kerbauy GB. Effects of nitrogen forms on dry matter partitioning and nitrogen metabolism in two contrasting genotypes of Catasetum fimbriatum (Orchidaceae). Environ Exp Bot. 2002;47:249-58.). The N taken up is incorporated into the plant as amino acid and, with increasing N accumulation the synthesized proteins promote leaf growth, increasing the photosynthetic surface area (Dechen and Nachtigall, 2007Dechen AR, Nachtigall GR. Elementos requeridos à nutrição de plantas. In: Novais RF, Alvarez V VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL, editores. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2007. p.91-132.). Thus, dry matter accumulation depends on the amount of N that the plant can take up and the leaf area built up per unit of absorbed N (Hay and Porter, 2006Hay RKM, Porter JR. The physiology of crop yield. 2nd.ed. Oxford: Blackwell; 2006.); leaf area index (LAI) and absorbed N are closely correlated (Hirel et al., 2007Hirel BJ, Le Gouis NB, Gallais A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot. 2007;58:2369-87.). There is, consequently, a close relationship among N supply, leaf N distribution, and photosynthesis (Gastal and Lemaire, 2002Gastal F, Lemaire G. N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot. 2002;53:789-99.).

Thus, the Eucalyptus clones are expected to have different growth responses due to differences in the nutritional demand and gas exchanges under different N application rates. Therefore, the aim of this study was to evaluate the differential behavior of young Eucalyptus clones in terms of growth, mineral nutrition, and gas exchanges under the application of different N rates in the nutrient solution.

MATERIAL AND METHODS

The experiment was carried out in a greenhouse of the Soil Science Department of the Unversidade Federal de Viçosa (Federal University of Viçosa), in Viçosa, MG, Brazil (20° 45’ 14” S, 42° 52’ 53” W), from July to September 2011. Air temperature in the greenhouse was recorded daily and reached minimum and maximum values of 7.9 and 33.9 ºC, respectively. The first 30 days represented the plant acclimatization stage in the nutrient solution, and the other 60 days, the period of plant treatments. Clark’s nutrient solution (Clark, 1975Clark RB. Characterization of phosphatase of intact maize roots. J Agric Food Chem. 1975;23:458-60.) was modified to an NH+4-N/NO3-N ratio of 1 (Locatelli et al., 1984Locatelli M, Barros NF, Neves JCL, Novais RF. Efeito de formas de nitrogênio sobre o crescimento e composição mineral de mudas de eucalipto. Agrotrópica. 1984;8:53-69.), the P concentration was doubled (Caldeira et al., 1994Caldeira MTM, Sant’anna N, Cambraia J, Barros NF, Novais RF. Efeito da interação N x S sobre a composição das frações nitrogenada e sulfurada e sobre a atividade da redutase do nitrato em eucalipto. R Bras Fisiol Veg. 1994;61:59-65.), and the N rate was varied (with 2.93 mmol L-1 of NH4NO3 as a reference), according to the treatments (Ferreira, 2013Ferreira EVO. Indicadores fisiológicos do status de nitrogênio em plantas de eucalipto [tese]. Viçosa, MG: Universidade Federal de Viçosa; 2013.).

Every seven days, the concentration of the nutrient solution in a collective plastic tray (11 L) in the plant acclimatization stage was gradually increased (25, 50, 75, and 100 % of the original concentration of the modified Clark’s solution). After acclimatization, two homogeneous plants were selected (according to height and vigor) and transferred to a plastic pot (6 L), representing an experimental unit. The nutrient solution was continuously aerated and exchanged weekly, using deionized water, and the pH adjusted daily to 5.5 ± 0.05 (Locatelli et al., 1984Locatelli M, Barros NF, Neves JCL, Novais RF. Efeito de formas de nitrogênio sobre o crescimento e composição mineral de mudas de eucalipto. Agrotrópica. 1984;8:53-69.) by adding H2SO4 or NaOH solution (0.1 mol L-1).

The treatments consisted of two Eucalyptus clones (VM-01 and I-144) and six N application rates (0, 0.74, 2.93, 4.39, 5.85, and 8 mmol L-1 NH4NO3) arranged in a 2 × 6 factorial randomized complete block design with five replications. The clone VM-01 is a hybrid (Eucalyptus urophylla × E. camaldulenses) and was chosen because it is considered as more N-demanding. In contrast, clone I-144 is an E. urophylla and is considered less N-demanding. The clones were young plants derived from approximately 50-day-old tube seedlings at the beginning of the trial, provided by the forestry companies Vallourec and Mannesmann Tubes (VM-01) and Arcelor Mittal (I-144).

At the end of the experimental period, plant height, collar diameter and root length were measured, and the height/collar diameter ratio was calculated. The height and root length were measured with a graduated ruler (in cm), and the collar diameter of the plants with a digital caliper rule (in mm). For gas exchanges, eight readings were taken in 1 min (mean value was used) between 7 and 11 a.m. in the youngest fully expanded leaf of each plant using an infrared gas analyzer (IRGA, Li-6400xt, Licor) at environment temperature and humidity and constant radiation (1,000 μmol m-2 s-1), as described by Nunes (2010)Nunes FN. Crescimento e expressão gênica em clones de eucalipto influenciados pelo boro e déficit hídrico [tese]. Viçosa, MG: Universidade Federal de Viçosa; 2010.. The photosynthesis (A), stomatal conductance (gs), internal CO2 concentration (Ci), external CO2 concentration (Ca), leaf ratio (Ci/Ca), and transpiration (E) were evaluated. The plants were subsequently harvested; their leaves, stems, branches, and roots were separated, washed with deionized water, and then oven-dried (60 ºC) to constant weight to obtain the dry matter of the different plant tissues. The sum of dry matter of leaves, stem, and branches represents shoot dry matter, and total dry matter is the sum of root and shoot dry matter.

All leaves were ground (Willey mill) and taken to the laboratory to evaluate the concentration of macro- (N, P, K, Ca, Mg, and S) and micronutrients (B, Cu, Fe, Mn, Mo, and Zn). After mineralization of the material by sulfuric acid and heating, leaf N was determined by the Kjeldahl method (Bremner, 1996Bremner JM. Nitrogen-total. In: Sparks DL, editor. Methods of gril analysis. Chemical methods. Madison: Soil Science Society of America; 1996. p.1085-121.). To assess the concentration of all other nutrients, the samples were mineralized by calcination in a muffle furnace (gradually increasing the temperature to 500 ºC, maintained for 3 h) with subsequent extraction in HCl (0.01 mol L-1) and determination according to Malavolta et al. (1997)Malavolta E, Vitti GC, Oliveira SA. Avaliação do estado nutricional das plantas: Princípios e aplicações. 2ª.ed. Piracicaba: Associação Brasileira para Pesquisa da Potassa e Fosfato; 1997. by inductively coupled plasma-optical emission spectrophotometry (ICP-OES).

All data were subjected to analysis of variance (F test) to test the effects of clones, N rates, and their interactions on measured variables by the general linear model procedure (PROC GLM) of the SAS statistical package (SAS, 2004SAS Institute Inc. SAS/STAT® 9.1 User’s guide. Cary, NC: 2004.). Quadratic and square root regression models were fitted to describe these relations, and the significant model (p<0.05) with the highest determination coefficient (R2) was selected.

RESULTS AND DISCUSSION

The application of N increased shoot, root, and total dry matter, inducing higher production in clone I-144 (Figures 1a, 1b and 1d). Pinto et al. (2011)Pinto SIC, Furtini Neto AE, Neves, JCL, Faquin V, Moretti BS. Eficiência nutricional de clones de eucalipto na fase de mudas cultivados em solução nutritiva. R Bras Ci Solo. 2011;35:523-33. observed that clone I-144 has high efficiency in N uptake and utilization, whereas VM-01 has high uptake efficiency but low utilization efficiency. The clones VM-01 and I-144 reached maximum values of total dry matter of 25.4 and 30.0 g/plant, respectively, at the rate of 2.93 mmol L-1 N, i.e., the rate recommended in Clark’s nutrient solution (Clark, 1975Clark RB. Characterization of phosphatase of intact maize roots. J Agric Food Chem. 1975;23:458-60.). The effects of N application on Eucalyptus growth are positive in some cases (young plants, Jesus et al., 2012Jesus GL, Barros NF, Silva IR, Neves JCL, Henriques EP, Lima VC, Fernandes LV, Soares EMB. Doses e fontes de nitrogênio na produtividade do eucalipto e nas frações da matéria orgânica em solo da região do cerrado de Minas Gerais. R Bras Ci Solo. 2012;36:201-14.) and ineffective in others (adult plants, Pulito, 2009Pulito AP. Resposta à fertilização nitrogenada e estoque de nitrogênio biodisponível em solos usados para plantações de Eucalyptus [dissertação]. Piracicaba: Escola Superior de Agricultura Luiz de Queiroz; 2009.). According to Barros et al. (1990)Barros NF, Novais RF, Neves JCL. Fertilização e correção do solo para o plantio de eucalipto. In: Barros NF, Novais RF, editores. Relação solo-eucalipto. Viçosa, MG: Folha de Viçosa; 1990. p.127-86., N accelerates the initial growth rate of the forest; however, differences between treatments are no longer significant after 30 months, as noted by Pulito (2009)Pulito AP. Resposta à fertilização nitrogenada e estoque de nitrogênio biodisponível em solos usados para plantações de Eucalyptus [dissertação]. Piracicaba: Escola Superior de Agricultura Luiz de Queiroz; 2009..

Figure 1
Shoot (a) and root (b) dry matter, root/shoot (c), and total dry matter (d) of young eucalyptus clones under N application rates in nutrient solution. ns, º, *, and ** represent not significant, and significant at 10, 5, and 1 % by the F test (p<0.05), respectively. Cl (clone) and D (application rate).

Root/shoot dry matter decreased with increasing N for the two clones studied (Figure 1c). As expected, the root/shoot ratio was highest in plants grown in the N-free solution, due to the relatively lower production of shoot dry matter under this condition (Figure 1a). Additionally, in the absence of any limiting factor, root growth tends to increase, which, however, does not necessarily result in higher dry matter production for this organ (Figure 1b). Thus, under N deficiency, root system growth increases, in a relative manner (Marschner, 2012Marschner P. Mineral nutrition of higher plants. London: Academic Press; 2012.), shoot growth reduces, and the root/shoot ratio may change (Améziane et al., 1995Améziane R, Limami MA, Noctor G, Morot-Gaudry JF. Effect of nitrate concentration during growth on carbon partitioning and sink strength in chicory. J Exp Bot. 1995;46:1423-8.) through altered carbohydrate allocation. The increase in root/shoot ratio under N deficiency has been correlated with a shift in endogenous phytohormone levels, with an increase in abscisic acid and a decrease in cytokinins (Marschner, 1995Marschner H. Mineral nutrition of higher plants. London: Academic Press; 1995.).

The Eucalyptus clones differed in regard to plant height, collar diameter, and height/collar diameter ratio, but not in root length (p>0.05) (Figure 2). With increasing N application rates, the clones increased in plant height (Figure 2a) and collar diameter (Figure 2b), while there was no difference (p>0.05) in the height/collar diameter ratio (Figure 2c). The N application rates led to a reduction in root length for VM-01, but had no effect on this variable for I-144 (Figure 2d). The plant height and the height/collar diameter ratio of clone VM-01 were greater, while the collar diameter of I-144 was greater. This differentiated plant growth of different genotypes grown under the same conditions may indicate differences in the internal factors related to nutritional efficiency (Martinez et al., 1993)Martinez HEP, Novais RF, Sacramento LVS, Rodrigues LA. Comportamento de variedades de soja cultivadas sob diferentes níveis de fósforo: II. Translocação do fósforo absorvido e eficiência nutricional. R Bras Ci Solo. 1993;17:239-44..

Figure 2
Height (a), collar diameter (b), height/collar diameter ratio (c), and root length of young eucalyptus clones under N application rates in nutrient solution. ns, wa, *, and ** represent not significant, without adjustment, and significant at 5 and 1 % by the F test (p<0.05), respectively. Cl (clone) and D (application rate).

In a study of Wadt et al. (1999)Wadt PGS, Novais RF, Alvarez V VH, Barros NF, Dias LE. Variações no estado nutricional de eucaliptos por influência do material genético e da idade da árvore. Pesq Agropec Bras. 1999;34:1797-803. on variations in the nutritional status of Eucalyptus under the influence of different genotypes and tree ages, N demand was highest at the beginning of the crop cycle. Thus, the N nutrition of these clones in the early growth stages should be further investigated, especially that of clone VM-01, which, according to Pinto et al. (2011)Pinto SIC, Furtini Neto AE, Neves, JCL, Faquin V, Moretti BS. Eficiência nutricional de clones de eucalipto na fase de mudas cultivados em solução nutritiva. R Bras Ci Solo. 2011;35:523-33., has lower N use efficiency.

With regard to gas exchange, there was no difference (p>0.05) between the clones in photosynthesis (A) (Figure 3a) and the Ci/Ca (Figure 3c). The values of A clearly increased with increasing N in the solution, while the Ci/Ca was little affected by N application rates. In contrast, the stomatal conductance (gs) (Figure 3b) and transpiration (E) (Figure 3d) of clone VM-01 were lowest. The gs and E values of this clone were increased by increasing N application rates until they reached their peaks (0.41 µmol m-2 s-1 H2O and 5.4 mmol m-2 s-1 H2O, respectively). For clone I-144, although the N application rates influenced these same variables, there was no adjustment (without adjustment - w.a.) to the tested regression models for gs, and the N application rates were not significant (n.s.) for E. In 4-year-old E. globulus trees, N fertilization (plus P, K, and S) also stimulated a 20 % increase in height, an increase in leaf N concentration and gs, and an increase in the Ci/Ca (Turnbull et al., 2007)Turnbull TL, Kelly N, Adams MA, Warren CR. Within-canopy nitrogen and photosynthetic gradients are unaffected by soil fertility in field-grown Eucalyptus globules. Tree Physiol. 2007;27:1607-17..

Figure 3
Photosynthesis - A (a), stomatal conductance - gs (b), leaf internal CO2 concentration (Ci) and external CO2 concentration (Ca) ratio - Ci/Ca (c), and transpiration - E (d) of young eucalyptus clones under N application rates in nutrient solution. ns, wa, º, *, and ** represent not significant, without adjustment, and significant at 10, 5, and 1 % by the F test (p<0.05), respectively. Cl (clone) and D (application rate).

The positive response of A to N application (Figure 3a) was expected, since this nutrient is positively correlated with photosynthesis (Niinemmets et al., 2006Niinemmets U, Cescatti A, Rodeghiero M. Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availability leaf age in Mediterranean evergreen species Quercus ilex. Plant Cell Environ. 2006;29:1159-78.). Nitrogen is part of enzymes that participate in photosynthetic processes, especially of RuBisCO (Onoda et al., 2004Onoda Y, Hokosaka K, Hirose T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct Ecol. 2004;18:419-25.), as well as being present in the chlorophyll molecule (Dechen and Nachtigall, 2007Dechen AR, Nachtigall GR. Elementos requeridos à nutrição de plantas. In: Novais RF, Alvarez V VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL, editores. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2007. p.91-132.). In most species, N deficiency induces a significant decrease in A and gs (Hunt et al., 1985Hunt ER, Weber JA, Gates DM. Effects of nitrate application on Amaranthus powelli Wats. III. Optimal allocation of leaf nitrogen for photosynthesis and stomatal conductance. Plant Physiol. 1985;79:619-24.). However, the response of stomata to N deficiency can vary from increase (Ciompi et al., 1996Ciompi S, Gentile E, Guidi L, Soldatini GF. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sun flower. Plant Sci. 1996;118:177-84.) to decrease (Lima et al., 2000Lima JD, Damatta FM, Mosquim PR. Growth attributes, xylem sap composition, and photosynthesis in common bean as affected by nitrogen and phosphorus deficiency. J Plant Nutr. 2000;23:937-47.).

Although the A values of the clones were similar (Figure 3a), the gs values (Figure 3b) and total dry matter of VM-01 were lower (Figure 1d) than I-144. In general, the increase in gs (Figure 3b) due to N application induced an increase in E (Figure 3d) and A (Figure 3a), although not in the Ci/Ca (Figure 3c), which resulted in a gain in total dry matter (Figure 1d). Müller et al. (2012)Müller C, Detmann KSC, Pereira GL, Batista HCS, Figueiredo AC, Marinho AF, Barros NF. Alterações fisiológicas e de crescimento em clones de eucalipto em resposta ao déficit hídrico e suprimento de boro. In: FERTBIO [CD-ROM]. Maceió: Universidade Federal de Alagoas; 2012. verified that the reduction in gs is related to the reduction in E and A in Eucalyptus clones grown with B supply in the nutrient solution. They reported values of around 20 μmol m-2 s-1 CO2 for A and between 0.4 and 0.5 μmol m-2 s-1 H2O for gs in plants of the control treatment. In another experiment with Eucalyptus, also with the addition of B in the nutrient solution, higher gs values were also associated with higher E, indicating that conditions that promote greater dry matter production also favor greater transpiration flow (Nunes, 2010Nunes FN. Crescimento e expressão gênica em clones de eucalipto influenciados pelo boro e déficit hídrico [tese]. Viçosa, MG: Universidade Federal de Viçosa; 2010.). Changes in gs have been described as being involved with control of water loss and CO2 uptake (Ci) to maintain the photosynthetic rate (Taiz and Zeiger, 2004Taiz L, Zeiger E. Fisiologia vegetal. 3ª.ed. Porto Alegre: Artmed; 2004.).

The decrease in gs can restrict CO2 availability, with a consequent decrease in CO2 concentrations in the substomatal cavities and intercellular spaces (Daley et al., 1989Daley PF, Raschke K, Ball JY, Berry JA. Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. Plant Physiol. 1989;90:1233-8.). A limited gs normally results in a reduction in photosynthesis (Reddy et al., 2004Reddy AR, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol. 2004;161:1189-202.). However, a stable leaf-internal CO2 concentration was observed, despite the gs limitation (Warren et al., 2007Warren CR, Bleby T, Adams MA. Changes in gas exchange versus leaf solutes as a means to cope with summer drought in Eucalyptus marginata. Oecologia. 2007;154:1-10.). The minor variations in the Ci/Ca (Figure 3c) observed in this study did not negatively affect A (Figure 3a) and total dry matter (Figure 1d), perhaps because of the low magnitude of these alterations, avoiding a significant effect on the other variables evaluated, apart from the increase in gs (Figure 3b). Mattiello et al. (2009)Mattiello EM, Ruiz HA, Silva IR, Guerra PC, Andrade VM. Características fisiológicas e crescimento de clones de eucalipto em resposta ao boro. R Árvore. 2009;33:821-30. also observed that the Ci/Ca remained practically unaltered (between 0.7 - 0.8) in eight Eucalyptus clones grown in Clark’s solution with B addition, emphasizing that the substrate (CO2) was not limiting for A.

The clones differed (p<0.05) for all leaf macronutrients evaluated, and clone VM-01 showed the highest values (Figure 4). Differences in nutritional efficiency between Eucalyptus clones have also been observed by other authors (Neves, 2000Neves JCL. Produção e partição de biomassa, aspectos nutricionais e híbridos em plantios clonais de eucalipto na região litorânea do Espírito Santo [tese]. Campos dos Goytacazes: Universidade Estadual do Norte Fluminense; 2000.; Lima et al., 2005Lima AMN, Neves JCL, Silva IR, Leite FP. Cinética de absorção e eficiência nutricional de K, Ca e Mg em plantas jovens de quatro clones de eucalipto. R Bras Ci Solo. 2005;29:903-9.; Pinto et al., 2011)Pinto SIC, Furtini Neto AE, Neves, JCL, Faquin V, Moretti BS. Eficiência nutricional de clones de eucalipto na fase de mudas cultivados em solução nutritiva. R Bras Ci Solo. 2011;35:523-33. and, according to Furtini Neto (1994)Furtini Neto AE. Eficiência nutricional, cinética de absorção e frações fosfatadas em Eucalyptus ssp [tese]. Viçosa, MG: Universidade Federal de Viçosa; 1994., this fact suggests the possibility of selection and adaptation of Eucalyptus genotypes to different soil conditions, specifically those with low natural fertility (Pinto et al., 2011)Pinto SIC, Furtini Neto AE, Neves, JCL, Faquin V, Moretti BS. Eficiência nutricional de clones de eucalipto na fase de mudas cultivados em solução nutritiva. R Bras Ci Solo. 2011;35:523-33..

Figure 4
Concentration of N (a), P (b), K (c), Ca (d), Mg (e), and S (f) in leaves of young eucalyptus clones under N application rates in nutrient solution. ns, wa, º, *, and ** represent not significant, without adjustment, and significant at 10, 5, and 1 % by the F test (p<0.05), respectively. Cl (clone) and D (application rate).

The application of N resulted in an increase in the leaf N concentration of the Eucalyptus clones tested, fitting the square root model (Figure 4a). The higher concentrations of leaf N in clone VM-01 indicate its greater demand for this nutrient. In comparison to the N-free treatment (application rate 0), a small application of this nutrient (0.74 mmol L-1 of NH4NO3) was enough to raise the leaf N concentration of VM-01 by approximately 2.5 times, and by three times in leaves of I-144. Furlani (2004)Furlani AMC. Nutrição mineral. In: Kerbauy GB, editor. Fisiologia vegetal. Rio de Janeiro: Guanabara Koogan; 2004. p.40-75. reported that plants grown at low N concentrations have a light green color, characterized by generalized chlorosis, especially in older leaves, because N is a mobile element within plants. In our experiment, this symptom was observed in plants grown at application rates of 0 and 0.74 mmol L-1 NH4NO3 as of the second week of treatment. The increase in leaf N concentration (Figure 4a) was accompanied not only by an increase in A (Figure 3a), but also in total dry matter for both clones (Figure 1d), after N application in the solution. However, as clone VM-01 had higher leaf N concentration but lower total dry matter production, we concluded that its N use efficiency is lower, as also stated by Pinto et al. (2011)Pinto SIC, Furtini Neto AE, Neves, JCL, Faquin V, Moretti BS. Eficiência nutricional de clones de eucalipto na fase de mudas cultivados em solução nutritiva. R Bras Ci Solo. 2011;35:523-33.. Nitrogen deficiency reduces chlorophyll synthesis; in this situation, the plant cannot use sunlight as an energy source for photosynthesis, resulting in a loss of capacity to perform essential functions such as nutrient uptake (Dechen and Natchtigall, 2007Dechen AR, Nachtigall GR. Elementos requeridos à nutrição de plantas. In: Novais RF, Alvarez V VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL, editores. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2007. p.91-132.).

Leaf S concentrations had a behavior pattern similar to leaf N concentrations, i.e., they increased with increasing N levels in the solution (Figure 4f). Like N, most S is incorporated into proteins, with a stoichiometry between these two nutrients (Malavolta et al., 1997Malavolta E, Vitti GC, Oliveira SA. Avaliação do estado nutricional das plantas: Princípios e aplicações. 2ª.ed. Piracicaba: Associação Brasileira para Pesquisa da Potassa e Fosfato; 1997.). The interaction between N and S seems to be related primarily to uptake and translocation, since greater N availability contributes to increasing S concentration in plant shoots (Barney Jr and Bush, 1986Barney Jr, PE, Bush LP. Interaction of nitrate and sulfate reduction in tobacco. 1. Influence of availability of nitrate and sulfate. J Plant Nutr. 1986;8:505-15.; Alvarez V et al., 2007Alvarez V VH, Roscoe R, Kurihara CH, Pereira NF. Enxofre. In: Novais RF, Alvarez V VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL, editores. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2007. p.595-635.), explaining the similarity of the tendencies in their concentrations observed in this study. Unlike leaf N and S, leaf Ca concentrations decreased with increasing N application rates (Figure 4d). This may be partially explained by preferential uptake of N in the form of NH4+ by Eucalyptus (Barros and Novais, 1996Barros NF, Novais RF. Eucalyptus nutrition and fertilizer regimes in Brazil. In: Attiwill PM, Adams MA, editors. Nutrition of Eucalyptus. Melbourne: CSIRO; 1996. p.335-55.). Although the clones absorbed both mineral N forms (NH4+ and NO3), at increasing N levels in the solution, the predominance of uptake of NH4+ increased (Ferreira, 2013Ferreira EVO. Indicadores fisiológicos do status de nitrogênio em plantas de eucalipto [tese]. Viçosa, MG: Universidade Federal de Viçosa; 2013.), resulting in greater competition between NH4+ and Ca2+ ions, to the favor of NH4+, which was more concentrated. Consequently, lower amounts of Ca were taken up and accumulated in the clone leaves. In common bean and corn, for example, there is a reduction in Ca with increasing NH4+ concentration (Souza and Fernandes, 2006Souza SR, Fernandes MS. Nitrogênio. In: Fernandes MS, editor. Nutrição mineral de plantas. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2006. p.215-52.). Vitti et al. (2006)Vitti GC, Lima E, Cicarone F. Cálcio, magnésio e enxofre. In: Fernandes MS, editor. Nutrição mineral de plantas. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, 2006. p.299-329. reported that high concentrations of N as NH4+ in the plant growth medium reduce Ca uptake by roots. The higher leaf Ca in plants grown in the N-free solution may also have been an effect of the Ca concentration, since the dry matter production of the plants was much lower in this situation (Figure 1).

The N application rates did not influence leaf P concentration, and the highest concentrations were found in clone VM-01 (Figure 4b). The P concentrations observed in this study were likely also the result of using a double P application rate, as proposed by Caldeira et al. (1994)Caldeira MTM, Sant’anna N, Cambraia J, Barros NF, Novais RF. Efeito da interação N x S sobre a composição das frações nitrogenada e sulfurada e sobre a atividade da redutase do nitrato em eucalipto. R Bras Fisiol Veg. 1994;61:59-65.. Although the leaf K concentration was influenced by the N levels in solution, there were no adjustments (w.a.) to the models tested (Figure 4c). Potassium plays an important role in regulating the osmotic potential of plant cells (Marschner, 2012Marschner P. Mineral nutrition of higher plants. London: Academic Press; 2012.), contributing to stomatal opening and closure (Dechen and Nachtigall, 2007Dechen AR, Nachtigall GR. Elementos requeridos à nutrição de plantas. In: Novais RF, Alvarez V VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL, editores. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2007. p.91-132.). Thus, the plants with the lowest K concentration (application rate 0 of NH4NO3) also had lower values of A, gs, and E (Figures 3a, 3b, and 3d), thereby contributing to lower total dry matter production (Figure 1d), since K deficiency does not allow the stomata to open fully or close quickly, causing limited control over water loss from plants (Dechen and Nachtigall, 2007Dechen AR, Nachtigall GR. Elementos requeridos à nutrição de plantas. In: Novais RF, Alvarez V VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL, editores. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2007. p.91-132.).

A behavior without adjustment (w.a.) of the Mg concentration in VM-01 was also observed, whereas Mg concentration was reduced when N was added to the growth solution of clone I-144 (Figure 4e). However, except for Mg concentration in the treatment without N, it was observed that there is an almost linear increase in Mg with increasing N application rates for both clones, following the increase in N concentration (Figure 4a) and A (Figure 3a). This is because Mg, along with N, plays a role as a structural component of the chlorophyll molecule and is therefore essential for photosynthesis (Marschner, 2012Marschner P. Mineral nutrition of higher plants. London: Academic Press; 2012.). For clone I-144 in the N-free solution, there was a peak in Mg uptake, which fitted a square root model. In this situation, competition between NH4+ and Mg2+ ions in solution is rather unlikely, since there was no N in solution, thus favoring Mg uptake. Leaf Mg concentration may also have been favored by a concentration effect, as a result of lower shoot dry matter (Figure 1a), as observed for leaf Ca concentration (Figure 4d).

Lastly, the N levels in solution influenced the leaf concentration of all micronutrients (Figure 5). The leaf B concentration, with means of 22 mg kg-1 for clone VM-01, and 21 mg kg-1 for I-144, did not fit the regression models tested (Figure 5a). Nunes (2010)Nunes FN. Crescimento e expressão gênica em clones de eucalipto influenciados pelo boro e déficit hídrico [tese]. Viçosa, MG: Universidade Federal de Viçosa; 2010., testing B (15 μmol L-1) in nutrient solution, close to the B concentration used in this study (19 μmol L-1 B), obtained mean leaf concentrations of 47 and 59 mg kg-1 B in drought-sensitive and drought-tolerant Eucalyptus clones, respectively. Although the characteristic B deficiency symptom is necrosis of young leaves and terminal buds, a wide variety of symptoms are observed in B-deficient plants, depending on species and age (Taiz and Zeiger, 2004Taiz L, Zeiger E. Fisiologia vegetal. 3ª.ed. Porto Alegre: Artmed; 2004.). However, no visual symptoms of B deficiency were observed in the plants of this study; perhaps the growing period was not long enough to allow their manifestation. There was a reduction in leaf Mn concentration with increased N application rates (quadratic and square root models), with a minimum value of 102 mg kg-1 Mn for both clones (Figure 5d). Manganese inhibits Fe uptake and, in turn, Mn uptake is inhibited by Mg (Malavolta et al., 1997Malavolta E, Vitti GC, Oliveira SA. Avaliação do estado nutricional das plantas: Princípios e aplicações. 2ª.ed. Piracicaba: Associação Brasileira para Pesquisa da Potassa e Fosfato; 1997.) so, in general, plants with lower leaf Mn concentrations also had higher Mg (Figure 4e) and Fe concentrations (Figure 5c).

Figure 5
Concentration of B (a), Cu (b), Fe (c), Mn (d), Mo (e), and Zn (f) in leaves of young eucalyptus clones under N application rates in nutrient solution. ns, wa, º, *, and ** represent not significant, without adjustment, and significant at 10, 5, and 1 % by the F test (p<0.05), respectively. Cl (clone) and D (application rate).

An increase in the concentrations of the micronutrients Cu, Fe, Mo, and Zn was observed in the leaves with application of greater N levels in the solution (Figures 5b, 5c, 5e, and 5f, respectively). Apart from the Cu (quadratic adjustment) and Mo (w.a.) concentrations in clone VM-01, the concentrations of the aforementioned nutrients in clone I-144, and of Fe and Zn in both clones, were fitted with a square root model.

Clearly, clone VM-01 had higher concentrations (p<0.05) of these four micronutrients. These results indicate that clone VM-01 does not only take up more N but, in general, also takes up more of the other nutrients evaluated than clone I-144. Whereas the Cu and Mo concentrations of both clones are above the range considered optimal for normal Eucalyptus growth (Malavolta et al., 1997)Malavolta E, Vitti GC, Oliveira SA. Avaliação do estado nutricional das plantas: Princípios e aplicações. 2ª.ed. Piracicaba: Associação Brasileira para Pesquisa da Potassa e Fosfato; 1997., the Fe and Zn concentrations of clone I-144 are below these ranges. One of the functions of Mo is related to nitrate reductase, which catalyzes the reduction of NO3 to NO2 (Marschner, 2012)Marschner P. Mineral nutrition of higher plants. London: Academic Press; 2012.. Under Mo deficiency, N accumulates as NO3 in the plant; so, the lack of Mo and of N has similar effects (Dechen and Nachtigall, 2007)Dechen AR, Nachtigall GR. Elementos requeridos à nutrição de plantas. In: Novais RF, Alvarez V VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL, editores. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2007. p.91-132.. However, in this experiment, high Mo concentrations were found in plants, corroborating the higher NH4+ concentrations (Ferreira, 2013)Ferreira EVO. Indicadores fisiológicos do status de nitrogênio em plantas de eucalipto [tese]. Viçosa, MG: Universidade Federal de Viçosa; 2013.. However, toxic effects of Mo were not observed in either Eucalyptus clone, because, according to Dechen and Nachtigall (2007)Dechen AR, Nachtigall GR. Elementos requeridos à nutrição de plantas. In: Novais RF, Alvarez V VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL, editores. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2007. p.91-132., although the plants require small amounts of this micronutrient (<1.0 mg kg-1 Mo), large amounts of molybdate can be taken up without toxic effects. Whereas P stimulates Mo uptake, it can also induce Zn deficiency in plants, because it decreases Zn uptake at high concentrations (Malavolta et al., 1997)Malavolta E, Vitti GC, Oliveira SA. Avaliação do estado nutricional das plantas: Princípios e aplicações. 2ª.ed. Piracicaba: Associação Brasileira para Pesquisa da Potassa e Fosfato; 1997.. This may explain the very high Mo and lower leaf Zn concentrations observed in this study, since the P concentration in the nutrient solution had been doubled. Corroborating this fact, a mean concentration of 75 mg kg-1 Zn was found in the shoot of E. maculate and E. urophylla seedlings even without adding Zn to Clark’s nutrient solution (Soares et al., 2001)Soares CRFS, Grazziotti PH, Siqueira JO, Carvalho JG, Moreira FMS. Toxidez de zinco no crescimento e nutrição de Eucalyptus maculata e Eucalyptus urophylla em solução nutritiva. Pesq Agropec Bras. 2001:36:339-48..

CONCLUSIONS

The N supply was associated with better nutrition, higher photosynthetic rates, and an increase in growth and dry matter production of Eucalyptus clones.

Clone VM-01 had greater plant height, height/collar diameter ratio, and higher leaf concentrations of all macronutrients and of Cu, Fe, Mo, and Zn, while root and total dry matter production, root/shoot ratio, collar diameter, gs, and E of clone I-144 were higher.

The Eucalyptus clones VM-01 and I-144 performed differently, and the growth of I-144, despite a lower leaf N concentration, was generally better than that of VM-01.

ACKNOWLEDGMENTS

We are very grateful to the National Council of Technological and Scientific Development (CNPq) for financial support (project funding - Process N. 473245/2011-6, and Ph.D. scholarship) and Vallourec & Mannesmann Tubes Forestry Company (V&M Tubes) for offering the experimental areas and also for providing assistance in soil and leaf sampling.

REFERENCES

  • Alvarez V VH, Roscoe R, Kurihara CH, Pereira NF. Enxofre. In: Novais RF, Alvarez V VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL, editores. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2007. p.595-635.
  • Améziane R, Limami MA, Noctor G, Morot-Gaudry JF. Effect of nitrate concentration during growth on carbon partitioning and sink strength in chicory. J Exp Bot. 1995;46:1423-8.
  • Associação Brasileira de Produtores de Florestas Plantadas - Abraf. Anuário estatístico ABRAF: ano base 2011. Brasília: 2012.
  • Barney Jr, PE, Bush LP. Interaction of nitrate and sulfate reduction in tobacco. 1. Influence of availability of nitrate and sulfate. J Plant Nutr. 1986;8:505-15.
  • Barros NF, Neves JCL, Novais RF. Mineral fertilizer recommendations for Eucalyptus plantations. In: Gonçalves JLM, Benedetti V, editors. Forest nutrition and fertilization. Piracicaba: Institute of Forestry Research; 2004. p.269-305.
  • Barros NF, Novais RF. Eucalyptus nutrition and fertilizer regimes in Brazil. In: Attiwill PM, Adams MA, editors. Nutrition of Eucalyptus. Melbourne: CSIRO; 1996. p.335-55.
  • Barros NF, Novais RF, Neves JCL. Fertilização e correção do solo para o plantio de eucalipto. In: Barros NF, Novais RF, editores. Relação solo-eucalipto. Viçosa, MG: Folha de Viçosa; 1990. p.127-86.
  • Bremner JM. Nitrogen-total. In: Sparks DL, editor. Methods of gril analysis. Chemical methods. Madison: Soil Science Society of America; 1996. p.1085-121.
  • Bungard RA, Mcneil D, Morton JD. Effects of nitrogen on the photosynthetic apparatus of Clematis vitalba growth at several irradiances. Aust J Plant Physiol. 1997;24:205-14.
  • Caldeira MTM, Sant’anna N, Cambraia J, Barros NF, Novais RF. Efeito da interação N x S sobre a composição das frações nitrogenada e sulfurada e sobre a atividade da redutase do nitrato em eucalipto. R Bras Fisiol Veg. 1994;61:59-65.
  • Chaperon H. Vegetative propagation of Eucalyptus In: Simpósio de Melhoramento y Mejoramiento de Especies Forestales. Buenos Aires: CIEF; 1987. p.215-32.
  • Ciompi S, Gentile E, Guidi L, Soldatini GF. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sun flower. Plant Sci. 1996;118:177-84.
  • Clark RB. Characterization of phosphatase of intact maize roots. J Agric Food Chem. 1975;23:458-60.
  • Cruz C, Lips SH, Martins-Loução MA. Nitrogen assimilation and transport in carob plants. In: Kylin A, editor. Proceedings of the Third International Symposium on Inorganic Nitrogen Assimilation. Tiberias, [Israel]: 1993. p.524-31.
  • Daley PF, Raschke K, Ball JY, Berry JA. Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. Plant Physiol. 1989;90:1233-8.
  • Dechen AR, Nachtigall GR. Elementos requeridos à nutrição de plantas. In: Novais RF, Alvarez V VH, Barros NF, Fontes RLF, Cantarutti RB, Neves JCL, editores. Fertilidade do solo. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2007. p.91-132.
  • Ferreira EVO. Indicadores fisiológicos do status de nitrogênio em plantas de eucalipto [tese]. Viçosa, MG: Universidade Federal de Viçosa; 2013.
  • Field C. Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia. 1983;56:341-7.
  • Furlani AMC. Nutrição mineral. In: Kerbauy GB, editor. Fisiologia vegetal. Rio de Janeiro: Guanabara Koogan; 2004. p.40-75.
  • Furtini Neto AE. Eficiência nutricional, cinética de absorção e frações fosfatadas em Eucalyptus ssp [tese]. Viçosa, MG: Universidade Federal de Viçosa; 1994.
  • Furtini Neto AE, Barros NF, Godoy MF, Novais RF. Eficiência nutricional de mudas de Eucalyptus em relação a fósforo. R Árvore. 1996;20:17-28.
  • Garategui AL. Study of the nitrogen response of Eucalyptus dunnii Maiden for biomass production [dissertação]. Montevideo [Uruguay]: Universidad de la Republica; 2002.
  • Gastal F, Lemaire G. N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot. 2002;53:789-99.
  • Gonçalves JLM, Stape JL, Benedetti V, Fessel VAG, Gava JL. Reflexos do cultivo mínimo e intensivo do solo em sua fertilidade e na nutrição das árvores. In: Gonçalves JLM, Benedetti V, editores. Nutrição e fertilização florestal. Piracicaba: Instituto de Pesquisas Florestais; 2000. p.1-58.
  • Hay RKM, Porter JR. The physiology of crop yield. 2nded. Oxford: Blackwell; 2006.
  • Hirel BJ, Le Gouis NB, Gallais A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot. 2007;58:2369-87.
  • Hunt ER, Weber JA, Gates DM. Effects of nitrate application on Amaranthus powelli Wats. III. Optimal allocation of leaf nitrogen for photosynthesis and stomatal conductance. Plant Physiol. 1985;79:619-24.
  • Jesus GL, Barros NF, Silva IR, Neves JCL, Henriques EP, Lima VC, Fernandes LV, Soares EMB. Doses e fontes de nitrogênio na produtividade do eucalipto e nas frações da matéria orgânica em solo da região do cerrado de Minas Gerais. R Bras Ci Solo. 2012;36:201-14.
  • Leite FP, Silva IR, Novais RF, Barros NF, Neves JCL, Villani EMA. Nutrient relations during an Eucalyptus cycle at different population densities. R Bras Ci Solo. 2011;35:949-59.
  • Lima AMN, Neves JCL, Silva IR, Leite FP. Cinética de absorção e eficiência nutricional de K, Ca e Mg em plantas jovens de quatro clones de eucalipto. R Bras Ci Solo. 2005;29:903-9.
  • Lima JD, Damatta FM, Mosquim PR. Growth attributes, xylem sap composition, and photosynthesis in common bean as affected by nitrogen and phosphorus deficiency. J Plant Nutr. 2000;23:937-47.
  • Locatelli M, Barros NF, Neves JCL, Novais RF. Efeito de formas de nitrogênio sobre o crescimento e composição mineral de mudas de eucalipto. Agrotrópica. 1984;8:53-69.
  • Malavolta E, Vitti GC, Oliveira SA. Avaliação do estado nutricional das plantas: Princípios e aplicações. 2ª.ed. Piracicaba: Associação Brasileira para Pesquisa da Potassa e Fosfato; 1997.
  • Majerowicz N, Kerbauy GB. Effects of nitrogen forms on dry matter partitioning and nitrogen metabolism in two contrasting genotypes of Catasetum fimbriatum (Orchidaceae). Environ Exp Bot. 2002;47:249-58.
  • Majerowicz N, Kerbauy GB, Nievola CC, Suzuki RM. Growth and nitrogen metabolism of Catasetum fimbriatum (Orchidaceae) grown with different nitrogen sources. Environ Exp Bot. 2000;44:195-206.
  • Marschner H. Mineral nutrition of higher plants. London: Academic Press; 1995.
  • Marschner H, Kirkby EA, Cakmak I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot. 1996;47:1255-63.
  • Marschner P. Mineral nutrition of higher plants. London: Academic Press; 2012.
  • Martinez HEP, Novais RF, Sacramento LVS, Rodrigues LA. Comportamento de variedades de soja cultivadas sob diferentes níveis de fósforo: II. Translocação do fósforo absorvido e eficiência nutricional. R Bras Ci Solo. 1993;17:239-44.
  • Mattiello EM, Ruiz HA, Silva IR, Guerra PC, Andrade VM. Características fisiológicas e crescimento de clones de eucalipto em resposta ao boro. R Árvore. 2009;33:821-30.
  • Müller C, Detmann KSC, Pereira GL, Batista HCS, Figueiredo AC, Marinho AF, Barros NF. Alterações fisiológicas e de crescimento em clones de eucalipto em resposta ao déficit hídrico e suprimento de boro. In: FERTBIO [CD-ROM]. Maceió: Universidade Federal de Alagoas; 2012.
  • Neves JCL. Produção e partição de biomassa, aspectos nutricionais e híbridos em plantios clonais de eucalipto na região litorânea do Espírito Santo [tese]. Campos dos Goytacazes: Universidade Estadual do Norte Fluminense; 2000.
  • Niinemmets U, Cescatti A, Rodeghiero M. Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availability leaf age in Mediterranean evergreen species Quercus ilex Plant Cell Environ. 2006;29:1159-78.
  • Nunes FN. Crescimento e expressão gênica em clones de eucalipto influenciados pelo boro e déficit hídrico [tese]. Viçosa, MG: Universidade Federal de Viçosa; 2010.
  • Onoda Y, Hokosaka K, Hirose T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct Ecol. 2004;18:419-25.
  • Pinto SIC. Cinética de absorção conjunta de fósforo, potássio, cálcio e magnésio e eficiência nutricional de macronutrientes de clones de eucalipto [tese]. Lavras: Universidade Federal de Lavras; 2009.
  • Pinto SIC, Furtini Neto AE, Neves, JCL, Faquin V, Moretti BS. Eficiência nutricional de clones de eucalipto na fase de mudas cultivados em solução nutritiva. R Bras Ci Solo. 2011;35:523-33.
  • Pulito AP. Resposta à fertilização nitrogenada e estoque de nitrogênio biodisponível em solos usados para plantações de Eucalyptus [dissertação]. Piracicaba: Escola Superior de Agricultura Luiz de Queiroz; 2009.
  • Raven PH, Evert RF, Eichhom SE. Biology of plants. New York: Worth Publishers; 1986.
  • Reddy AR, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol. 2004;161:1189-202.
  • Santana RC, Barros NF, Neves JCL. Eficiência de utilização de nutrientes e sustentabilidade da produção em procedências de Eucalyptus grandis e Eucalyptus saligna em sítios florestais do Estado de São Paulo. R Árvore. 2002;26:447-57.
  • SAS Institute Inc. SAS/STAT® 9.1 User’s guide. Cary, NC: 2004.
  • Silveira RLVA, Gonçalves AN, Silveira RI, Branco EF. Levantamento nutricional de florestas de Eucalyptus grandis na região de Itatinga-SP: I. Macronutrientes e II Micronutrientes. In: Congresso Brasileiro de Ciência do Solo, 1995, Viçosa. Anais... Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 1995. p.896-901.
  • Smethurst PJ, Holza G, Moronia M, Baillie C. Nitrogen management in Eucalyptus nitens plantations. For Ecol Manage. 2004;193:63-80.
  • Soares CRFS, Grazziotti PH, Siqueira JO, Carvalho JG, Moreira FMS. Toxidez de zinco no crescimento e nutrição de Eucalyptus maculata e Eucalyptus urophylla em solução nutritiva. Pesq Agropec Bras. 2001:36:339-48.
  • Sociedade Brasileira de Silvicultura - SBS. Facts and numbers of forestry in Brazil. São Paulo [Brasil]: 2006.
  • Souza SR, Fernandes MS. Nitrogênio. In: Fernandes MS, editor. Nutrição mineral de plantas. Viçosa, MG: Sociedade Brasileira de Ciência do Solo; 2006. p.215-52.
  • Stape JL, Benedetti V. Decréscimo da produtividade e resposta da brotação de Eucalyptus grandis à fertilização com macronutrientes em areia quartzosa no Estado de São Paulo-Brasil. In: Anais Iufro Conference on Silviculture and Improvement of Eucalypts, 1997; Salvador, [Br]. Salvador, [Br]: Embrapa; 1997. p.112-7.
  • Taiz L, Zeiger E. Fisiologia vegetal. 3ª.ed. Porto Alegre: Artmed; 2004.
  • Turnbull TL, Kelly N, Adams MA, Warren CR. Within-canopy nitrogen and photosynthetic gradients are unaffected by soil fertility in field-grown Eucalyptus globules Tree Physiol. 2007;27:1607-17.
  • Vitti GC, Lima E, Cicarone F. Cálcio, magnésio e enxofre. In: Fernandes MS, editor. Nutrição mineral de plantas. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, 2006. p.299-329.
  • Wadt PGS, Novais RF, Alvarez V VH, Barros NF, Dias LE. Variações no estado nutricional de eucaliptos por influência do material genético e da idade da árvore. Pesq Agropec Bras. 1999;34:1797-803.
  • Warren CR, Bleby T, Adams MA. Changes in gas exchange versus leaf solutes as a means to cope with summer drought in Eucalyptus marginata Oecologia. 2007;154:1-10.

Publication Dates

  • Publication in this collection
    May-Jun 2015

History

  • Received
    29 Aug 2014
  • Accepted
    3 Feb 2015
Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br