Acessibilidade / Reportar erro

Efficiency of mechanical and biological chiseling in the improvement of physical attributes of a heavy clay oxisol and the increment of soybean yield

Compaction is one of the main causes of yield decreases in agricultural soils. Mechanical chiseling has been suggested to reduce soil compaction in long-term no-tillage systems. Another option to alleviate soil compaction is the use of cover crops, such as forage radish, with a well-developed tap root system and the capacity of growing into soil compacted layers, forming stable biopores and improving the soil physical properties. This study aimed to evaluate the efficiency of a mechanical (chisel plow) and biological (forage radish) soil decompaction method or the combination of both to improve the physical properties of a very clayey texture Oxisol and to increase soybean grain yield under no-tillage. The treatments were: black oat on no-till (NT-O), consortium of forage radish and black oat on no-till (NT-R+O), black oat on chiseled soil (CH-O) and consortium of forage radish and black oat on chiseled soil (CH-R+O). The following properties were evaluated: soil bulk density, macroporosity, microporosity and total porosity in the layers 0-0.05, 0.05-0.10, 0.10-0.15 and 0.15-0.20 m, soil penetration resistance, soil moisture and soil water infiltration at soybean flowering. The winter cover biomass production and soybean yield were also measured. The treatments did not affect the soil bulk density significantly at any of the soil depths. However, the treatments NT-R+O and CH-R+O doubled the mean soil macroporosity values in the 0-0.20 m layer, with more pronounced effects in the upper soil layers. The treatments NT-R+O and CH-R+O reduced soil penetration resistance compared to NT+O, while treatment CH-O had intermediate results. The treatments NT-R+O and CH-R+O increased the accumulated infiltrated water by 44.6 as compared to treatments NT-O and CH-O .The highest soybean yields were observed in the treatment CH-R+O (3.73 Mg ha-1), which did not differ significantly from treatment NT-R+O (3.49 Mg ha-1). The effect of winter mechanical chiseling was temporary and nine months later no soil physical improvements were observed, apart from the increase of total porosity and macroporosity in the 0-0.05 m layer. Biological chiseling increased soil macroporosity, reduced soil penetration resistance and improved soil water infiltration. Mechanical chiseling was only efficient to improve the soil physical conditions when associated with biological chiseling, which prevented soil reconsolidation.

soil compaction; chisel; cover crops; water infiltration; soil penetration resistance


Sociedade Brasileira de Ciência do Solo Secretaria Executiva , Caixa Postal 231, 36570-000 Viçosa MG Brasil, Tel.: (55 31) 3899 2471 - Viçosa - MG - Brazil
E-mail: sbcs@ufv.br