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David Pérez-Castrillo**

Marilda Sotomayor***

Summary: 1. Introduction; 2. The assignment game; 3. The
selling mechanism; 4. The equilibria of the selling mechanism; 5.
Some additional examples.

Keywords: matching model; assignment model; mechanism; imple-
mentation.

JEL codes: C78; D78.

For the assignment game, we propose the following selling mech-
anism: sellers, simultaneously, fix their prices first; then buyers,
sequentially, decide which object to buy, if any. The first phase of
the game determines the potential prices, while the second phase
determines the actual matching. We prove that the set of subgame
perfect equilibria in pure strategies in the strong sense of the mecha-
nism coincides with the set of sellers’ optimal stable outcomes when
buyers use maximal strategies.

Propomos o seguinte mecanismo para o assignment game: os ven-
dedores, simultaneamente, fixam seus preços. Então, um após o
outro, os compradores decidem que objetos comprar, se houver al-
gum. A primeira fase do jogo determina os preços dos objetos que
forem vendidos, enquanto a segunda fase determina o matching
real. Provamos que o conjunto dos equiĺıbrios perfeitos de subjogo
em estrategias puras no sentido forte, do jogo induzido pelo mecan-
ismo, coincide com o conjunto dos resultados estáveis ótimos para
os vendedores quando os compradores usam estratégias maximais.

1. Introduction

In their seminal contribution, Gale and Shapley (1962) introduce the study of
markets where agents from two distinct groups meet. They consider situations
where the agents’ utilities only depend on their match, monetary transfers are
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not allowed (or they are fixed exogeneously, like in a market where every student
who is matched with a college pays a tuition). The analysis of markets where
agents take decisions not only on the matching but also on the monetary transfers
was started in Shapley and Shubik (1972). They propose the assignment game,
which is a market where a finite number of heterogeneous sellers and buyers meet,
with the particularity that each seller only owns one object and each buyer only
wants to buy, at most, one object. In both frameworks, the main solution concept
is stability. An outcome is stable if it is individually rational, and no possible
partnership has incentives to block the outcome.1

Shapley and Shubik (1972) show that the set of stable allocations in the as-
signment game is non-empty. Moreover, it forms a complete distributive lattice.
In particular, the set of stable allocations contains one particular allocation giving
an optimal payoff to the buyers (which is the worse for the sellers) and another
one giving an optimal payoff to the sellers (the worst for the buyers). The two
allocations correspond to the minimum and to the maximum equilibrium prices,
respectively.

In this paper, we investigate the result of non-cooperative behavior by sellers
and buyers in the assignment game. We propose a very simple non-cooperative
mechanism and analyze the equilibrium outcomes. The selling mechanism goes as
follows: Sellers take their decision first by, simultaneously and non-cooperatively,
fixing their prices. Then buyers, sequentially, decide which object to buy, if any.
The potential prices for the objects are determined by the choice of the sellers,
while the buyers’ actions determines the actual matching. The players’ strategies
are very simple: each seller only proposes a price for his object, each buyer only
chooses an object.

We look for the subgame perfect equilibria in pure strategies (SPE) of the
previous mechanism. We restrict attention to a certain class of strategies of the
buyers, that we call maximal strategies (the matchings induced by these strategies
are called maximal matchings). To explain the meaning of a maximal strategy,
consider a situation with two buyers, Alph and Bob, and two objects. Suppose
that the prices have already been set and that Alph is indifferent between the two
objects. However, if she chooses the first object then Bob obtains a high utility
by buying the second one, while if Alph chooses the second object then Bob does
not want to buy the other. We say that Alph buying the first object (and Bob the

1Roth and Sotomayor (1990) provide an extensive overview of the results and extensions of the
models proposed by Gale and Shapley (1962) and Shapley and Shubik (1972) until 1990. Recent
papers with additional extensions of the models include Dutta and Massó (1997), Sotomayor
(1999a,b) and Sotomayor (2003), Mart́ınez et al. (2000) and Mart́ınez et al. (2001), and Camiña
(2002).
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second) is a maximal strategy, while Alph buying the second object (and Bob not
buying) is not. Notice that both strategies are SPE of the game that starts once
the prices have been decided. Additionally, we say that a matching is maximal if
it is Pareto efficient for the buyers among the matchings that result as SPE of the
second phase of the mechanism.

We also concentrate on the analysis of the SPE in the strong sense (Demange
and Gale, 1985). To be an equilibrium in the strong sense, the strategies of the
participants must be robust to deviations by any optimistic seller. More precisely,
we assume that a seller increases his price whenever there is a maximal matching
for the buyers where his object is actually sold.

We prove that, when buyers use maximal strategies, the set of SPE in the
strong sense of the selling mechanism coincides with the set of sellers’ optimal
stable outcomes. That is, the mechanism applied to an assignment problem leads
to the maximum equilibrium prices and to an optimal matching. In equilibrium,
every buyer obtains an object in her demand set and each seller willing to sell can
do so.

Several authors have looked for mechanisms that could be applied to matching
models. Gale and Shapley (1962) introduce the deferred acceptance algorithm for
the marriage problem, where men constitute one side of the market and women are
the other side. In this mechanism, each man2 proposes to his favorite woman, if
she is acceptable to him. Each woman accepts the most preferred man among the
offers she receives, if he is acceptable to her. Accepted men remain provisionally
engaged, while rejected men can make new proposals to their next choice. The
algorithm stops at the first step in which no man is rejected. Gale and Shapley
(1962) show that when participants declare their true preferences the matching
produced by the algorithm is an allocation that all men prefer to any other stable
allocation. Even when the participants can act strategically, the outcome is still
nice: truthful revelation of preferences is a dominant strategy for men (Dubins
and Freedman, 1981) and (Roth, 1982) and the equilibrium of the game when
the men state their true preferences and women can choose any preference is still
a stable allocation (Roth, 1984). Moreover, Gale and Sotomayor (1985) show
that the women’s optimal stable allocation is the strong equilibrium of the game,
when men play their dominant strategy. Finally, Crawford and Knoer (1981) and
Kelso and Crawford (1982) adapt the mechanism for the job matching market by
introducing a salary-adjustment process.

Besides the analysis of the deferred acceptance algorithm, several authors have
looked for other simple mechanisms that lead to stable allocations for different

2The mechanism can also be implemented exchanging the roles of men and women.
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matching models. For the marriage problem, Alcalde (1996) presents a mecha-
nism, close to that of Gale and Shapley, which implements the correspondence
of stable matchings in undominated equilibria. Alcalde et al. (1998) and Alcalde
and Romero-Medina (2000) implement through simple mechanisms the set of sta-
ble matchings in the job matching market and in the college-admissions problem,
respectively. Moreover, they also implement particular subsets of the stable cor-
respondence.3

For the assignment game, Demange and Gale (1985) analyze the properties of
a mechanism in which agents announce their demand and supply functions, and
then a referee calculates the minimum equilibrium price and allocates the objects
accordingly. For the buyers, the mechanism is not coalitionally manipulable in the
sense that no coalition of buyers can achieve higher payoffs to all of its members
by falsifying demands. However, the mechanism is manipulable for the sellers. It
is indeed the case that sellers can lead the payoff to the maximum rather than
the minimum equilibrium price by falsifying their supply functions. For the same
game, Demange et al. (1986) propose two dynamic auction mechanisms, although
they do not analyze the possibility of manipulative behavior.

The mechanism that we introduce in this paper shares many features with the
one that we propose in Pérez-Castrillo and Sotomayor (2002). The main difference
between the two proposals is that in the previous one, the buyers, in addition to
deciding which object to by, were asked to report their indifferences (along with
the previous buyers’ indifferences) to the following buyer in the line. This allowed
any buyer to break previous buyers’ indifferences in her favor. Therefore, the
mechanism that we present in this paper is simpler and closer to the functioning
of markets than the previous proposal. However, in order to obtain the imple-
mentation result, we need to concentrate in maximal strategies and in equilibria
in strong sense.

Finally, our paper is also related to the contribution by Kamecke (1989). This
author introduces the following mechanism for the assignment game: First, sellers
announce their payoff claims. Second, one buyer after the other chooses a seller
and announces a price. Finally, sellers select one of their potential customers. For
matched couples, the agents get what they asked for if their claims are feasible.
Also, the payoff function assigns to a seller the payoff that was offered to him if it
exceeds his claim. Additionally, agents pay a positive cost if they address demands
without being successful. This mechanism implements in SPE the seller-optimal
stable payoff.

3For general cooperative games in characteristic form, Pérez-Castrillo (1994), Perry and Reny
(1994), and Serrano (1995) address the question of implementation of the core
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The paper is organized as follows. In section 2, we present the assignment
game. In section 3, we introduce the selling mechanism, that is analyzed in section
4. In section 5, we present some examples of possible outcomes of the mechanism
when we do not restrict attention to maximal strategies or to equilibria in the
strong sense. Finally, an appendix contains a technical proof.

2. The Assignment Game

In this section, we describe the assignment game, the solution concepts usually
considered, and summarize some of its main properties. In this market, there
are two disjoint set of economic agents. On one side, there is a set of buyers
P = {p1, ..., pm}. Generic buyers will be denoted by pi and pk. Each buyers wants
to buy at most one object. On the other side, the set of sellers is {q1, ..., qn−1},
where each seller owns only one indivisible object. Generic sellers will be denoted
by qj and qh. We denote by Q = {q0, q1, ..., qn−1} the set of objects available in
the market, where q0 is an artificial “null object” that is introduced for technical
convenience. This convention allows us to treat a buyer pi that does not buy any
object as if she bought the null object q0.

The value of any partnership (pi, qj) ∈ P × Q is αij ≥ 0, which can be in-
terpreted as the maximum price that buyer pi is willing to pay for the object qj
since we normalize the reservation price of each seller to zero. If buyer pi buys the
object qj at a price vj then the resulting utilities are ui = αij − vj for the buyer
and vj for the seller. We denote by α the m × n matrix (αij)i=1,...,m;j=0,1,...,n−1,
where the value αi0 is zero to all buyers. The price of the object q0 is always zero,
v0 = 0. Hence if buyer pi buys q0 she obtains a utility ui = αi0 − v0 = 0. The
buyer-seller market is denoted by M ≡ (P,Q, α).

Definition 1 A feasible matching µ for M is a function from P ∪Q − {q0} onto
P ∪Q such that:

• for any pi ∈ P , µ(pi) ∈ Q;

• for any qj ∈ Q− {q0}, either µ(qj) ∈ P or µ(qj) = qj ; and

• for any (pi, qj) ∈ P ×Q− {q0}, µ(pi) = qj if and only if µ(qj) = pi.

If µ(pi) = q0, the buyer pi is unmatched. If µ(qj) = qj , the seller qj is un-
matched (or the object qj is unsold).
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Definition 2 A feasible matching µ is optimal for M if for all feasible matching
µ
′

:

∑

pi∈P

qj=µ(pi)

αij ≥
∑

pi∈P

qj=µ
′
(pi)

αij

We denote by Rn
+ the set of vectors in Rn with non negative coordinates.

Definition 3 A feasible outcome (u, v;µ) for M is a pair of vectors u ∈ Rm
+ and

v ∈ Rn
+ and a feasible matching µ such that, for all (pi, qj) ∈ P ×Q, ui + vj = αij

if µ(pi) = qj .

Note that a feasible outcome may have unsold objects with price greater than
zero. If (u, v;µ) is a feasible outcome then (u, v) is called a feasible payoff. The
matching µ is said to be compatible with (u, v) or with the prices v and vice-versa.
The vector u is called the payoff vector of the buyers associated to (v, µ).

Definition 4 Given the prices v ∈ Rn
+ and a matching µ compatible with v, we

say that an object qj is µ-expensive under v if it is unsold under µ, at a price
vj > 0.

The next definition introduces the main solution concept for the assignment
game.

Definition 5 A feasible outcome (u, v;µ) is stable (or the payoff (u, v) with the
matching µ is stable) if ui + vj ≥ αij for all (pi, qj) ∈ P × Q and there is no
µ-expensive object under v.

If ui + vj < αij for some pair (pi, qj) we say that (pi, qj) blocks the outcome
(u, v;µ) or the payoff (u, v). Given this definition of blocking, a feasible outcome
is stable if it is not blocked by any buyer-seller pair.

Among the set of stable outcomes, two particularly interesting outcomes can
be highlighted.

Definition 6 The payoff (u, v) is called the seller-optimal stable payoff if v ≥ v
and u ≤ u for all stable payoffs (u, v).

If µ is compatible with (u, v) we say that the outcome (u, v;µ) is the seller-
optimal stable outcome with the matching µ. Similarly we can define the buyer-
optimal stable payoff.

In the assignment model, the concept of stability is equivalent to the concept
of the core. Moreover, it is possible to establish a relationship between stable
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outcomes and competitive equilibria of these markets. In order to do it, let us
define the demand set of a buyer pi at prices v ∈ Rn

+, denoted by Di(v), as the
set of all objects which maximize pi’s utility payoffs. That is:

Di(v) = {qj ∈ Q;αij − vj ≥ αih − vh for all qh in Q}

The set Di(v) is always non empty, since buyer pi has always the option of
buying q0. Also notice that, given v, buyer pi is indifferent about buying any
object in Di(v).

Definition 7 The price vector v ∈ Rn
+ is called competitive if there exists a

matching µ such that µ(pi) ∈ Di(v), for all pi in P .

Therefore, at competitive prices v, each buyer can be matched to an object in
her demand set. A matching µ such that µ(pi) ∈ Di(v) for all pi in P is said to be
competitive for the prices v. There may be more than one competitive matching
for the same price vector v.

Definition 8 The pair (v, µ) is a competitive equilibrium if v is competitive, µ is
competitive for v, and if vj = 0 for any unsold object qj .

Thus, at a competitive equilibrium (v, µ), not only does every buyer get an
object in her demand set, but there is no µ-expensive object under v. If (v, µ) is
a competitive equilibrium, v will be called an equilibrium price vector.

It is easy to check that, to each competitive equilibrium (v, µ) we can associate
a stable outcome (u, v;µ) and vice-versa, by setting ui = αij − vj if µ(pi) = qj ,
and ui = 0 if µ(pi) = q0.

The following well-known results from Shapley and Shubik (1972) will be stated
here without proof.4

Proposition 1 Every buyer-seller market M has at least one stable outcome.

Consequently, the core and the set of competitive equilibria are non-empty sets.

Proposition 2 If µ is an optimal matching, then it is compatible with any stable
payoff.

Thus, if µ is an optimal matching, then it is competitive for any competitive
equilibrium.

Proposition 3 If (u, v;µ) is a stable outcome, then µ is an optimal matching.

4See also Roth and Sotomayor (1990) for an exposition of these results.
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According to propositions 2 and 3, the set of stable outcomes is the Cartesian
product of the set of stable payoffs and the set of optimal matchings.

Proposition 4 Every buyer-seller market M has a seller-optimal stable payoff
and a buyer-optimal stable payoff.

The existence of a seller-optimal stable payoff is equivalent to the statement
that there is a unique vector of equilibrium prices, v, that is optimal for the sellers,
in the sense that vj ≥ vj for all qj in Q and for all equilibrium price vector v.
Similar statement applies to the buyer-optimal stable payoff. The equilibrium price
vector v is called the maximum equilibrium prices and a competitive equilibrium
(v;µ) is called a maximum competitive equilibrium.

3. The Selling Mechanism

We attempt to propose and analyze a mechanism for the assignment model
as simple as possible, at the same time have it produce both a matching between
sellers and buyers and prices for the objects sold. We suggest a mechanism with
two phases, we call it the selling mechanism. In the first phase, each seller fixes a
price at which she is ready to sell her object. Prizes are proposed simultaneously.
In the second phase buyers, sequentially, decide which object to buy, if any. Any
buyer pays to the owner of the object he has chosen (if any) the price that was
fixed at the first phase. Sellers of unsold objects keep their objects and receive
nothing.

Formally, the buyers are ordered according to some exogenous protocol. We
rename the buyers so that the order is p1, ..., pm. The selling mechanism works as
follows:

• First, sellers play simultaneously. A strategy for seller qj consists of choosing
a price vj ∈ R+ for his object. We consider that the null object q0 is always
available to every buyer at the price v0 = 0.

• Second, buyers play sequentially. A strategy for buyer pi is a function that
selects an element of Qi for each vector of offers v, where Qi is the set of all
objects which are still available for pi after players p1, . . . , pi−1 have already
chosen (notice that q0 ∈ Qi).

Since two different buyers cannot choose the same object (except q0), the
buyers’ actions produce a feasible matching µ, where µ(pi) is the object of Qi

chosen by pi. Any non-selected object will be unmatched under µ.
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Given the matching µ and the proposed prices v, the mechanism allocates the
objects according to µ, every buyer pi pays vj if µ(pi) = qj ; every seller qj receives
vj if qj is sold and receives nothing if qj is unsold. That is, denoting by S(v, µ)
the outcome of the selling mechanism when sellers’ strategy profile is v and the
buyers choose the matching µ, S(v, µ) = (u, v∗;µ), where v∗j = vj if µ(qj) ∈ P and
v∗j = 0 if qj is unsold and ui = αij − v∗j = αij − vj where µ(pi) = qj . Sometimes
we will use the notation Sj(v, µ) for seller qj ’s payoff, v

∗
j .

We are going to consider the subgame perfect equilibria in pure strategies
(SPE) of the selling mechanism. The set of best responses for the buyers to the
sellers’ joint strategies, say v, is the set of SPE of the game that starts once v
has been decided. (Notice that the elements of this set are matchings). For these
equilibria, it is always the case that each buyer chooses, once the prices v have
been selected, one among the best objects available for her. In other words, each
buyer pi chooses an object in Di(v|Qi), which is the set of objects in Qi which
maximize pi’s utility payoff, that is,

Di(v|Qi) ≡ {qj ∈ Qi;αij − vj ≥ αih − vh, for all qh in Qi}

A matching µ obtained in this way is called equilibrium matching for the prices

v. Formally:

Definition 9 Given the feasible price vector v, the matching µ is an equilibrium

matching for v if every buyer pi chooses µ(pi) ∈ Di(v|Qi).

For some price vectors, there are several equilibrium matchings. To illustrate
this situation, consider the following example:

Example 1 Consider a set of objects Q = {q0, q1, q2} and the set of buyers P =
{p1, p2}. Let the matrix α be such that α11 = α12 = α22 = 2 and α21 = 0. Suppose
the vector of prices is v = (0, 1, 1) and consider the matching µ : µ(p1) = q2 and
µ(p2) = q0. Each buyer is selecting a best response given the prices of the objects
and, for p2, the action of p1. Hence, µ is an equilibrium matching. Also, the
matching µ

′

where p1 chooses q1 and then buyer p2 can select q2, is an equilibrium
matching. Moreover, under µ

′

, buyer p1 has the same utility payoff as before but
p2 is strictly better off.

Sometimes it is reasonable to assume that if a buyer is completely indifferent
among several actions, but one of them leads to a more efficient outcome for the
buyers coming after her, then she will choose this action. When we restrict at-
tention to such strategies we say that buyers are selecting maximal matchings.
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Formally we have:5

Definition 10 Given the price vector v ∈ Rn
+, we say that µ is maximal for v

if µ is equilibrium matching for v and it is Pareto-efficient for the buyers among
all equilibrium matchings for v. That is, µ is maximal for v if and only if µ is
equilibrium matching for v and if, for any other equilibrium matching µ

′

such that
αij − vj < αij′ − vj′ for some pi in P , with qj = µ(pi) and qj′ = µ

′

(pi), there ex-

ists some pk in P such that αkh−vh > αkh′−vh′ , with qh = µ(pk) and qh′ = µ
′

(pk).

Remark 1 From definitions 2 and 10 it follows that if v is an equilibrium price,
µ is an optimal matching and u is the payoff vector of the buyers associated to
(v, µ), then ui ≥ αij′ − vj′ for all pi ∈ P and all equilibrium matching µ

′

(where

qj = µ(pi) and qj′ = µ
′

(pi), so µ is maximal for v. Moreover, if µ∗ is a maximal
matching for v, making use of the fact that v is an equilibrium price, we get that
u∗i = αij∗ − vj∗ = αij − vj = ui for all pi in P and all optimal matchings µ (where
qj∗ = µ∗(pi) and qj = µ(pi)). That is, if v is an equilibrium price vector, every
maximal matching leads to the same vector of buyers’ payoffs.

Let us now look at the possible strategic actions by the sellers. To analyze
whether a vector of prices is part of an equilibrium, we must check that no seller
is interested in deviating from his proposed price. Sometimes, a deviation by a
seller is profitable or not depending on the expected reaction by the buyers. The
following example illustrates this situation:

Example 2 Consider a set of objects Q = {q0, q1, q2, q3} and a set of buyers P =
{p1, p2, p3}. Let the matrix α be such that α21 = 1, α12 = α22 = α13 = 2, α33 = 1
and the other entries are zero. Suppose that the sellers choose the vector of prices
v = (0, 0, 0). If q1 increases his price from v1 = 0 to v

′

1 = 0.5, this deviation can
be profitable for q1 if p1 buys q2, for then p2 will buy q1. However, the deviation is
not profitable if p1 buys q3. In this case the best response for p2 is to buy q2 and
p3 will be unmatched. Observe that the set of best responses for the buyers has
only these two matchings and both of them are maximal (under the first matching
the payoff vector of the buyers is (2, 0.5, 1) and under the second one is (2, 2, 0)).

What buyers’ behavior can seller q1 expect in example 2? We will solve this
problem by assuming that a seller who analyses the possibility of deviating takes
an optimistic view. That is, a seller changes his strategy whenever he has a chance

5An equilibrium matching corresponds to a σ-competitive matching in Pérez-Castrillo and
Sotomayor (2002). The set of maximal matchings is however larger than the set of σ-maximal
matchings in that paper.
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to be better off (always taking into account that buyers will play SPE strategies).
Therefore we are looking for seller strategies under which no seller has a chance
to be better off. This means that we are interested in equilibria in the strong ver-
sion. (A similar concept has been defined by Demange and Gale (1985).) Also, we
continue to require that the buyers use maximal strategies. The formal definition
of a SPE in the strong sense is then the following:

Definition 11 Let v ∈ Rn
+ be a price vector and µ some maximal matching for v.

We say that (v, µ) is a SPE in the strong sense if for no qj there is a v
′

, with v
′

h = vh
for qh 6= qj , and a maximal matching µ

′

for v
′

, such that Sj(v
′

, µ
′

) > Sj(v, µ).

Notice that by considering only the equilibria in the strong sense we restrict
the set of SPE. We denote by SPESS the set of subgame perfect equilibria in the
strong sense.

4. The Equilibria of the Selling Mechanism

We suppose that the buyers always choose maximal matchings and we show
that, under this condition, equilibria in the strong sense always exist, and that
they correspond to the maximum competitive equilibria. That is, the payoff for
the sellers under any SPESS is the same, namely the maximum equilibrium price,
and the utility for the buyers is also the same.

To characterize the set of SPESS outcomes of the selling mechanism, we will
use proposition 5 below, which is an immediate consequence of Hall’s theorem
(Gale, 1960). To state it, we need the following definition:

Definition 12 Let v ∈ Rn
+, and P

′

⊆ P be such that q0 /∈ Di(v) for all pi ∈ P
′

.

We say that D ≡ ∪pi∈P
′Di(v) is an overdemanded set under v if |D| < |P

′

|.6

That is, a set D is overdemanded if the number of buyers demanding only
objects in D is greater than the number of objects in this set.

Proposition 5 (Corollary of Hall’s theorem) Let v ∈ Rn
+. A competitive

matching for v exists if and only if there is no overdemanded set under v.

We start our analysis of the SPESS of the mechanism by stating two helpful
properties. Lemma 1 establishes the first. Consider a price vector which is part of
such an equilibrium, and a group of buyers that obtain a strictly positive payoff
and that buy objects in their demand sets. Then, there is some object which is

6We denote the cardinality of a set A by |A|.
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not bought by any of the buyers in this group but which belongs to some of their
demand sets. That is, the set of objects that the buyers actually buy is strictly
included in the union of their demand sets. After this result, proposition 6 shows
that, at an SPESS, there exists no overdemanded set.

Lemma 1 Let (v, µ) be an SPESS, and let u be the payoff vector of the buyers
associated with (v, µ). Suppose that µ(pi) ∈ Di(v) and ui > 0 for all pi ∈ P

′

⊆ P .
Let Q

′

≡ µ(P
′

) ≡ ∪pi∈P
′µ(pi). Then there exists some pi ∈ P

′

and qj /∈ Q
′

such
that qj ∈ Di(v).

Proof We do the proof by contradiction. Suppose that for all pi ∈ P
′

and all
qj /∈ Q

′

we have that qj /∈ Di(v). Then Q
′

≡ µ(P
′

) = ∪pi∈P
′Di(v). Let pk be

the last buyer in P
′

and qh = µ(pk). Since uk > 0 we have that there exists some
λ > 0 such that:

uk − λ = αkh − (vh + λ) > αkj − vj for all qj /∈ Q
′

Let v′ be such that v
′

h = vh+λ and v
′

j = vj for all qj 6= qh. Since pk is the last

buyer in P
′

, it follows that pk will buy qh at v
′

h if the previous buyers follow µ.
This is immediate from the previous equation and the fact that qh is the unique
available object belonging to Q

′

when pk is called to play. Hence µ is an equilib-
rium matching for v

′

. We now show that µ is maximal for v
′

, which will contradict
the fact that (v, µ) is SPESS. Suppose that µ is not maximal for v

′

. Then there
is some equilibrium matching µ

′

for v
′

such that u
′

i ≥ ui for all pi ∈ P − {pk},
u
′

k ≥ uk − λ, with at least one strict inequality, where u
′

is the payoff vector for
the buyers associated to (v

′

, µ
′

). Since µ(pi) ∈ Di(v) for all pi ∈ P
′

− {pk} and
qj /∈ Di(v) for all qj /∈ Q

′

it follows that u
′

i = ui > αij − vj for all pi ∈ P
′

− {pk}
and qj /∈ Q

′

, so µ
′

(pi) ∈ Q
′

for all pi ∈ P
′

−{pk}. Also if pi 6= pk then µ
′

(pi) 6= qh,
for if not αih − vh > αih − vh − λ = u

′

i = ui ≥ αih − vh, which is a contradiction.
Therefore all objects in Q

′

− {qh} are already matched when pk comes to play
under µ

′

. Due to this fact, to the previous equation, and to u
′

k ≥ uk −λ it follows
that µ

′

(pk) = qh. Since λ can be taken arbitrarily small, it is then easily seen that
if µ

′

is an equilibrium matching for v
′

then µ
′

is also equilibrium matching for v.
Moreover, u

′

i ≥ ui for all pi ∈ P and u
′

i > ui for some pi ∈ P (pi ∈ P − P
′

), which
contradicts the maximality of µ for v. Hence, µ is maximal for v′, so there is a
profitable deviation from v, which is a contradiction. Q.E.D.

Proposition 6 Let v be the strategies of the sellers in an SPESS for the market
M . Then there is no overdemanded set under v.
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Proof Denote P r ≡ {p1, ..., pr}. To validate the proposition, it is enough to prove
that for all 1 ≤ r ≤ m, and all P

′

⊆ P r with q0 /∈ Di(v) for every pi ∈ P ′, it is
the case that | ∪pi∈P ′

Di(v)| ≥ |P
′|. We prove this property by induction on r. If

r = 1 it is obvious.

Suppose that for all P ′ ⊆ P r−1, with q0 /∈ Di(v) for every pi ∈ P ′, we have
that |P ′| ≤ | ∪pi∈P ′ Di(v)|. We first show that there exists a maximal matching µ′

for v such that µ′(pi) ∈ Di(v) for all i = 1, 2, ..., r−1. Indeed, consider the market
M ′ = (P r−1, Q, α′) where α′ is the restriction of α to P r−1×Q. By the induction
hypothesis there is no overdemanded set of objects in M ′ under v. Hall’s theorem
implies that there exists some competitive matching for v in M ′. We will show
that there is a maximal matching for M = (P,Q, α) whose restriction to M ′ is a
competitive matching for v. In fact, let S = {µ;µ is equilibrium matching for
v in M and µ(pi) in Di(v) for all i = 1, 2, ..., r − 1}.

That is, S is the set of all equilibrium matchings whose restriction to M ′ is
competitive. The set S is not empty, since the matching given by Hall’s theorem
can be easily extended to an equilibrium matching for v (we only need to take
a best response for the buyers from pr on, which always exists). Since S is not
empty and finite, there is at least a matching µ′ ∈ S which is Pareto-efficient for
the buyers among all matchings in S. We claim that µ′ is a maximal matching for
v. That is, µ′ is Pareto-efficient for the buyers among all equilibrium matchings.
In fact, if µ’ is not maximal then there is an equilibrium matching µ such that
ui ≥ u

′

i for all pi ∈ P , with strict inequality holding for at least one buyer, where
u′ and u are the payoff vectors of the buyers associated with (v, µ′) and (v, µ),
respectively. Then ui = u

′

i for all pi ∈ P
r−1, since all these players are maximizing

their utility payoff under µ′. Hence µ ∈ S, which contradicts the assumption that
µ′ is Pareto-efficient for the buyers.

We now prove the induction property for r by contradiction. Suppose that
there is some P ′ ⊆ P r with q0 /∈ Di(v) for every pi ∈ P ′, and such that |P ′| >
| ∪pi∈P ′ Di(v)|. Let D ≡ ∪pi∈P ′Di(v). It follows by the induction hypothesis that
pr ∈ P

′ and |P ′ − {pr} | ≤ |D| < P ′|. Denoting P ∗ ≡ P ′ − {pr}, we also have that
|D| = |P ∗| and D = ∪pi∈P ′Di(v). Moreover, since µ′ ∈ S (the matching previously
found), it follows that it is competitive for P r−1, so D = µ′(P ∗).

We can now use an argument similar to the one in lemma 1 to prove that it is
the case that there is a profitable deviation from v. We only need to consider the
last buyer pk in P ∗ and qh = µ′(pk) ∈ Dk(v). Since u′k = αkh − vh > 0 we have
that there exists some λ > 0 such that u′k − λ = αkh − (vh + λ) > αkj − vj for all
qj /∈ D. Let v′ be such that v′h = vh+λ, v′j = vj for all qj 6= qh. Following the line
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of the proof of lemma 1, it is easily shown that µ′ is maximal for v′. Therefore, v′h
is a profitable deviation from v for qh, which contradicts the fact that v is part of
an SPESS for M . Q.E.D.

Our first theorem asserts that the SPESS outcomes are competitive equilibria.
The insight obtained from proposition 6 is very useful for both the understanding
and the proof of theorem 1.

Theorem 1 Let (v, µ) be a SPESS. Then S (v, µ) is a competitive equilibrium.

Proof By proposition 6 there is no overdemanded set of objects at the prices
v. Therefore, Hall’s theorem guarantees that there is a matching µ′ which is a
competitive matching for v. Observe that µ is also a competitive matching for
v. This is immediate from the fact that the buyers maximize their utility payoffs
under µ′ and µ is maximal. Then v is a competitive price with matching µ. Let
S(v, µ) = (u, v∗;µ), where v∗j = vj if qj is sold and v∗j = 0 otherwise. To prove
that S(v, µ) is a competitive equilibrium, we have to show that v∗ is a competitive
price vector with matching µ. Since there are no µ-expensive objects under v∗ we
only need to show that if qj is unsold and vj > v∗j = 0, then ui ≥ αij − v∗j for all
pi ∈ P . In fact, if there exists some unsold object, say qj , such that vj > v∗j = 0
and ui < αij − v∗j for some pi ∈ P , we can choose λ > 0 and γ > 0 such that
ui+λ = αij−γ. Let v

′ be defined by v′j = γ and v′h = vh if qh 6= qj . Since v is part
of an SPESS it follows that qj is unsold at any maximal matching for v′. However,
maxh6=jαih−vh = ui < αij−v

′
j , hence buyer pi is not playing her best response at

any matching in which qj is unsold, which is a contradiction. Therefore, S(v, µ)
is a competitive equilibrium. Q.E.D.

Theorem 1 ensures that only competitive equilibria are candidates for an
SPESS of the selling mechanism. Theorem 2 goes a step further: only the maxi-
mum equilibrium prices can be part of an SPESS of the mechanism. To prove the
theorem, we will use the following lemma:

Lemma 2 Let (v1, µ1) be an SPESS and set S(v1, µ1) ≡ (u1, v∗;µ1). Let (u2, v2,

µ2) be some feasible outcome and Q+ =
{

qj ∈ Q;µ2(qj) ∈ P and v2
j > v∗j

}

. If

Q+ 6= ∅ then there exists some pair (pi, qh) ∈ P ×Q such that u2
i + v2

h < αih.

Proof Case 1. µ1(Q+) 6= µ2(Q+). Since every seller in Q+ is matched by µ2,
choose pi ∈ µ2(Q+) − µ1(Q+), say pi = µ2(qj). By theorem 1 (u1, v∗;µ1) is sta-
ble. It then follows that 0 ≤ u2

i < u1
i , for if not αij = u2

i + v2
j > u1

i + v∗j , which

would contradict the stability of (u1, v∗;µ1). Hence pi is matched under µ1, say
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pi = µ1(qj), where qj /∈ Q+. Then αih = u1
i + v∗h > u2

i + v2
h, and the assertion is

proved.

Case 2. µ2(Q+) = µ1(Q+). By the definition of Q+, v2
j > v∗j for all qj ∈ Q+. By

theorem 1, (u1, v∗;µ1) is stable. These two facts together imply that 0 ≤ u2
i < u1

i ,
for all pi ∈ µ

2(Q+). Moreover, stability implies that µ1(pi) ∈ Di(v
1) for all pi ∈ P .

By lemma 1, making Q′ ≡ Q+ and P ′ ≡ µ1(Q+), there exists some pi ∈ µ1(Q+)
and qh /∈ Q+ such that qh ∈ Di(v

1). (Observe that the fact that (u1, v∗;µ1) is
stable and so µ1 is competitive was used here). Hence αih = u1

i + v∗h > u2
i + v2

h,
and the result follows. Q.E.D.

Theorem 2 Let (v, µ) be an SPESS. Then S(v, µ) = (u, v;µ), where v is the
maximum equilibrium price vector.

Proof Let S(v, µ) = (u, v∗;µ). We show that v∗ ≥ v′ for all equilibrium prices v′.
Let v′ be some equilibrium price vector, µ′ a competitive matching for v′, and u′

the payoff vector of the buyers associated with (v′, µ′). Denote

Q+ =
{

qj ∈ Q;µ
′

(qj) ∈ P and v
′

j > v∗j

}

If Q+ 6= ∅, then lemma 2 asserts that there is some pair (pi, qh) ∈ P × Q
such that u

′

i + v
′

h < αih, which is impossible because of the competitivity of the
price vector v′. Therefore Q+ = ∅. Since there are no expensive objects at any
equilibrium prices it follows that v∗ ≥ v′. That is, v∗ = v. Q.E.D.

Remark 2 It follows easily from theorem 2 that if (v, µ) is an SPESS and vj = 0
for all unmatched seller qj , then v is the maximum equilibrium price vector. Of
course any prices v′, with v

′

j = vj if qj is matched under µ, and v
′

j ≥ vj if qj is
unmatched under µ, is part of an SPESS leading to the maximum competitive
equilibrium.

From theorems 1 and 2 we know that the selling mechanism must necessar-
ily lead to a maximum competitive equilibrium. We now show that it is indeed
the case that every maximum competitive equilibrium can be the outcome of an
SPESS. This theorem is proved with the help of lemma 3 which, in addition, high-
lights an interesting property of these equilibria.

Lemma 3 Let (u, v) be the seller-optimal stable payoff. Let µ be an optimal
matching. Construct a graph whose vertices are P ∪Q and with two types of arcs.
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If µ(pi) = qj there is an arc from qj to pi; if qj ∈ Di(v) and qj 6= µ(pi) there
is an arc from pi to qj . Let pk ∈ P with uk > 0. Then there exists an oriented
path starting at pk and ending at an unsold object or at a buyer with a payoff zero.

Proof Suppose that there is no such a path and denote by S and T the sets of
objects and buyers, respectively, that can be reached from pk. Then ui > 0 for all
pi ∈ T and each object in S is sold to some buyer in T . Furthermore, if q /∈ S,
then there is no buyer in T who demands qj at prices v. Then we can decrease ui
for all pi in T by some λ > 0 and we can increase vj for all qj ∈ S ∪ {µ(pk)} by
the same λ > 0 and still have a stable outcome which contradicts the maximality
of v.

Theorem 3 Let (u, v;µ) be a seller-optimal stable outcome. Then (v, µ) is an
SPESS.

Proof The outcome of the strategies (v, µ) is S(v, µ) = (u, v, µ). Since µ is com-
petitive for v it is the case that µ is maximal. Hence, we only need to prove that
v is an equilibrium for the sellers. Let qj ∈ Q− {q0}. We are going to show that
qj will be unsold at any maximal matching for v′, where v

′

j > vj and v
′

h = vh
if qh 6= qj . We first show that there is some competitive matching for v, say µ′,
which leaves qj unsold. The cases to be considered are the following:

Case 1. qj is unmatched at µ. Then take µ′ = µ.

Case 2. µ(qj) = pi and ui = 0. In this case take µ′ so that µ′ agrees with µ on
the choices of the buyers other than pi and gives pi the null object.

Case 3. µ(qj) = pi and ui > 0. By lemma 3, there exists an oriented path c
starting at pi and ending at an unsold object qs or at a buyer ps with payoff zero.
Since c does not cycle then qj is not in c. Set c ≡ (p = p1, q1, p2, q2, ..., ps, qs) or
c ≡ (p = p1, q1, p2, q2, ..., ps, qs, ps). Now consider the matching µ′ that matches
pt to qt, for all t = 1, 2, ..., s, that leaves ps unmatched if ps is on the path, that
otherwise agrees with µ with regard to every object in Q−{qj} and every buyer in
P which are not on the path, and that sets µ

′

(qj) = qj . Every buyer obtains the
same utility under µ′ as under µ, since µ′(pt) = qt ∈ Dt(v), for all t = 1, 2, ..., s,
and µ′ agrees with µ for the other buyers. Therefore, µ′ is a competitive matching
for v.

In all of the three cases, we have found a matching µ′ for v such that every
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buyer maximizes her utility payoff under v and q is not sold. Therefore, under µ′

every buyer pk will be maximizing her utility payoff also for v
′

, and she obtains
a utility of uk. Then, qj will be unsold at any maximal matching for v′: if qj
was sold at the price v

′

j to some pk under some matching, we would have that

αkj − v
′

j < αkj − vj ≤ uk, while the utility of the other buyers can not be higher
than u, so this matching could not be maximal. Q.E.D.

Theorems 1 and 2 say that the only outcomes that can be reached through
the selling mechanism are maximum competitive equilibria if we use equilibria in
the strong sense. Theorem 3 asserts that any maximum equilibrium price vector
is part of an SPESS. As a consequence, the mechanism implements in SPESS the
set of maximum competitive equilibria.

Corollary 1 The selling mechanism implements in SPESS the set of maximum
competitive equilibria.

Proof Immediate from theorems 2 and 3.

5. Some Additional Examples

In order to obtain our results, we have restricted the analysis to what we have
called maximal strategies by the buyers, and to equilibria in the strong sense by
the sellers. We show here, through examples, that without such restrictions the
implementation result (Corollary 1) no longer holds.

The first question is what happens if we still restrict attention to SPE in the
strong sense, while allowing the buyers to use any equilibrium strategies. Note
that this change diminishes the set of equilibria since the optimistic seller looking
for a deviation considers as possible a larger set of buyers’ strategies. Hence, a
seller’s deviation that was not profitable before may become now worthwhile. Ex-
ample 3 shows that the set of equilibria may be empty. In fact, the set may be
empty for any possible ordering of the players. In the example, we will use the
following result, whose proof is relegated to an Appendix.

Proposition 7 If (v, µ) is an SPE in the strong sense then S(v, µ) is a competitive
equilibrium. Consequently µ is a maximal matching for v.

Example 3 (The set of SPE may be empty) Consider a set of objects Q =
{q0, q1, q2, q3} and a set of buyers P = {p1, p2, p3}. Let α be such that α11 =
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α33 = 5, α12 = α32 = 1, α13 = α21 = α23 = α31 = 4 and α22 = 0. There
is only one stable payoff in this market: u = (1, 0, 1) and v = (4, 0, 4). There
are three optimal matchings, denoted µk, k = 1, 2, 3: µ1(p1) = q1, µ1(p2) = q2,
µ1(p3) = q3; µ2(p1) = q1, µ2(p2) = q3, µ2(p3) = q2; and µ3(p1) = q2, µ3(p2) = q1,
µ3(p3) = q3. Under any of them all objects are sold at v. Then, by proposition 7,
(v, µk), k = 1, 2, 3, are the only candidates for an SPE in the strong sense. However,
the strategies (v, µi) do not constitute an SPE in the strong sense because the
deviation v

′

2 = 0.5 followed by the equilibrium matching µ2 is profitable to seller
q2. Moreover, it is easy to check that the strategies are also not SPE for any other
order of the players. (Note that µ2 or µ3 are not maximal matchings for v′ in none
of the cases, confirming theorem 3.)

The second question is whether restricting attention to equilibria in the strong
sense is actually a restriction (note that the set of equilibria is a superset of the
set of equilibria in the strong sense). When buyers only use maximal strategies,
example 4 shows that it is indeed the case that there exist equilibria different from
the maximum competitive equilibria.

Example 4 Consider a set of objects Q = {q0, q1, q2, q3, q4}, a set of buyers
P = {p1, p2, p3, p4}, let α14 = α23 = α31 = α34 = α42 = α43 = 0 and let the
other entries be equal to 2. The maximum price vector is v = (2, 2, 2, 2) and an
optimal matching is µ : µ(p1) = q1, µ(p2) = q2, µ(p3) = q3, µ(p4) = q4. However,
we claim that v = (1, 1, 1, 1) followed by the maximal matching µ is part of an
SPE (not in the strong sense) in which the out-of-equilibrium maximal strategies
for the buyers are the following:

(a) If v
′

1 > v1 and v
′

i = vi, for i = 2, 3, 4, then µ1(p1) = q3, µ1(p2) = q2,
µ1(p3) = q0, µ1(p4) = q4.

(b) If v
′

2 > v2 and v
′

i = vi, for i = 1, 3, 4, then µ2(p1) = q1, µ2(p2) = q4,
µ2(p3) = q3, µ2(p4) = q0.

(c) If v
′

3 > v3 and v
′

i = vi, for i = 1, 2, 4, then µ3(p1) = q1, µ3(p2) = q4,
µ3(p3) = q2, µ3(p4) = q0.

(d) If v
′

4 > v4 and v
′

i = vi, for i = 1, 2, 3, then µ4(p1) = q3, µ4(p2) = q2,
µ4(p3) = q0, µ4(p4) = q1.

(e) If v′ is different from the previous (a)–(d), then take any maximal strategy.

RBE Rio de Janeiro 57(4):931-952 OUT/DEZ 2003



A Selling Mechanism 949

To check that the strategies are maximal, take for example case (a). If µ1 is
not maximal, then it is necessarily the case that µ

′

(p3) ∈ {q1, q2, q3}, for any µ′

Pareto-superior for the buyers to µ1. But in this case either p1, or p2, or p4 are
strictly worse-off with µ′ than with µ1, so µ

′ is not Pareto-superior to µ1.
Our final question is what happens if we look for SPE without restricting

attention either to maximal strategies or to equilibria in the strong sense. The
following example shows that the SPE are not necessarily stable.

Example 5 Consider Q = {q0, q1, q2, q3, q4}, P = {p1, p2, p3}, let α be such that
α11 = α22 = 5, α13 = α24 = 3, α31 = α32 = 7, and the other entries are equal to
zero. The price vector v = (0, 2, 2, 0, 0) with the matching µ(p1) = q1, µ(p2) = q2,
µ(p3) = 0, is not stable. However, we claim that they constitute an SPE with the
following out-of-equilibrium continuation:

(a) If v
′

1 > v1 and v
′

i = vi, for i = 2, 3, 4, then µ1(p1) = q3, µ1(p2) = q4,
µ1(p3) = q2.

(b) If v
′

2 > v2 and v
′

i = vi, for i = 1, 3, 4, then µ2(p1) = q3, µ2(p2) = q4,
µ2(p3) = q1.

(e) If v′ different from the previous (a)–(b), then take any equilibrium strategy.
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Appendix

Definition 13 Let (v, µ) be some strategy. We say that (v, µ) is an SPE in the
strong sense if for no qj there is a v

′, with v
′

h = vh for qh 6= qj , and an equilibrium
matching µ′ for v′, such that Sj(v

′, µ′) > Sj(v, µ).

Proposition 7 If (v, µ) is an SPE in the strong sense then S(v, µ) is a competitive
equilibrium. Consequently µ is a maximal matching for v.

Proof Let S(v, µ) = (u, v∗;µ). Suppose by way of contradiction that (v∗, µ) is not
a competitive equilibrium. Then there is a pair (pi, qj) such that ui + v∗j < αij .
Either (a) qj is a µ-expensive object for v(qj is unsold and vj > v∗j = 0), or (b)
qj was sold at price v∗j = vj to pk, with i′ < i. In this case, choose qj so that
µ(qj) = pi′ is the last buyer of an object such that ui+ v∗j < αij for some pair (pi,
qj).

Let λ > 0 and γ > 0 be such that (ui + λ+ (v∗j + γ) = αij and let v′ be such

that v′j = v∗j + γ and v
′

h = vh for all qh 6= qj . Then:

ui + λ = αij − v
′

j > ui ≥ αih − v∗h for all qh ∈ Qi

where Qi is the set of available objects for pi under µ. In case (a) let every buyer
pk, k < i, choose µ(pk), which is still a best response for pk to v′. Thus the set
of available objects for pi under v

′ is still Qi. Hence, by the previous equation, qj
will be the only object in the demand set of pi at prices v′. Therefore qj will be
sold to pi. In this case seller qj wins by deviating, which contradicts the fact that
(v, µ) is a SPE.

Consider now case (b). Let every buyer pk with k < i′ play µ(pk), which is
still a best response for pk to v′. Then at the time pi is called to play, if qj is
still available, no matter which were the choices of i′ and of the buyers who came
after i′, qj will be the only object in the demand set of pi at prices v′. In fact,
if αih − v

′

h > αij − v
′

j then αih − v∗h > αij − (v∗j + γ). Thus if we have chosen
a γ small enough, we have that αih − vh ≥ αij − v∗j > ui, so (pi, qh) also blocks

(u, v∗;µ). Then µ(qh) is prior to i
′

< i. By hypothesis this implies that µ(qh) buys
qh at v′, so qh is not available to pi when she comes to play. Now use the previous
equation to get that pi will buy qj at v

′

j . Therefore, in any case, v
′

j is a profitable
deviation. Hence (v∗, µ) is a competitive equilibrium. Moreover, as a consequence
of this result, µ is an optimal matching so it is a maximal matching for v and the
proof is complete. Q.E.D.
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