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José Fajardo Barbachan**

Summary: 1. Introduction; 2. Model; 3. Lévy processes and equiv-
alent martingale measures; 4. Optimization problem; 5. Choosing
a measure; 6. Example; 7. Conclusions.
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We study the intertemporal consumption and investment problem
in a continuous time setting when the security prices follow a Geo-
metric Lévy process. Using stochastic calculus for semimartingales
we obtain conditions for the existence of optimal consumption poli-
cies. Also, we give a charaterization of the equivalent martingale
measures.

Estudamos o problema do consumo e investimento intertemporal
em tempo cont́ınuo, quando os preços dos ativos seguem um pro-
cesso de Lévy Geométrico. Usando cálculo estócastico para semi-
martingalas obtemos condições para a existência de poĺıticas ótimas
de consumo. Também, mostramos a caracterização das medidas
martingalas equivalentes.

1. Introduction

The intertemporal optimal consumption and investment problem in a continu-
ous time setting is a important task in the finance literature. The first to study this
problem was Merton (1971), using stochastic dynamic programming he obtained
explicit solutions for an economy with incomplete markets in which security prices
follow a geometric Brownian motion, the endowments follow a Poisson process and
the investor has a negative exponential utility with an infinite horizon.

Many other authors have tried to improve the above model adding income
stream, transaction costs, borrowing constraints and other facts that make the

*This paper was received in Nov. 2002 and approved in Feb. 2003. I want to thank Maria
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826 José Fajardo Barbachan

model more real. In all these models the log-Normal hypothesis or a slight mod-
ification of it is assumed for stock returns. Unfortunately, it is very well known
that this hypothesis did not hold for the majority of stocks, since they present
stylized facts like: fat tails, asymmetry, autocorrelation, etc. For a survey about
the principal results on stylized facts see Rydberg (1997).

For this reason, recently some results, assuming more general process to model
stock returns, have appear in the literature. Kramkov and Schachermayer (1999)
prove that if the asymptotic elasticity of the utility is strictly less than one, then
there is a solution for the optimal consumption and investment problem.

Benth et al. (2001) have obtained a solution for the optimal consumption-
investment problem assuming that the dynamic programming principle holds and
that the stock returns are modelled by a pure-jump Lévy processes, to solve this
problem they used a viscosity solution approach. Fajardo (2000) proves that when
the stock returns follow a Hyperbolic Lévy motion and we choose a particular
equivalent martingale measure (EMM) to construct the state price density, then it
is possible to find conditions on the wealth process and strategies that guarantee
the existence of optimal policies.

In this paper we extend the latter result considering a huge class of processes
called geometric Lévy processes and all the set of EMM. To this end we characterize
all the EMM that exist in the market. The paper is organized as follows: in section
2 we describe the model, in section 3 we address the existence of EMM in a Lévy
market, that is, when stock prices follow a Geometric Lévy Motion. In section 4
we introduce the optimal problem and state the main result. In section 5 we show
how to choose an EMM and in the last sections we present an example and the
conclusions.

2. Model

We will consider a financial market M consisting of 2 assets. The first is called
bond (the riskless asset) and the second is called stock (the risky asset). We denote
by B(t) and P (t) the bond’s and stock’s price at each time t ∈ [0, T ], respectively.
The evolution of these prices are modelled by the following equations:

dB(t) = r(t)B(t)dt, B(0) = 1 (1)

dP (t) = P (t−)[ρtdt+ σtdY (t)], P (0) ∈ (0,∞) (2)
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In this model the sources of risk are modelled by a Lévy process Y (t), 0 ≤ t ≤ T ,
i.e., a process with independent and stationary increments. Y is defined on a given
complete probability space (Ω,F ,P) and denote by F = {F(t),0 ≤ t ≤ T} the
P− augmentation1 of the natural filtration generated by Y :

FY (t) = σ (Y (s), 0 ≤ s ≤ t) , 0 ≤ t ≤ T

time horizon will be considered finite. The positiveness of the stock price will be
analyzed in the next section. The interest rate {r(t) : 0 ≤ t ≤ T}, assumed finite,
the appreciation rate {ρ(t), 0 ≤ t ≤ T}, and the volatilities σ(t), 0 ≤ t ≤ T will
be referred as the coefficients of the financial market M. We assume that these
coefficients are deterministic continuous functions. Now we introduce a small
investor (his decisions does not affect the market prices), who will decide at each
moment t ∈ [0, T ]:

1. How much money π(t) he wants to invest in the stock;

2. His cumulative consumption C(t).

Of course, these decisions must be made without foreknowledge of future
events, so C and π must be adapted processes. 2 If we denote by X(t) the agent´s
wealth at time t, then the amount invested in the bond will be X(t)− π(t). From
here, (1) and (2), we obtain the following equation for the wealth:

dX(t) = π(t)
dP (t)

P (t−)
+ (X(t)− π(t))

dB(t)

B(t)
− dC(t) (3)

= π(t) [ρ(t)dt+ σ(t)dY (t)] + (X(t)− π(t)) r(t)dt− dC(t)

= r(t)X(t)dt+ π(t) [(ρ(t)− r(t))dt+ σ(t)dY (t)]− dC(t) (4)

The solution of this linear stochastic differential equation with initial condition
x ∈ R, i.e. X(0) = x is:

1The augmented filtration F is defined by F(t) = σ (FY (t) ∪N ), where N =
{E ⊂ Ω : ∃G ∈ F with E ⊆ G,P(G) = 0} denotes the set of P− null events.

2We said that a process {Xt} is adapted with respect to F if for all t ∈ [0, T ], Xt is an
F(t)-measurable random variable.
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γ(t)X(t) = x−

t∫

0

γ(s)dC(s) +

t∫

0

γ(s)π(s) [σ(s)dY (s) + (ρ(s)− r(s))ds] (5)

for all 0 ≤ t ≤ T . Where

γ(t)
∆
= e

−
t∫
0

r(s)ds
(6)

is the discount factor in M. Now we give some definitions:

Definition 1

(i) An F− adapted process C = C(t), 0 ≤ t ≤ T with nondecreasing, right-cont-
inuous paths, left-hand limits and C(0) = 0, C(T ) <∞ a.s is called a cumu-
lative consumption process.

(ii) An F− progressively measurable, càdlàg, R− valued process
π = {π(t), 0 ≤ t ≤ T} with

T∫

0

|π(t)σ(t)|2 dt+

T∫

0

|π(t)(ρ(t)− r(t))| dt <∞, a.s (7)

is called a portfolio process.

(iii) For a given x ∈ R and (π,C) as above, the process X(t) = Xx,π,C(t) of (3),
(5) is called the wealth process corresponding to initial capital x, portfolio π,
and cumulative consumption process C.

It is important to notice that (X(t)− π(t)) and π(t) can take negative values,
in other words short-sales of stock and borrowing at interest rate r(·) are allowed.
So we need to impose some restriction on portfolios.

Definition 2: We say that a given portfolio process π(·) is tame, if the associated
discounted gain process:
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Mπ(t)
∆
=

t∫

0

γ(s)π(s) [σ(s)dY (s) + (ρ(s)− r(s))ds] (8)

is a.s. bounded from below by some real constant:

P [Mπ(t) ≥ qπ, ∀0 ≤ t ≤ T ] = 1 for some qπ ∈ R (9)

Condition (9) is necessary to avoid doubling strategies, that is, portfolios that
attain arbitrary large values of wealth with probability one at t = T , starting with
zero initial capital at t = 0.3

Definition 3 A tame portfolio that satisfies:

P [Mπ(T ) ≥ 0] = 1, P [Mπ(T ) > 0] > 0 (10)

is called an “arbitrage opportunity” (or free lunch). We say that a market M is
arbitrage free if no such portfolio exist.

The free lunch interpretation of (10) is clear: starting with zero initial capital
and using the strategy π(·) at the end of the period t = T . Since γ(T ) = B(T )−1,
we have X(T ) = X0,π,0(T ) = B(T )Mπ(T ), then X(T ) ≥ 0 a.s, i.e. no risk and
positive probability of gain P [X(T ) > 0] > 0.

So we need conditions for precluding these arbitrage opportunities. We know
that the existence of an EMM in general context rule out this opportunities. In
our context Eberlein and Jacod (1997) show that when r(t) = r, ∀t ∈ [0, T ],
there would be EMM and Chan (1999) shows analogous result with r(·) being
a deterministic continuous function. We will show that these existence imply
that our market is arbitrage free. An important consequence of our extension is
that many market models are incomplete then we have not an unique EMM. The
criterion to choose one of these EMM will be also presented.

3. Lévy Processes and Equivalent Martingale Measures

In this section we characterize all the equivalent martingale measures in the
model introduced in section 2. We know that all the infinitely divisible distribu-

3See Karatzas and Shreve (1998) for an example.
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tions4 (Yt) admit the following Lévy-Khintchine representation:

φ(u) = exp

(
iau−

c

2
u2 +

∫ (
eiux − 1− iux1[|x|≤1]

)
G(dx)

)
(11)

where φ is the characteristic function of the infinitely divisible distribution, a is
the drift, c is the quadratic variation coefficient and G is a positive measure with∫
minx2, 1G(dx) <∞. This measure is called the Lévy measure and describes the

jumps of the process.
We also know that all Lévy process must be a linear combination of a stan-

dard Brownian Motion (Wt) and a quadratic pure jump process5 (Nt) which is
independent of the Brownian Motion Wt, then

Yt = cWt +Nt

The process Nt has a Lévy decomposition: Let L(dt, dx) be a Poisson measure
on R+ × R \ 0 with expectation (or compensator) measure dt×G 6, then:

Nt =

∫

[|x|<1]
x(L((0, t], dx)− tG(dx)) +

∫

[|x|≥1]
xL((0, t], dx) (12)

+ tE

[
N1 −

∫

|x|≥1
xG(dx)

]

Now assume that7

E [exp(−bY1)] <∞∀b ∈ (−b1, b2)

and

∫

[|x|≥1]
e−bxdG(x) <∞∀b ∈ (−b1, b2)

where 0 < b1, b2 ≤ ∞. The first assumption said that Yt has all moments finite
and the second is technical and will let us separate integrands. With this in mind
we can return to the jumps and transform the equation (12) into:

4An infinite divisible distribution generates a Lévy processes, for abuse of notation we use Yt
for both. For more details see Sato (1999) or Shiryaev (1999).

5A process X is said to be a quadratic pure jump process if 〈N〉c ≡ 0, where 〈N〉c is the
continuous part of its quadratic variation 〈N〉. Remember that 〈N〉 is the process such that
(Nt)

2 − 〈N〉t is a martingale.
6∀B ∈ R+ × R \ 0, L(B) has Poisson distribution with parameter (dt×G)(B)
7E(·) denote the expectation with respect to P
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Nt =

∫

R
x (L((0, t], dx)− tG(dx)) + tEN1

It is easy to see that the process

Mt =

∫

R
x (L((0, t], dx)− tG(dx))

is a martingale. Then Nt = Mt+ at, with a = EN1, as a consequence the original
process can be written as

Yt = Mt + cWt + at (13)

Before passing to characterize the absolutely continuous measures with respect
to the original measure, let us introduce some elements of stochastic calculus: for
any measurable function f(t, x) we have

∑

0<s≤t

f(s,∆Ns) =

t∫

0

∫

R

f(s, x)L(ds, dx) (14)

and for any C2 function f , we have the Generalized Itô’s formula for càdlàg semi-
martingales X1, ..., Xn:

df(X1t , .., X
n
t ) =

∑

i

fi(X
1
t− , .., X

n
t−)dX

i
t +

∑

i,j

1

2
fij(X

1
t− , .., X

n
t−)d[X

i, Xj ]ct

+ f(X1t , .., X
n
t )− f(X1t− , .., X

n
t−)−

∑

i

fi(X
1
t− , .., X

n
t−)∆X

i
t

with fi =
∂f
∂xi

, fij =
∂2f
∂xixj

and [X i, Xj ]c the continuous part of the mutual varia-

tion8 of X i and Xj .

Now with the above results we study the solution of equation (2):

dP (t) = P (t−)[ρtdt+ σtdY (t)] = (aσt + ρt)Pt−dt+ σtPt−(cdWt + dMt)

8For more details see Shiryaev (1999).
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When the coefficients ρt and σt are deterministic continuous function the so-
lution of this equation is given by the Doléans-Dade exponential:9

Pt = P0 exp





t∫

0

σsdYs +

t∫

0

(
ρs −

c2σ2s
2

)
ds





∏

0<s≤t

(1 + σs∆Ys)e
−σs∆Ys

with (13) we obtain:

Pt = P0 exp





t∫

0

cσsdWs +

t∫

0

cσsdMs +

t∫

0

(
aσsρs −

c2σ2s
2

)
ds





∏

0<s≤t

(1 + σs∆Ms) e
−σs∆Ms (15)

to ensure that Pt ≥ 0, a.s.∀t ∈ [0, T ], we need that

1 + σt∆Mt ≥ 0, ∀t ∈ [0, T ]

If we assume the convention ‘σ > 0’, we only need that the jumps of Nt be
bounded from below10, i.e., ∆Nt ≥ −

1
σt
, it means that we consider only “semi-fat

tailed” distributions as Poisson, Gamma, Hyperbolic and Normal Inverse Gaussian
and we eliminate processes with heavy tails, it is worth noting that the stable
distributions (without including the Gaussian Case) were eliminated when we
supposed that Y has all moments finite.

The following step consist in characterize all the measures that are absolutely
continuous with respect to P, to this end let:

M(dt, dx) = L(dt, dx)− dtG(dx)

then

Mt =

t∫

0

∫

R

xM(ds, dx)

9See Jacod and Shiryaev (1987)
10Observe that from Nt = Mt + at we have ∆Mt = ∆Nt.
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Now two useful results:11

Lemma 1 Let Rt and K(t, x) be a previsible and a Borel previsible processes12

respectively. Suppose that

E(

t∫

0

R2sds) <∞

and K ≥ 0,K(t, 0) = 1 ∀t ∈ R+. Let k(t, x) be another Borel previsible process
such that

∫

R

[K(t, x)− 1− k(t, x)]G(dx) <∞

Define a process Zt by

Zt = exp

t∫

0

RsdWs −
1

2

t∫

0

R2sds+

t∫

0

∫

R

k(s, x)M(ds, dx)

−

∫

[0,t)×R

[K(s, x)− 1− k(s, x)]G(dx)ds
∏

0<s≤t

K(s,∆Ns)e
−k(s,∆Ns)

then Z is a local martingale with Z0 = 1 and Z is positive if and only if K > 0.

Proof From the fact

Zt −Zt− = Zt− (K(t,∆Nt)− 1)

and applying Itô’s formula and (14), we can obtain:

Zt = 1 +

t∫

0

RsZs − dWs+

t∫

0

∫

R

Zs − [K(s, x)− 1]M(ds, dx)

11See Chan (1999)
12a process Kω(t, x) is said to be a Borel previsible function or process if the process t 7→

Kω(t, x) is a previsible function for fixed x and the function x 7→ Kω(t, x) is Borel-measurable
for fixed t.
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This expression is a local martingale.

Teorem 1 Let Q be a measure which is absolutely continuous with respect to P
on FT . Then

dQ

dP

∣∣∣
FT

= ZT

where Z is as in the lemma 1, for some R,K and k for which EZT = 1. Moreover
under Q, the process

Ŵt = Wt −

t∫

0

Rsds (16)

is a Brownian Motion and the process Nt is a quadratic pure jump process with
compensator measure given by dtĜt(dx) with

Ĝt(dx) = K(t, x)G(dx)

and constant part given by

ât = EQNt = at+

t∫

0

∫

R

x(K(s, t)− 1)G(dx)ds

Then under Q the process Nt can be represented as

Nt = M̂t + at+

t∫

0

∫

R

x(K(s, t)− 1)G(dx)ds

with

M̂t = Mt −

t∫

0

∫

R

x(K(s, t)− 1)G(dx)ds (17)

This process is a Q−martingale and it is easy to see that ∆M̂t = ∆Mt. Now
let

P̂t = exp


−

t∫

0

rsds


Pt
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be the discounted price process. Replacing the processesWt andMt in the equation
(15) by their respective Q−versions, we obtain

P̂t = P0 exp

t∫

0

cσsdŴs +

t∫

0

cσsdM̂s +

t∫

0

(
aσs + cσsRs + ρs − rs −

c2σ2s
2

)
ds

+

t∫

0

σs

∫

R

x (K(s, x)− 1)G(dx)ds
∏

0<s≤t

(1 + σs∆M̂s)e
−σs∆M̂s

A necessary and sufficient condition for P̂t be a Q−martingale is the existence
of R and K > 0 a.s. for which:

cRs + a+
ρs − rs
σs

+

∫

R

x(K(s, x)− 1)G(dx) = 0 ∀s (18)

and EZt = 1, ∀t > 0. Since the process

exp





t∫

0

cσsdŴs +

t∫

0

σsdM̂s −

t∫

0

c2σ2s
2

ds





∏

0<s≤t

(
1 + σs∆M̂s

)
e−σs∆M̂s

is a Q−martingale. Now we can state the following

Theorem 2 If there exist R and K > 0 for which EZt = 1 ∀t and the market
price of risk is given by

η(s) =
ρs − rs
σs

=

∫

R

x(1−K(s, x))G(dx)− cRs − a ∀s (19)

Then the market M is arbitrage free.

Proof Take a tame portfolio π and suppose that P(Mπ(T ) ≥ 0) = 1, by definition
we have

Mπ(t) =

t∫

0

γ(s)π(s) [σ(s)dY (s) + (ρ(s)− r(s))ds]
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With equation (13) and (19) we obtain

Mπ(t) =

t∫

0

γ(s)π(s)σ(s)

[
cdW (s) + dM(s) +

(∫

R

x(1−K(s, x))G(dx)

− cRs)ds

)]

Now using (16) and (17)

Mπ(t) =

t∫

0

γ(s)π(s)σ(s)[cdŴ (s) + dM̂(s)]

We have that Mπ is a Q− local martingale bounded from below, since π is
tame, then a supermartingale. Hence

EQMπ(T ) ≤ 0

then Q(Mπ(T ) > 0) = 0, so there are not arbitrage opportunities.
From these result we know that our market is arbitrage free. Now we can

introduce the investor problem.

4. Optimization Problem

In this section we formalize the individual problem of the investor, give some
definitions and finally we present the main result.

Definition 4 A pair (π,C) of portfolio consumption process is called admissible
for the initial capital x ≥ 0. If

X(T ) = Xx,π,C(T ) ≥ 0, a.s. (20)

The class of all such pairs will be denoted by A(x).
Now take any equivalent martingale measure Q and define the following state

price density:

HZ(t) = γ(t)Z(t), ∀t ∈ [0, T ] (21)

where
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dQ

dP

∣∣∣
Ft

= Zt

using (5) and the generalized Itô’s lemma for F (Z(t), γ(t)X(t)) = HZ(t)X(t), we
obtain:

d
(
HZ(t)X(t)

)
= −HZ(t−)dC(t) +HZ(t−)π(t) (ρ(t)− r(t)) dt (22)

+ HZ(t−)π(t)σ(t)dY (t) + γ(t)X(t−)dZ(t) +HZ(t)∆X(t)

Now with the decomposition (13), we obtain

d
(
HZ(t)X(t)

)
= −HZ(t−)dC(t) +HZ(t−)π(t)σ(t)[cdW (t) + dM(t)]

+ γ(t)X(t−)dZ(t) + dD(t)

where D(t) is given by

D(t) = D(0) +

t∫

0

HZ(t−)π(t)(σ(t)a+ ρ(t)− r(t))dt+
∑

0<s≤t

HZ(s)∆X(s)

In order to formulate our optimization problem we need the concept of utility
function.

Definition 5 We say that a function u : (0,∞) → R is a utility function if it is
strictly increasing, strictly concave, continuously differentiable and

u′(∞)
∆
= lim

x→∞
u′(x) = 0 and u′(0+)

∆
= lim

x↓0
u′(x) =∞ (23)

Examples of utility function are u(x) = log x and u(x) = xδ

δ
, δ ∈ (−∞, 1)0.

We will denote by I(·) the inverse of the derivative u′(·), both these func-
tions are continuous, strictly decreasing, and map (0,∞) onto itself with I(0+) =
u′(0+) =∞, I(∞) = u′(∞) = 0. We shall consider also de convex dual

û(y)
∆
= max
0<x<∞

[u(x)− xy] = u(I(y))− yI(y), 0 < y <∞ (24)
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Of u(·): a convex decreasing function, continuously differentiable on (0,∞) and
satisfies

û′(y) = −I(y), 0 < y <∞ (25)

u(x)
∆
= min
0<y<∞

[û(y) + xy] = û(u′(x)) + xu′(x) (26)

û(∞) = u(0+), û(0+) = u(∞) (27)

Remarks on Utility Functions

• Observe that (23) is the usual Inada’s condition.

• Negative wealth is not allowed to consider utilities that are economically
relevant, as is the case of the u(x) = ln(x). But, we could take u(0) = −∞
and make u : [0,∞)→ R

⋃
{−∞}

• In general we must have that marginal utility from consumption tends to
infinite when wealth tends to the infimum of its allowed values.

Now consider an small investor who has an initial capital x > 0, and he wants
to choose a portfolio π(·) and consumption processes {c(t), 0 ≤ t ≤ T} in order
to maximize his expected utility from the terminal wealth Xx,π,C(T ) and from
consumption.

Given the utility functions g and u(t, ·), as in the above definition, we define
the following classes:

A(x)
∆
=
{
(π,C) ∈ A(x)/Eg−

(
Xx,π,C(T )

)
<∞

}

Au(x)
∆
=



(π,C) ∈ A(x)/E

T∫

0

u− (t, c(t)) dt <∞





remember f−(x) = max−f(x), 0.
Then our small investor will have to maximize the expected utility from con-

sumption and terminal wealth over the following class:

A0(x)
∆
= Au(x) ∩ Ag(x)
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The value function will be

VZ(x) = sup
(π,C)∈A0(x)

E




T∫

0

u(t, c(t))dt+ g
(
Xx,π,C(T )

)

 (28)

Now to solve this optimization problem consider, in the context of the market
model M described before, a contingent claim 13 ξ and a consumption process C
that satisfy

E


HZ(T )ξ +

T∫

0

HZ(t−)dC(t)


 = x > 0 (29)

Then if there exist a portfolio process π(·), such that (π,C) ∈ A(x) and
Xx,π,C(T ) = ξ; we could conclude that the optimal problem is in some sense
equivalent to the following problem:

maxE




T∫

0

u(t, c(t))dt+ g (ξ)




over all pairs (ξ, c) of contingent claims and consumption rate process that satisfy
the constraint (29) .

Now with y > 0 (Lagrange multiplier) and with (24):

E




T∫

0

u(t, c(t))dt+ g (ξ)


+ y


x− E


HZ(T )ξ +

T∫

0

HZ(t−)c(t)dt




 = (30)

= E




T∫

0

[
u(t, c(t))dt− yHZ(t−)c(t)

]
dt


+ E

[
g (ξ)− yHZ(T )ξ

]
+ xy

≤ E




T∫

0

û(t, yHZ(t−))dt


+ E

[
ĝ
(
yHZ(T )

)]
+ xy

the equality holds if and only if

ξZ = Ig
(
yHZ(T )

)
and cZ(t) = Iu

(
t, yHZ(t−)

)
(31)

13A contingent claim ξ is a random variable FT−measurable.
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then in the constraint (29), we define

XZ(y)
∆
= E


HZ(T )Ig

(
yHZ(T )

)
+

T∫

0

HZ(t−)Iu
(
t, yHZ(t−)

)
dt


 = x

and if we consider x ∈ (0,∞) that is XZ(y) < ∞, ∀0 < y < ∞. This function
maps (0,∞) onto itself and is continuous, strictly decreasing with

XZ(0+)
∆
= lim

y↓0
XZ(y) =∞,XZ(∞)

∆
= lim

y→∞
XZ(y) = 0

If we denote by YZ(·) = X−1Z (·). Then the lagrange multiplier y > 0 is uniquely
determined by

y = YZ(x)

Now we can state the main result

Theorem 3 Suppose x ∈ (0,∞) and VZ(x) < ∞, ∀x ∈ (0,∞) For any x > 0,
consider the optimization problem with value function VZ(x) as in (??) and define
ξZ and cZ(·) as in (31). Then if

a) there is a portfolio process πZ(·) such that (πZ , CZ) ∈ A(x) and

Xx,πZ ,CZ (T ) = ξZ

b) the process Dt is a Local martingale and D0 = 0.

Then (πZ , cZ) are the solutions of the optimal problem and the value function
is given by

VZ(x) = G(YZ(x))

where

G(y)
∆
= E




T∫

0

u(t, Iu(t, yH
Z(t−))dt+ g

(
Ig
(
yHZ(T )

))

 , ∀y ∈ (0,∞) (32)
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and the convex dual of VZ(·) is

V̂Z(y) = G(y)− yXZ(y) = E




T∫

0

û(t, yHZ(t−))dt


+ E

[
ĝ
(
yHZ(T )

)]

Proof By construction ξZ and cZ satisfy (29) and using the following inequality

f(If (y)) ≥ f(x) + y [If (y)− x]

for every utility function f , we obtain

u(t, cZ(t)) ≥ u(t, 1) + YZ(x)H
Z(t−)(cZ(t)− 1), 0 ≤ t ≤ T

g (ξZ) ≥ g(1) + YZ(x)H
Z(T )(ξZ − 1), a.s.

therefore

E




T∫

0

u− (t, cZ(t)) dt+ g−(ξZ)


 ≤ |g(1)|+

T∫

0

|u(t, 1)| dt (33)

+ YZ(x)


HZ(T ) +

T∫

0

HZ(t−)dt


 <∞

Since EHZ(t) ≤ erT , 0 ≤ t ≤ T, where r = sup0≤t≤T r(t) < ∞ and by (a) we
have that there exist a portfolio process πZ with (πZ , CZ) ∈ A(x) (also in A0(x)
thanks to (34)) and Xx,πZ ,CZ (T ) = ξZ a.s.).

Now take an arbitrary x > 0, (π,C) ∈ A0(x) and y > 0 from (b) we have that
the following process is a bounded (from below) local martingale:

HZ(t)X(t) +

t∫

0

HZ(s−)dC(s)

then a supermartingale and with (30) we have
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E




T∫

0

u(t, c(t))dt+ g
(
Xx,π,C(T )

)

 ≤ E




T∫

0

u(t, c(t))dt+ g
(
Xx,π,C(T )

)

+ (34)

+y


x− E


HZ(T )Xx,π,C(T ) +

T∫

0

HZ(t−)dC(t)




 ≤ Q(y) + xy

where

Q(y)
∆
= E




T∫

0

û(t, yHZ(t−))dt+ ĝ
(
yHZ(T )

)

 = G(y)− yXZ(y)

in particular follows

VZ(x) ≤ Q(y) + xy, ∀x > 0

hence

V̂Z(y) ≤ Q(y), ∀y > 0 (35)

On the other hand the inequality (34) holds as equality if and only if y = YZ(x)
and (π, c) = (πZ , cZ) then

E




T∫

0

u (t, cZ(t)) dt+ g (Xx,πZ ,cZ (T ))


 = Q (YZ(x)) + xYZ(x)

= G(YZ(x))

now

VZ(x) = G(YZ(x))

and also

Q(y) = VZ(XZ(y))− yXZ(y) ≤ sup
x>0

[VZ(x)− xy]

For every y > 0, and in conjunction with (35) we obtain Q(y) = V̂Z(y), ∀y > 0.
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Remarks on the Assumptions

• Assumption (a) is necessary and sufficient for the optimality of consumption.
For the existence of the portfolio financing this optimal consumption we need
to solve the following equation:

γ(T )Ig
(
yHZ(T )

)
= x−

T∫

0

γ(t)dCZ(t)

+

T∫

0

γ(t)πZ(t) [σ(t)dY (t) + (ρ(t)− r(t))dt]

• Assumption (b) is a sufficient condition which allow us to control the jumps
on wealth and depending on the process Y considered, it can be easy verified
as we will see in section 6 with an example. Condition D0 = 0 is just to
simplify the proof. We can prove the same with D0 6= 0.

As we have seen in section 3, we obtained a characterization of the EMM. But
it can be argued that choosing an EMM can be a hard task to solve, for these
reason we show how to choose an EMM in the following section.

5. Choosing a Measure

There exists some approaches to choose one EMM, we concentrate our at-
tention in the approach introduced by Gerber and Shiu (1994), define the new
probability

dPθ
t

dPt
= Zθ(t) = eθYt−t logϕ(θ) (36)

where ϕ(θ) = EeθY1 . When the stock price process has constant coefficients,
Gerber and Shiu (1994) prove that for a given constant r it is possible to find a
solution θ of the following:

r = log

(
ϕ(θ + 1)

ϕ(θ)

)
(37)

RBE Rio de Janeiro 57(4):825-848 OUT/DEZ 2003
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Then we can verify that the process P̂t = e−rtPt is a martingale under Pθ,i.e.
Pθ ∈ Q (set of EMM). Moreover the process is a Lévy Process under this proba-
bility and is called the Esscher transform14 of the original process. In our model
we consider time dependent functions, then we consider the generalized Esscher
Transform:

dPθ
t

dPt
= Zθ(t) = e

{
t∫
0

θsdYs−
t∫
0

logϕ(θs)ds

}

Now we can choose θs in order to satisfy equation (18), since this is the case
of K(s, x) = exp(−θsx), k(s, x) = −θsx and Rs = −cθs. In fact with these
expressions we obtain

−c2σsθs + aσs + ρs − rs + σs

∫

R

x
(
e−θsx − 1

)
G(dx) = 0 (38)

It easy to verify that this equation has an unique solution for which ϕ(θs) <∞
and θs ∈ (−b1, b2) ∀s. Then we can get a EMM, and important fact of this measure
is that this is the measure of minimum relative entropy with respect to P, to see
this remember the definition of entropy:

IP(Q) = EQ

[
log

dQ

dP

]

Where Q is any absolutely continuous measure with respect to P, with lemma
1 we have

IP(Q) = EQ


1
2

T∫

0

R2sds+

T∫

0

∫

R

[K(s, x) (logK(s, x)− 1) + 1]G(dx)ds




where Q depends on the choice of K and R, and these functions have to sat-
isfy equation (18). We can show 15 that this minimum is obtained when K =
exp (−xσλ) and R = −cσλ, where λ is the lagrange multiplier associated to the
constraint (18), this can justify the choice of the measure associated to θ = σλ.

14For more details on Esscher transforms see Buhlmann et al. (1996)
15See Chan (1999)
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6. Example

Take σ = ρ = c = 1 and r = 0. Now assume that Nt =
N1(t)−N2(t)

2 , where Ni

is a Poisson process with rate 1, so:

• G = δ− 1
2
+ δ 1

2

• a = ENt = 0

Now we choose k(x) = 2x
3 and K(x) = 1− k(x), replacing in condition (18) we

obtain Rs = −
2
3 , from the fact that ∆Ns = 0, we have

Zt = exp

{
−
2

3
Wt −

2t

9
+

2

3
Nt

}

It is easy to verify that EZT = 1, in other words it is a EMM density. So we
have find one EMM. Now we apply the approach presented in last section to find
the EMM that minimize entropy: as σ = 1, then θ = λ. We obtain the parameter
θ that satisfy equation (38):

−θ + 1 +

∫
x(e−θx − 1)(δ− 1

2
+ δ 1

2
)(dx) = 0

reducing this expression, we have:

1− θ +
e−

θ
2 − e

θ
2

2
= 0

the solution of this equation is θ∗ ≈ 0, 6626. In equation (5):

Zθ∗(t) = eθ
∗Yt−t logϕ(θ∗)

we have also Yt = Wt +Nt and

ϕ(θ) = EeθW1+θN(1)

= EeθW1EeθN(1)

= EeθW1

= e
θ2

2

where the first equality is due to the independence of Wt and N(t), the second is
due to the fact that N1(t) and N2(t) are independent and identically distributed,
and the third is the expected value of a Log-normal variable. From here we have
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Zθ∗(t) = e{0,6626Wt+0,6626Nt−0,21952t} (39)

and this measure is obtained when K(s, x) = e−0,6626x, k(s, x) = −0, 6626x and
Rs = −0, 6626.

Now as Nt and Wt are martingales condition (b) in the main theorem is satis-
fied. Then if we take u(t, x) = g(x) = log(x), then Iu(x) = Ig(x) =

1
x
and

ξZ =
1

yHZ(T )
and cZ(t) =

1

yHZ(t−)

but

x = XZ(y) = E


HZ(T )Ig

(
yHZ(T )

)
+

T∫

0

HZ(t−)Iu
(
t, yHZ(t−)

)
dt




= E

[
1

y
+
T

y

]

then y = T+1
x

and

ξZ =
x

(T + 1)Z(T )
and cZ(t) =

x

(T + 1)Z(t−)

So depending on the state price density, i.e., on the EMM we choose, we have
the path of the optimal policies. More precisely, if we desire to choose the EMM
closest to P in terms of its information contents, since P contains information
about the behavior of the market, we have to choose the EMM given by (39).16

7. Conclusions

In this paper we studied the optimal investment and consumption problem
assuming that the risky asset is driven by a geometric Lévy process which allow
us to obtain more realistic results. Another important issue addressed in this
paper is the characterization of the EMM in a Lévy market and how to choose
one of them using a minimal entropy criteria.

An important and difficult issue not considered in the paper is the availability
of the portfolio processes, since many of the market models considered in the paper

16For more details on how to construct EMM with different types of Lévy processes see Fajardo
(2003).

RBE Rio de Janeiro 57(4):825-848 OUT/DEZ 2003



Optimal Consumption and Investment with Lévy Processes 847

can be incomplete, we need to ensure that the financing portfolio is available in
the market. For a discussion on this type of problem see Cvitanić and Karatzas
(1992). Also from the existence of EMM we obtained the arbitrage free economies,
with this in mind some equilibrium analysis in continuous time can be done.
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