As Relações Setoriais entre Minas Gerais, Restante do Brasil e seus 5 Principais Parceiros Econômicos: Uma Abordagem de Insumo-Produto

VINÍCIUS DE AZEVEDO COUTO FIRME Sobre o autor

Resumos

Neste trabalho, construiu-se e analisou-se uma matriz inter-regional de insumo-produto contendo os fluxos comerciais correntes de 2003 entre as regiões de Minas Gerais (MG), Restante do Brasil (RB) e Resto do Mundo (RM). Tal matriz apresentou desagregação para: 11 setores em MG e RB e para os principais parceiros comerciais brasileiros no RM. Concluiu-se que, os setores de MG, apesar de apresentarem menores multiplicadores de produção, impulsionam mais a indústria nacional que os do RB. No RM, a China auferiu o maior multiplicador de produção, foi considerada Setor-Chave e seu comércio interno foi o elo mais influente da economia mundial.

Palavras-chave:
Comércio Internacional; Economia Regional; Modelos Inter-Regionais de Insumo-Produto


This article built and analyzed an inter-regional input-output matrix containing the current trade flows, from 2003, among the regions of Minas Gerais (MG), Rest of Brazil (RB) and Rest of World (RW). This matrix presented disaggregation for: 11 sectors in MG and RB and the major Brazilian's trading partners in RW. The results revealed that the sectors of MG, in spite of having lower production multipliers, were better to boost the domestic industry than RB's sectors. In RW, China earned the highest production's multiplier, was considered key-sector and its domestic trade was the most influential link in the world economy.


1. INTRODUÇÃO

A análise dos setores brasileiros via Insumo-Produto (I-P) é frequente na literatura nacional. Guilhoto et al. (2002Guilhoto, J. J. M., Hewings, G. J. D., & Sonis, M. (2002). Productive Relations in the Northeast and the Rest-of-Brazil Regions in 1995: Decomposition and Synergy in Input-Output Systems. Geographical Analysis, 34(1):62-75., 2001a)Guilhoto, J. J. M., Moretto, A. C., & Rodrigues, R. L. (2001a). Decomposition & synergy: a study of the interactions and dependence among the 5 Brazilian macro regions. Economia Aplicada, 5(2)., Haddad (1999)Haddad, E. A. (1999). Regional inequality and structural changes: lessons from the Brazilian economy. Ashgate, Aldershot., Haddad e Hewings (2000)Haddad, E. A. & Hewings, G. (2000). Linkages and interdependence in the Brazilian economy: an evaluation of the interregional input-output system, 1985. Revista Econômica do Nordeste, 31(3):330-376. e Crocomo e Guilhoto (1998)Crocomo, F. & Guilhoto, J. (1998). Relações inter-regionais e intersetoriais na economia brasileira: uma análise de insumo produto. Economia Aplicada, 24(4):681-706. utilizaram este instrumento para analisar as interdependências entre as macrorregiões brasileiras. Já Guilhoto et al. (2001)Guilhoto, J. J. M., Hewings, G. J. D., Sonis, M., & Guo, J. (2001). Research Note: Economic Structural Change Over Time: Brazil and the United States Compared. Journal of Policy Modeling, 23(6):703-711. e Rodrigues et al. (2005)Rodrigues, R. L. , Moretto, A. C., Crocomo, F. C., & Guilhoto, J. J. M. (2005). Transações inter-regionais e intersetoriais entre as macro-regiões brasileiras em 1985 e 1995. Revista Brasileira de Economia, 59(3):445-482. fazem uso do I-P no intuito de verificar a evolução estrutural das ligações entre os setores no decorrer do tempo. Outra possibilidade consiste em selecionar economias regionais específicas, através de um sistema inter-regional integrado, a fim de verificar as ligações e transbordamentos existentes entre regiões distintas (Domingues, 2002Domingues, E. P. (2002). Dimensão regional e setorial da integração brasileira na Área de Livre Comércio das Américas. Tese de Doutorado, IPE/USP., Duarte Filho e Chiari, 2002Duarte Filho, F. C. & Chiari, J. R. P. (2002). Características estruturais da economia mineira. Cadernos BDMGBelo Horizonte, 4:11-43.).

No caso deste trabalho, optou-se por usar uma matriz inter-regional de I-P, contendo os fluxos comerciais entre os setores de Minas Gerais (MG) e do Restante do Brasil (RB), com fechamento para as exportações,1 1 Quando um componente da demanda final é endogeneizado no modelo de Insumo-Produto, diz-se que se trata de um modelo "fechado" de Insumo-Produto Miller e Blair (2009). No caso deste artigo, foi realizado um "fechamento para as exportações", onde os vetores de exportações e importações são trazidos para dentro da matriz inversa de Leontief. Neste caso, cria-se um novo setor na matriz (e.g.: setor externo) onde é possível identificar não apenas os impactos diretos e indiretos associados a este setor (caso do modelo aberto), mas também os impactos induzidos (modelo fechado), ver maiores detalhes em Porsse (2002). Outros autores que realizaram este tipo de fechamento foram: Haddad et al. (2005), Betarelli JR et al. (2008), Betarelli JR et al. (2011) e Oliveira et al. (2014). a fim de analisar as relações de comércio entre MG, RB e o "setor externo" ou Resto do Mundo (RM), sendo este último composto pelos 5 principais parceiros comerciais do Brasil (i.e.: EUA, China, Argentina, Alemanha e Japão) mais o grupo dos "demais países".

Para tanto, os vetores de exportações e importações da matriz inter-regional (MG×RB) de Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev., referente ao no de 2003, foi desagregada (entre os 5 países mencionados mais os "demais países") e endogeneizada no modelo de insumo-produto (fechamento para as exportações). Segundo os dados do ALICEweb (2017)ALICEweb (2017). Sistema de Análise das Informações de Comércio Exterior. Disponível online em: http: //aliceweb.desenvolvimento.gov.br. Acesso em: 2017.
http: //aliceweb.desenvolvimento.gov.br...
, os EUA, China, Argentina, Alemanha e Japão foram responsáveis por quase 50 das exportações de Minas Gerais (MG) e mais de 40% das exportações do restante do Brasil (RB) em 2003. Portanto, estes seriam países relevantes ao comércio internacional de ambas as regiões (Gráfico 1).

Gráfico 1
Participação dos países analisados no total exportado por Minas Gerais (MG) e pelo restante do Brasil (RB) em 2003 – Valores Percentuais.

Os resultados mostraram que, embora os setores de MG apresentem, em média, menores multiplicadores de produção que os do RB, eles seriam opções interessantes para impulsionar a indústria nacional (MG+RB) devido ao baixo transbordamento para o RM. Além disso, o setor Extrativo Mineral, de MG, deteve o maior multiplicador de produção entre os setores brasileiros. Porém, devido ao transbordamento deste setor para o RM, o setor de Alimentos e Bebidas de MG causaria maior impacto tanto em MG quanto no RB. No RB, o setor de Metais não Ferrosos obteve o maior multiplicador. Já o setor de Ferro e Aço, do RB, seria o que causaria maior impacto em MG. No RM, a China auferiu o maior multiplicador de produção, foi considerada Setor-Chave e seu comércio interno foi o elo mais influente da economia.

O restante do trabalho está organizado da seguinte forma: a seção 2 contém uma revisão sobre os pontos positivos e negativos do Insumo-Produto. Na seção 3 apresenta-se a metodologia da matriz interregional, bem como os métodos de análise utilizados. A seção 4 contém o detalhamento da construção da matriz e dos dados utilizados. Na seção 5 é realizada a análise dos resultados obtidos. Em sequência tem-se a conclusão, referências e apêndice.

2. A ABORDAGEM DE INSUMO-PRODUTO: PRÓS E CONTRAS

O modo como a matriz de insumo-produto é exposta foi proposta na década de 40, pelo economista russo Wassily Leontief. Trata-se de um instrumento da contabilidade social que permite conhecer os fluxos dos bens e serviços, produzidos por cada setor da economia, destinados a servir de insumos a outros setores ou atender a demanda final (Carvalheiro, 1998Carvalheiro, N. (1998). Observações sobre a elaboração da matriz de insumo-produto. Pesquisa & Debate. Revista do Programa de Estudos Pós-Graduados em Economia Política. ISSN 1806-9029, 9(24):139-157.). Segundo Lafer (1973)Lafer, B. M. (1973). Planejamento no Brasil. São Paulo: Ed. Perspectiva., as matrizes de insumo-produto fazem parte de um grupo de instrumentos que auxiliam os governos a atuar sobre a realidade. O autor argumenta que, utilizando técnicas de programação linear, estas matrizes possibilitam encontrar os preços e as quantidades a produzir de cada setor da economia, correspondentes à alocação ótima de recursos, dada a estrutura da demanda final.

Para Guilhoto (2011)Guilhoto, J. J. M. (2011). Input-Output Analysis: Theory and Foundations. Munich Personal RePEc Archive. Disponível online em: http://mpra.ub.uni-muenchen.de/32566/MPRA Paper No. 32566, posted 04. August 2011.
http://mpra.ub.uni-muenchen.de/32566/MPR...
, as principais aplicações da teoria de insumo-produto referem-se às análises estruturais e de impacto. A primeira busca entender como a economia funciona e como os setores e as regiões se relacionam. Já as análises de impacto visam estudar a reação da economia e dos seus setores a choques resultantes de políticas econômicas e/ou de alterações de comportamento dos agentes econômicos.2 2 As possibilidades de utilização da teoria de insumo-produto para análises estruturais e de impacto, entre outras, são apresentadas em Kurz et al. (1998), Lahr e Dietzenbacher (2001), Hewings et al. (2002). Além disso, Haddad (1976) fez um grande esforço no sentido de avaliar potencialidades e limitações envolvendo análises de impacto (efeitos multiplicadores). No caso do presente artigo, buscou-se identificar as interdependências estruturais entre os setores de Minas Gerais (MG) e do Restante do Brasil (RB) com o mercado externo e verificar o efeito de políticas econômicas sobre estes. Para tanto, o mercado externo foi desagregado para os 5 principais parceiros econômicos do Brasil mais o grupo dos "demais países" que compõem o este mercado.

O uso de matrizes de insumo-produto contendo os fluxos comerciais entre mais de uma região é denominado "modelos inter-regionais" e origina-se do trabalho de Isard (1951)Isard, W. (1951). Interregional and regional input-output analysis: a model of a space-economy. The Review of Economics and Statistics, 33(4):318-328.. Segundo Montoya (1998)Montoya, M. A. (1998). A matriz insumo-produto internacional do Mercosul em 1990: a desigualdade regional e o impacto intersetorial do comércio inter-regional. Tese de Doutorado, Escola Superior de Agricultura Luiz de Queiroz da Universidade de São Paulo., estes modelos possuem diversas vantagens, pois assumem que há uma função de produção do tipo Leontief específica para cada setor de cada região e que os coeficientes técnicos dependerão não somente da tecnologia utilizada e da estrutura de preços relativos, mas, também, da organização atual dos fluxos regionais de abastecimento em cada setor. Como os setores são considerados específicos, as relações inter-regionais são detalhadas e, dessa forma, os fluxos inter-regionais podem mensurar os efeitos de transbordamento entre as regiões, causados pela variação da demanda final de uma delas.

No atual artigo, utilizou-se uma matriz inter-regional com desagregação para 11 setores em Minas Gerais (MG) e no Restante do Brasil (RB). Além disso, as transações comerciais destas regiões com o mercado externo foram incorporadas à matriz (modelo fechado para as exportações). Este procedimento gerou um "setor externo" que, após ser desagregado, foi denominado Resto do Mundo (RM). Assim, a matriz inter-regional utilizada neste trabalho apresenta os fluxos comerciais intra e inter-regionais entre MG, RB e RM.

Embora as matrizes de insumo-produto possuam diversas vantagens para a análise estrutural da economia (devido à consistência da apresentação de suas informações), é importante mencionar suas limitações. Sendo as principais: 1) Hipótese de retornos constantes de escala, ou seja, para qualquer quantidade produzida serão utilizadas as mesmas combinações relativas de fatores produtivos; 2) Invariabilidade dos coeficientes técnicos ao longo do tempo, o que significa que não são considerados quaisquer efeitos em termos de mudanças de preços ou avanços tecnológicos; 3) Hipótese de oferta de recursos produtivos infinita e perfeitamente elástica; 4) Pressuposto de que o uso dos recursos produtivos tem eficiência máxima; 5) Por fim, há um conjunto amplo de restrições quanto à elaboração das matrizes de insumo-produto, que vão desde hipóteses simplificadoras sobre a natureza dos produtos e dos insumos utilizados nos processos de produção até a defasagem decorrida entre a coleta e a publicação ordenada dos dado Guilhoto (2011)Guilhoto, J. J. M. (2011). Input-Output Analysis: Theory and Foundations. Munich Personal RePEc Archive. Disponível online em: http://mpra.ub.uni-muenchen.de/32566/MPRA Paper No. 32566, posted 04. August 2011.
http://mpra.ub.uni-muenchen.de/32566/MPR...
.

3. O MODELO DE INSUMO-PRODUTO INTER-REGIONAL3 3 Também conhecido de "modelo Isard", devido à aplicação de Isard (1951).

Este artigo analisou os fluxos comerciais entre os setores de Minas Gerais (MG) e do restante do Brasil (RB) com os principais parceiros comerciais do Brasil, denominados resto do Mundo (RM). Para tanto, fez uso de uma matriz inter-regional de insumo-produto fechada para as exportações. Conforme ressalta Miller e Blair (2009)Miller, R. E. & Blair, P. D. (2009). Input-output analysis: foundations and extensions. New York: Cambridge University Press., matrizes inter-regionais de insumo-produto descrevem os fluxos monetários de bens e serviços entre diferentes regiões.4 4 Neste trabalho as regiões de MG e RB apresentam desagregação para 11 setores. Sendo eles: 1. Agropecuária; 2. Extrativa Mineral; 3. Minerais não metálicos; 4. Ferro e Aço; 5. Metais não ferrosos e outras metalurgias; 6. Papel e celulose; 7. Química; 8. Alimentos e Bebidas; 9. Têxtil e Vestuário; 10. Outras Indústrias; 11. Margens e Serviços. Já o Resto do Mundo (RM) foi desagregada para os 5 principais parceiros econômicos do Brasil: EUA, China, Argentina, Alemanha e Japão, mais os "demais países" contidos em RM (ver Quadro 1). A estrutura do modelo inter-regional, usada neste trabalho, pode ser visualizada no Quadro 1.

Quadro 1
Estrutura da Matriz Inter-Regional (MG×RB) Fechada para as Exportações (RM).

Observe que as vendas ocorrem nas linhas i (produção) enquanto as compras são efetuadas nas colunas j (insumos), de modo que Xi = Xj sempre que i = j. Sendo assim, Zij são as vendas do setor i para o setor j.5 5 Os países, oriundos da região RM, são tratados neste modelo como setores que transacionam entre si e com os demais setores de MG e RB. Yi representa as vendas do setor i para a demanda final e Xi a demanda total ou o valor total da produção do setor i. Os sobrescritos MG, RB e RM representam: Minas Gerais, Restante do Brasil e Resto do Mundo, respectivamente. Assim, ZijMG×MG,ZijRB×RBeZijRM×RM são as vendas intra-regionais do setor i para o setor j enquanto os demais fluxos refletem as vendas inter-regionais do setor i para o setor j (Quadro 1).

Considerando o sistema de fluxos do Quadro 1 e utilizando notação matricial, tem-se:

(1) Z MG × MG Z MG × RB Z MG × RM Z RB × MG Z RB × RB Z RB × RM Z RM × MG Z RM × RB Z RM × RM + Y MG Y RB Y RM = X MG X RB X RM

onde: Z uma matriz que representa as relações inter-setoriais; Y e X são vetores cujos elementos são, respectivamente, as demandas finais e a produção total de MG, RB e RM.

O sistema (1) pode ser também expresso através da matriz de coeficientes técnicos:

(2) A = Z X ̂ 1

Sendo: ̂X = diag(X). Logo, cada elemento de A é definido como:

(3) a ij = z ij / x j

Assim é possível perceber, que a matriz de coeficientes técnicos representa a relação fixa entre a produção de cada setor em relação aos seus insumos.6 6 A hipótese de retornos constantes de escala, impossibilitando economias de escala, é uma limitação do modelo de insumoproduto. Em outras palavras, cada coeficiente representa a quantidade de insumos do setor i que é necessária para a produção de uma unidade monetária de produto do setor j.

Os elementos da matriz A são denominados coeficientes de requisito direto e fornecem informações sobre os efeitos imediatos de uma variação da demanda final. Eles podem ser divididos em coeficientes intra-regionais aijMG×MG,aijRB×RBeaijRM×RM e inter-regionais aijMG×RB,aijMG×RM,aijRB×MG,aijRB×RM,aijRM×MGeaijRM×RB, permitindo que a matriz A seja particionada em sub-matrizes:

(4) A = A MG × MG A MG × RB A MG × RM A RB × MG A RB × RB A RB × RM A RM × MG A RM × RM A RM × MRM

Em que: AMG×MG, ARB×RB e ARM×RM representam as matrizes de coeficientes de insumo intraregionais enquanto as demais representam as matrizes de coeficientes de comércio inter-regionais. O sistema (1) ainda pode ser reescrito da seguinte forma:

(5) AX + Y = X

Após algumas manipulações algébricas, obtém-se:

(6) X = BY

Em que: B = (I − A)−1 corresponde à matriz inversa de Leontief e, assim como a matriz A (Eq. 4), pode ser subdividida em submatrizes intra e inter-regionais.7 7 Isto ficará claro no sistema de equações (7).

3.1. Multiplicadores de produção8 8 Um multiplicador de produção para o setor j é definido como o valor total de produção de todos os setores da economia que é necessário para satisfazer uma variação exógena de uma unidade monetária na demanda final do setor j em determinada região (Miller e Blair, 2009). O multiplicador de produção setorial é definido como sendo a soma de cada coluna da matriz inversa de Leontief. O resultado do multiplicador pode ser interpretado como a variação direta e indireta da produção total da economia.

A representação matemática deste multiplicador, na estrutura de inter-regional de insumo produto, para MG, RB e RM, pode ser apresentada como se segue:

(7) m j MG = i B ij MG × MG + i B ij MG × RB + i B ij MG × RM m j RB = i B ij RB × MG + i B ij RB × RB + i B ij RB × RM m j RM = i B ij RM × MG + i B ij RM × RB + i B ij RM × RM

onde: m é o multiplicador de produção para o setor j; B = (I − A)−1 representa a Inversa de Leontief; MG, RB e RM são as regiões da matriz; Portanto, considerando a região de MG, o ΣiBijMG×MG seria o somatório, das linhas da coluna j, que compreendem os elementos intra-regionais da inversa de Leontief. E, o ΣiBijMG×RB+ΣiBijMG×RM é o somatório dos elementos inter-regionais de B. Assim, o somatório das linhas da coluna j (elementos intra e inter-regionais) resulta no multiplicador de produção do setor j em MG, mjMG.9 9 Como o multiplicador total pode ser subdividido em efeitos intra e inter regionais, é possível obter o efeito transbordamento, que mensura (em termos absolutos ou percentuais) como o aumento da produção setorial em dada região afeta a produção dos setores de outra região.

3.2. Índices de ligação10 10 Segundo Hirschman (1958), o crescimento seria desigual entre os setores e quando um deles obtém avanço, os demais buscam alcançá-lo. Este processo, em que um desequilíbrio gerado em um setor, desencadeia alterações nos demais é que geraria crescimento. Para o autor, alguns setores da economia têm a capacidade de induzir novos investimentos, devido à sua forte ligação com os demais setores da economia. Estas ligações, ou linkages, podem gerar efeitos para frente ou para trás. De acordo com Toyoshima e Ferreira (2002), investimentos realizados sobre um setor que apresenta elevados linkages para frente, geram efeitos positivos sobre os demais setores compradores. Portanto, trata-se de um setor muito demandado na economia. Já no caso dos que apresentam linkages para trás, os efeitos positivos se dariam sobre os vendedores. Logo, trata-se de um setor com alto poder de demanda sobre os demais.

Para o cálculo dos índices de ligação para frente (forward linkage effects) e para trás (backward linkage effects), propostos por Rasmussen (1956)Rasmussen, P. N. (1956). Studies in intersectoral relations. Amsterdam: North-Holland. e Hirschman (1958)Hirschman, A. O. (1958). The strategy of economic development. New Haven: Yale University Press., deve-se considerar que B é a inversa de Leontief. Assim, tem-se que: bij é o elemento típico da matriz inversa de Leontief; b.j representa a soma das linhas de B na coluna j; bi. a soma das colunas de B na linha i; b.. é a soma total da matriz B; B* o valor médio de todos os elementos de B, ou seja, B* = b../n2. Logo, os índices de ligação para frente e para trás são respectivamente:

(8) U i = b i ./ n / B * Indice ´ de l i g a ç ao ˜ para frente
(9) U j = b . j / n / B * Indice ´ de l i g a ç ao ˜ para tr as ´

onde: n é o número total de setores, bi./n é o valor médio dos elementos na linha i e b.j/n é o valor médio dos elementos na coluna j.11 11 Hirschman (1958) afirma que, os setores que apresentam elevado grau de encadeamento junto à cadeia produtiva, propagando assim, efeitos para frente e para trás acima da média, são considerados setores-chave para o crescimento. Portanto, se Uj > 1, então, uma mudança unitária na demanda final do setor j cria um aumento acima da média na economia, ou seja, o setor j gera uma resposta dos outros setores acima da média. E, quando Ui > 1, então, uma mudança unitária na demanda final de todos os setores cria um aumento acima da média no setor i. Logo, o setor i tem uma dependência acima da média da produção dos outros setores. Uma vez que Uj e Ui > 1 têm-se a caracterização de um setor-chave.

3.3. Campo de influência12 12 O desenvolvimento do conceito de campo de influência se beneficiou das ideias de Sherman e Morrison (1949, 1950), Evans (1954), Park (1974), Simonovits (1975), e Bullard e Sebald (1988), sendo que uma descrição mais detalhada pode ser encontrada em Sonis e Hewings (1989, 1995). Apesar de os índices de ligação de Rasmussen-Hirschman avaliarem a importância dos setores no sistema como um todo, eles não possibilitam a visualização das ligações setoriais mais importantes dentro da economia. Visando superar esse problema e de modo a verificar como se distribui a influência de cada setor sobre os demais, utiliza-se o enfoque do campo de influência desenvolvido por Sonis e Hewings (1989, 1995). Desse modo, este método proporciona uma análise complementar ao proposto por Rasmussen-Hirschman. De modo que, ambos auxiliam na determinação de "gargalos" que, se desconsiderados, poderiam limitar o crescimento econômico.

O procedimento para o cálculo do campo de influência usa a matriz de coeficientes técnicos de produção, A = {aij}, e uma matriz de variações incrementais, dada por E = {eij}.13 13 Observe que E tem as mesmas dimensões (n × n) da matriz A. A partir disso, calcula-se a matriz inversa de Leontief de duas formas: a) B = [I − A]−1 = {bij}, modo tradicional, sem incrementos; b) B(E) = [I − (A + E)]−1 = {bij (E)}, assumindo-se incrementos nos coeficientes técnicos aij.

Note que B(E) significa que B é função de E. De acordo com Sonis e Hewings (1989Sonis, M. & Hewings, G. J. D. (1989). Error and sensitivity input-output analysis: a new approach. In Miller, R. E., Polenske, K. R., & Rose, A. Z. (Eds.), Frontiers of input-output analysis. Nueva York: Oxford, p. 232-244., 1995)Sonis, M. & Hewings, G. J. D. (1995). Fields of influence in input-output systems. Urbana: University of Illinois. Regional Economics Applications Laboratory., caso a variação seja pequena e só ocorra num único coeficiente técnico, por exemplo, em aij = ai1,j1, então:

(10) ε ij = ε , para i = i 1 , j = j 1 0 , para i = i 1 , j = j 1

onde ε > 0. Observe neste caso que a matriz E só possui um elemento não nulo, igual à variação ε, e os demais todos nulos. Logo, o campo de influência produzido por essa variação particular pode ser aproximado pela expressão:

(11) F ε ij = B e ij B ε ij = f kl e ij

em que F(eij) é a matriz n × n do campo de influência do coeficiente técnico aij. Este procedimento é repetido para todos os coeficientes de A, isto é calculam-se matrizes F para cada coeficiente técnico de A assumindo-se variações isoladas incidindo sobre cada um. Para determinar quais coeficientes técnicos possuem o maior campo de influência, calcula-se, para cada matriz F(eij), o seguinte indicador:

(12) S ij = k = 1 n l = 1 n f kl ε ij 2

Em suma, cada coeficiente técnico aij da matriz A possuirá um valor associado Sij calculado pelo procedimento acima. Os coeficientes técnicos que possuírem os maiores Sij serão aqueles com os maiores campos de influência dentro da economia como um todo.

4. CONSTRUÇÃO DA MATRIZ, FONTE E NATUREZA DOS DADOS

Conforme mencionado, este artigo utilizou uma matriz inter-regional, com fechamento para as exportações, contendo os fluxos comerciais entre os setores de Minas Gerais (MG) e do Restante do Brasil (RB). O setor externo, denominado RM, foi desagregado para os 5 principais parceiros comerciais do Brasil mais o somatório dos "demais países" (ver Quadro 1). Para chegar a esta matriz foram necessários alguns passos que serão descritos nesta seção.

4.1. Obtenção da Matriz Inter-Regional MG×RB

A elaboração da matriz do Quadro 1, inicia-se com a utilização da matriz inter-regional, elaborada por Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev., contendo as relações comerciais14 14 Em valores monetários correntes. entre 13 setores de Minas Gerais (MG) com outros 13 no Restante do Brasil (RB),15 15 São eles: 1. Agropecuária; 2. Extrativa Mineral; 3. Minerais não metálicos; 4. Ferro e Aço; 5. Metais não ferrosos e outras metalurgias; 6. Papel e celulose; 7. Química; 8. Alimentos e Bebidas; 9. Têxtil e Vestuário; 10. Outras Indústrias; 11. Comércio e Serviços; 12. Transporte; 13. Serviços Públicos. para o ano de 2003. Como não existem matrizes inter-regionais oficiais para o ano citado, o autor utilizou um método de atualização de matrizes, conhecido como RAS (Miller e Blair, 2009Miller, R. E. & Blair, P. D. (2009). Input-output analysis: foundations and extensions. New York: Cambridge University Press.).16 16 Outros autores que utilizaram este método foram: Haddad e Domingues (2003), Porsse et al. (2003) e o próprio Souza (2008) que disponibilizou as matrizes para a elaboração deste trabalho. Para tanto, Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev. faz uso da matriz de insumo-produto inter-regional (MG×RB), referente ao ano de 1996 (BDMG-Banco de Desenvolvimento de Minas Gerais e FIPE-Fundação Instituto de Pesquisas Econômicas, 2002BDMG-Banco de Desenvolvimento de Minas Gerais e FIPE-Fundação Instituto de Pesquisas Econômicas (2002). Matriz inter-regional de insumo produto para Minas Gerais/resto do Brasil. Belo Horizonte.), como matriz base. Além disso, foram utilizados dados do Sistema de Contas Nacionais e regionais disponibilizados pelo Instituto Brasileiro de Geografia e Estatística - SCN/IBGE (2017)SCN/IBGE (2017). Sistema de Contas Nacionais disponibilizados pelo Instituto Brasileiro de Geografia e Estatística. Disponível online em: http://www.ibge.gov.br/. Acesso em 2017.
http://www.ibge.gov.br/...
e as matrizes de insumo-produto, estimadas para o Brasil, por Guilhoto e Sesso Filho (2005)Guilhoto, J. J. M. & Sesso Filho, U. A. (2005). Estimação da matriz insumo-produto a partir de dados preliminares das contas nacionais. Economia Aplicada, 9(2):277-299., referentes aos anos de 1997 a 2002.17 17 O modo como Souza (2008) agregou os 42 setores da matriz de Guilhoto e Sesso Filho (2005) nos 13 setores que utilizou em seu trabalho está descrita na Tabela A-1 no Apêndice.

4.2. Compatibilização da Matriz Inter-Regional com o Sistema de Contas Nacionais

Como era preciso incluir os fluxos comerciais dos 5 parceiros econômicos mais o somatório dos "demais países" na matriz inter-regional de Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev. tornou-se imprescindível que os valores da matriz deste autor estivessem de acordo com àqueles apresentados pelo SCN/IBGE (2017)SCN/IBGE (2017). Sistema de Contas Nacionais disponibilizados pelo Instituto Brasileiro de Geografia e Estatística. Disponível online em: http://www.ibge.gov.br/. Acesso em 2017.
http://www.ibge.gov.br/...
.18 18 A necessidade de que os dados estejam de acordo com o SCN/IBGE (2017) ficará clara no decorrer da seção 4. Logo, utilizouse as relações estabelecidas na matriz de Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev. para ponderar os dados SCN/IBGE (2017)SCN/IBGE (2017). Sistema de Contas Nacionais disponibilizados pelo Instituto Brasileiro de Geografia e Estatística. Disponível online em: http://www.ibge.gov.br/. Acesso em 2017.
http://www.ibge.gov.br/...
. Isto ocorreu da seguinte forma:

(13) CI ij ij MG × MG CI + ij MG × RB CI + ij RB × MG CI + ij RB × RB CI * R $ 1 . 520 . 059 = CI ij *
(14) EXP i , j = 1 i , j = 1 MG EXP + i , j RB EXP * R $ 254 . 770 = EXP i , j = 1 `*
(15) C + I + G i , j = 1 i , j = 1 MG C + I + G + i , j = 1 RB C + I + G * R $ 1 . 650 . 450 = C + I + G i , j = 1 *

onde, no caso da Equação (13), CIij, representa um elemento típico qualquer da matriz de Consumo Intermediário (CI) e ijMG×MGCI+ijMG×RBCI+ijRB×MGCI+ijRB×RBCI, é o somatório total do Consumo Intermediário (CI) brasileiro (incluindo as regiões de MG e RB), ambos oriundos da matriz original de Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev.. O valor de R$1.520.059 é Consumo Intermediário brasileiro, expresso em valores correntes de 2003, segundo os dados do SCN/IBGE (2017)SCN/IBGE (2017). Sistema de Contas Nacionais disponibilizados pelo Instituto Brasileiro de Geografia e Estatística. Disponível online em: http://www.ibge.gov.br/. Acesso em 2017.
http://www.ibge.gov.br/...
. Logo, CI*ij é o novo consumo intermediário, para a célula ij considerada, avaliado em milhões de Reais correntes. O mesmo foi realizado com o vetor de exportações (EXPij), Equação (14), e o vetor oriundo da soma dos vetores de Consumo, Investimento e Gastos do governo [(C + I + G)ij], Equação (15).19 19 Vale destacar que o somatório das exportações (EXP) com o Consumo, Investimento e Gastos do Governo (C+I+G) resulta na Demanda Final (DF) da economia. Além disso, a Demanda Total (DT) é o somatório da DF com o Consumo Intermediário (CI). Logo, tem-se que, considerando os valores totais para a economia brasileira (MG+RB), em 2003: DF = R$254.770 + R$1.650.450 = R$1.905.220 e DT = R$1.520.059 + R$1.905.220 = R$3.425.279. Tanto DF quanto DT são exatamente iguais aos apresentados no SCN/IBGE (2017).

4.3. Desagregação dos vetores de Exportação e Importação

A desagregação do vetor de Exportação para os 5 principais parceiros econômicos do Brasil (EUA, China, e Argentina, Alemanha e Japão) mais os "demais países" irá compor os fluxos ZijMG×RMeZijRB×RM, dispostos no Quadro 1. Enquanto isso, a abertura do vetor de importações fornecerá os fluxos ZijRM×MGeZijRM×RB. Os valores das exportações e importações desagregados foram obtidos junto ao Sistema de Análise das Informações de Comércio Exterior via Internet, denominado ALICE-Web, da Secretaria de Comércio Exterior, do Ministério do Desenvolvimento, Indústria e Comércio Exterior (ALICEweb, 2017ALICEweb (2017). Sistema de Análise das Informações de Comércio Exterior. Disponível online em: http: //aliceweb.desenvolvimento.gov.br. Acesso em: 2017.
http: //aliceweb.desenvolvimento.gov.br...
).20 20 No ALICEweb (2017) é possível obter dados de comércio exterior (exportações e importações) expressos em dólares correntes dos EUA, na condição de venda Free on Board (FOB). Além disso, estes dados podem ser desagregados por tipo de produto, com até 8 dígitos, de acordo com o Sistema Harmonizado da nomenclatura comum do MERCOSUL (NCM). A agregação dos setores da Matriz Inter-Regional de Souza (2008) com a classificação da NCM pode ser verificada na Tabela A-2, no Apêndice.

Infelizmente, o ALICEweb (2017)ALICEweb (2017). Sistema de Análise das Informações de Comércio Exterior. Disponível online em: http: //aliceweb.desenvolvimento.gov.br. Acesso em: 2017.
http: //aliceweb.desenvolvimento.gov.br...
possibilita trabalhar apenas com o fluxo de bens. Logo, com base nas matrizes nacionais de insumo-produto disponibilizadas pelo IBGE (2017)Sherman, J. & Morrison, W. (1949). Adjustment of an Inverse Matrix to Changes in the Elements of a Given Column or a Given Row in the Original Matrix. Annals of Mathematical Statistics, 20(4)., verificou-se que os setores de Comércio e Serviços, Transporte e Serviços Públicos21 21 Estes 3 setores, oriundos da desagregação proposta por Souza (2008) foram agregados neste artigo e compuseram o setor de Margens e Serviços. transacionavam apenas serviços no mercado internacional, enquanto os demais setores comercializavam bens. Assim, foi possível subdividir os vetores de exportação e importação (em fluxos de bens e fluxos de serviços) e endogeneizar apenas as exportações e importações de bens (fluxos Zij) apresentados no Quadro 1. No caso das exportações de serviços, estas foram somadas ao vetor de demanda final (DF) em sua respectiva região (MG ou RB).

Com relação aos vetores de exportações e importações de bens, a desagregação ocorreu da seguinte forma:

(16) E x p o r t a ç oes ˜ de B e n s , EXP Bens i , j MG ij MG EXP Bens + ij RB EXP Bens * R $ 223 . 767 = EXP Bens i , j MG *
(17) EXP Bens i , j RB ij MG EXP Bens + ij RB EXP Bens * R $ 223 . 767 = EXP Bens i , j RB *
(18) I m p o r t a ç oes ˜ de B e n s , IMP Bens i , j MG i , j MG IMP Bens + ij RB IMP Bens * R $ 159 . 608 = IMP Bens i , j MG *
(19) IMP Bens i , j RB i , j MG IMP Bens + ij RB IMP Bens * R $ 159 . 608 = IMP Bens i , j RB *

onde: EXPBensi,jMG representa as exportações do bem i oriundas de Minas Gerais com destino ao país j. Enquanto isto, ijMGEXPBens+ijRBEXPBens é o total de bens exportados pelo Brasil (MG + RB). Embora estas exportações tenham sido obtidas no ALICEweb (2017)ALICEweb (2017). Sistema de Análise das Informações de Comércio Exterior. Disponível online em: http: //aliceweb.desenvolvimento.gov.br. Acesso em: 2017.
http: //aliceweb.desenvolvimento.gov.br...
e estejam avaliadas em Dólares (US$) correntes, Free on Board (FOB), a matriz final, utilizada neste artigo e descrita no Quadro 1, continua sendo avaliada em milhões de Reais correntes. O fato é que os dados do ALICEweb (2017)ALICEweb (2017). Sistema de Análise das Informações de Comércio Exterior. Disponível online em: http: //aliceweb.desenvolvimento.gov.br. Acesso em: 2017.
http: //aliceweb.desenvolvimento.gov.br...
foram apenas utilizados para ponderar a desagregação do vetor de exportações de bens que, no caso do Brasil soma R$223.767 milhões.22 22 Note que este valor é o mesmo apresentado pelo SCN/IBGE (2017) para as exportações de bens do Brasil no ano de 2003. O mesmo ocorre com o valor de R$159.608 milhões no caso da importação de bens. Assim, a Equação (16) consegue desagregar o vetor de exportações de bens para a região de MG, para qualquer produto i exportado para o país j, EXPBensi,jMG*. O mesmo processo foi realizado para a região do RB (Equação (17)). As equações (18) e (19), para o caso das importações de bens, podem ser analisadas analogamente.

4.4. Fechamento da Matriz Inter-Regional (MG×RB)

Esta seção explica como foi efetuado o fechamento do modelo para as exportações, fato que deu origem à região denominada Resto do Mundo (RM). Em outras palavras, esta seção apresenta a origem dos valores usados no quadrante ZijRM×RM e nos vetores YiRM e ZiRM, apresentados no Quadro 1. Cabe lembrar que o RM é subdividido em 5 países (EUA, China, Argentina, Alemanha e Japão) mais os demais países (DP). Verificou-se que diversas variáveis, necessárias para compor os fluxos destes países estavam expressas em percentual do Produto Interno Bruto dos mesmos (PIB). Portanto, o primeiro passo foi compatibilizar o PIB destes países mais o grupo DP com o do Brasil. Segundo os dados do Fundo Monetário Internacional - International Monetary Fund - IMF (2017)IMF (2017). International Monetary Fund: Data and Statistics. Disponível online em: http://www.imf.org/external/data.htm. Acesso em: 2017.
http://www.imf.org/external/data.htm...
, o PIB corrente de Brasil, EUA, China, Argentina, Alemanha, Japão e Mundo, avaliado em termos de paridade de poder de compra, para o ano de 2003, era (Tab. 1):

Tabela 1
Compatibilização do PIB dos países do Resto do Mundo com o brasileiro - Ano de Referência: 2003.

Com o PIB dos países avaliados em milhões de R$ correntes foi possível, utilizando a base de dados do Banco Mundial - World Databank (2017)World Databank (2017). World Development Indicators (WDI) & Global Development Finance (GDF). Disponível online em: http://databank.worldbank.org. Acesso em: 2017.
http://databank.worldbank.org...
, obter e compatibilizar o Consumo (C), Investimento (I), Gastos do governo (G) e exportações (EXP) destes países com a Matriz Inter-Regional (MG×RB) (Tab. 2). Um ponto interessante, sobre os dados do World Databank (2017)World Databank (2017). World Development Indicators (WDI) & Global Development Finance (GDF). Disponível online em: http://databank.worldbank.org. Acesso em: 2017.
http://databank.worldbank.org...
pode ser observado quando se compara o resultado de (C+I+G) e EXP obtidos na Tabela 2, para o caso brasileiro, com os valores obtidos na matriz inter-regional, oriundos do SCN/IBGE (2017)SCN/IBGE (2017). Sistema de Contas Nacionais disponibilizados pelo Instituto Brasileiro de Geografia e Estatística. Disponível online em: http://www.ibge.gov.br/. Acesso em 2017.
http://www.ibge.gov.br/...
. Os valores são exatamente iguais. Isto reforça a hipótese de que o modelo está sendo elaborado com base em dados confiáveis.

Tabela 2
Compatibilização do Consumo, Investimento e Gastos do Resto do Mundo com o Brasileiro - Ano de Referência: 2003.

Com a compatibilização de C+I+G e EXP, seria possível pensar que vetor de demanda final (DF) referente ao Resto do Mundo, YiRM (Quadro 1) estaria finalizado. No entanto, assim como foi realizado para o caso de MG e RB, é preciso subdividir o vetor de exportações em exportações de bens e serviços. Assim como no caso brasileiro (MG + RB), as exportações de bens destes países irão ajudar a compor o quadrante ZijRM×RM, enquanto as exportações de serviços serão adicionadas à demanda final, YiRM. A desagregação das exportações do Resto do Mundo, em bens e serviços, foi obtida junto ao International Trade Centre - ITC (2017)ITC (2017). International Trade Centre: Trade Statistics. Disponível online em: http://www.intracen.org/trade-support/trade-statistics/. Acesso em: 2017.
http://www.intracen.org/trade-support/tr...
e pode ser visualizada na Tabela 3.

Tabela 3
Desagregação das Exportações do Resto do Mundo (RM) em Exportações de Bens e Serviços - Ano de Referência: 2003.

Além da possibilidade de subdividir as exportações em bens e serviços, o ITC (2017)ITC (2017). International Trade Centre: Trade Statistics. Disponível online em: http://www.intracen.org/trade-support/trade-statistics/. Acesso em: 2017.
http://www.intracen.org/trade-support/tr...
também permite que se visualize o fluxo exportado entre os países.23 23 Note que, para compor os fluxos ZijRM×RM (Quadro 1), o mesmo poderia ter sido feito pela ótica das importações. Dado que o montante exportado pelo país X com destino ao país Y deve ser igual ao montante importado por Y oriundo de X. Sendo assim, é possível desagregar o vetor de exportações de bens em uma matriz de fluxos com as transações entre os 5 países mais os "Demais Países" que compõem a região RM, ZijRM×RM, (Quadro 1). Os coeficientes usados para compor a matriz ZijRM×RM são apresentados na Tabela 4.

Tabela 4
Construção da Matriz de fluxos para os países do Resto do Mundo, ZijRM×RM - Ano de Referência: 2003.

Utilizando a Tabela 4 foi possível obter os fluxos de bens, avaliados em milhões de R$, para cada país do Resto do Mundo. No entanto, note que estes fluxos, ZijRM×RM, quando i = j, é zero para Alemanha, Argentina, Brasil, China, Japão e EUA. Isto ocorre porque um país não pode exportar para si mesmo. Já no caso dos "Demais Países", esta verdade não se aplica. O fato é que o grupo dos "Demais Países" é composto por todos os países do mundo, com exceção dos supracitados. Sendo assim, aproximadamente 64,38% das exportações deste grupo são realizadas entre países que pertencem a este agregado.

4.5. Incorporação dos fluxos ZijRM×RM, para o caso em que i = j

Foi possível perceber, através da Tabela 4, que os elementos ZijRM×RM, para o caso em que i = j, foram iguais a zero nos 5 principais parceiros econômicos do Brasil. No entanto, isto não significa que há inexistência de fluxos comerciais internos nestes países. Até mesmo o grupo dos Demais Países está incompleto neste sentido. Até então, foram obtidos apenas os fluxos entre países (quando i ≠ j). A partir de agora tentar-se-á obter os fluxos internos de cada país. Como o consumo (C), investimento (I), gastos do governo (G) e exportações (EXP) já foram contabilizados (Tab. 2), o consumo interno restante de cada país do RM precisa ser o Consumo Intermediário (CI) destes países. Na posse do CI, é possível calcular a Demanda Total (XiRM) de cada País i do RM utilizando a seguinte fórmula:

(20) X i RM = Y i RM + j Z ij RM × MG + j Z ij RM × RB + j Z ij RM × RM

onde: XiRM e YiRM representam a Demanda Total e a Demanda Final do país i, localizado no RM, respectivamente. No caso deste artigo, YiRM pode ser subdividida em: Consumo (C), Investimento (I), Gastos do Governo (G) e exportações de serviços (EXPServ). Além disso, jZijRM×MGejZijRM×RB representam o somatório das vendas do país i, localizado em RM que tem como destino os setores da região de MG e RB, respectivamente. Estes dois somatórios também podem ser entendidos como as exportações de bens do país i para o Brasil (MG + RB). Por fim, ∑ijZijRM×RM é o somatório das vendas do país i, localizado na região RM que tem como destino os j países desta mesma região.

Na Tabela 4 já foram obtidos os valores de ZijRM×RM, para i ≠ j. O somatório destes elementos, considerando os casos onde i ≠ j, corresponde ao total de bens exportados pelo país i, excluindo o Brasil. Logo, os únicos elementos necessários para que se obtenha a demanda total, dos i países da região RM, XiRM, são os fluxos internos de cada um destes países, que não tem como destino a demanda final, ou seja, o Consumo Intermediário.

Para permanecer com os valores expressos em milhões de R$, utilizou-se o valor do Consumo Intermediário (CI) de cada país dividido pelo seu respectivo PIB expresso em valores correntes da moeda do país em questão e, feito isto, multiplicou-se este coeficiente pelo PIB deste país disponível na Tabela 1 (avaliado em milhões de R$). O consumo intermediário e o PIB de Japão, EUA e Alemanha, para o ano de 2003, estão disponíveis na base de dados da Organização para Cooperação e Desenvolvimento Econômico - The Organisation for Economic Co-operation and Development (OECD.STATS, 2017OECD.STATS (2017). The Organisation for Economic Co-operation and Development Statistics. Disponível online em: http://stats.oecd.org. Acesso em: 2017.
http://stats.oecd.org...
). No caso de China e Argentina, esses valores foram obtidos diretamente de suas respectivas matrizes de Insumo-Produto (MIP) nacionais. Para a China, foi preciso acessar os dados do Anuário Estatístico Chinês, referente ao ano de 2003, disponibilizado pela Agência Nacional de Estatísticas da China - National Bureau of Statistics of China (NBSC, 2017NBSC (2017). National Bureau of Statistics of China: Yearbook 2003. Disponível online em: http://www.stats.gov.cn/english/statisticaldata/yearlydata/yarbook2003\e.pdf. Acesso em: 2017.
http://www.stats.gov.cn/english/statisti...
).24 24 O anuário de 2003 tem como base o ano de 2002. Embora desejável, não foi possível acessar nenhum anuário mais recente. Os dados da Argentina foram obtidos no Instituto Nacional de Estatísticas e Censos da Argentina - Instituto Nacional de Estadística y Censos (INDEC, 2017INDEC (2017). Instituto Nacional de Estadística y Censos: MIP_ARG_1997. Disponível online em: http://www.indec.mecon.ar/. Acesso em: 2017.
http://www.indec.mecon.ar/...
). Neste caso, a MIP argentina mais próxima a 2003 referia-se ao ano de 1997. Embora os dados para a Argentina não sejam de 2003, nada indica que a relação CI/PIB se altere de modo significativo no curto prazo, visto que se trata de um coeficiente que reflete a estrutura produtiva deste país.

Para finalizar a matriz, era necessário obter a relação CI/PIB para o grupo dos Demais Países. Como não era possível obter o valor do Consumo Intermediário (CI) para todos os países do mundo, foram utilizados os dados de 26 países para compor o grupo dos Demais Países na região de RM.25 25 São eles: 1. Áustria, 2. Bélgica, 3. República Checa, 3. Dinamarca, 5. Estônia, 6. Finlândia, 7. França, 8. Hungria, 9. Irlanda, 10. Israel, 11. Itália, 12. Coreia do Sul, 13. Luxemburgo, 14. México, 15. Holanda, 16. Noruega, 17. Polônia, 18. Portugal, 19. República Eslovaca, 20. Eslovênia, 21. Espanha, 22. Suécia, 23. Suíça, 24. Reino Unido, 25. Rússia e 26. África do Sul. Cabe ressaltar que a relação CI/PIB, obtida pela média destes 26 países, será multiplicada pelo PIB do grupo dos Demais Países, apresentado na Tabela 1. Formalmente, a relação CI/PIB deste grupo foi calculada da seguinte forma:

(21) CI / PIB D P = p = 1 26 CI i / p = 1 26 PIB i

onde: CI é o consumo intermediário; PIB é o Produto Interno Bruto; DP representa o grupo dos Demais Países. Logo, (∑26p=1 CIj) é o somatório do consumo intermediário dos 26 países selecionados. Analogamente para o PIB.

Na Tabela 5 são apresentados os valores obtidos para o Consumo Intermediário (CI) dos países pertencentes ao grupo do Resto do Mundo mais o Brasil. Com estes valores é possível completar os elementos da sub-matriz ZijRM×RM e, assim, calcular a demanda total de cada país de RM. Para tanto, basta utilizar a Equação (20).26 26 Note que o valor obtido na Tabela 5 para o grupo dos Demais Países deve ser somado ao total de exportações de bens que este grupo realiza dentro do próprio grupo (ver Tab. 4), de modo a completar o fluxo ZijRM×RM, quando i = j = Demais Países. Ou seja, R$39.335.993 milhões + (0,6438* R$7.743.127 milhões). Desta forma, a matriz proposta no Quadro 1 está completa e seus principais resultados serão apresentados na seção seguinte.

Tabela 5
Obtenção do Consumo Intermediário (CI) para os países da região RM (fluxos ZijRM×RM , para o caso em que i = j) - Valores expressos para o ano de 2003.

5. RESULTADOS

Analisando os multiplicadores de produção, para o caso de Minas Gerais (MG), percebe-se que o setor Extrativo Mineral apresenta o maior coeficiente multiplicador da região (2,57). Isto significa que a cada 1,00 R$ investido neste setor, localizado em MG, haverá um acréscimo de 1,57 R$ na produção total (que poderá permanecer em MG ou transbordar para o RB e RM). No entanto, esta não seria a melhor opção caso o objetivo fosse impulsionar o crescimento da região de MG. Neste caso, deve-se observar aquele que apresenta o maior coeficiente intra-regional. Como o setor de Alimentos e Bebidas apresentou o maior valor neste quesito, 1,64, parece ser a escolha ótima para impulsionar o crescimento da região. Este resultado indica que além do 1,00 R$ investido neste setor, localizado em MG, haverá um aumento de 0,64 R$ na produção dos setores de MG (incluindo o próprio setor da região). Além disso, o setor de Alimentos e Bebidas também parece ser uma boa opção caso se queira manter os investimentos em território nacional (Brasil). O somatório do efeito intra-regional (1,64), mais o efeito inter-regional que tem como destino os setores do restante do Brasil (RB), (0,59), é o maior dentre os setores de MG. Portanto, o setor Extrativo Mineral, apesar de apresentar o maior multiplicador total da região, não seria a melhor opção para impulsionar os setores de MG ou RB. O fato é que o coeficiente inter-regional deste setor, que tem como destino o resto do Mundo (RM) é, de longe, o maior de MG (0,76).27 27 Trata-se do único setor na região onde a taxa de transbordamento para RM é maior que a taxa para RB. Este resultado revela que este setor está muito voltado para o mercado internacional. Basta verificar que, aproximadamente, 29,4% de todo o efeito multiplicador deste setor acaba privilegiando os setores de RM, em detrimento dos nacionais (MG e RB) (Tab. 6).

Tabela 6
Multiplicadores de Produção Intra e Inter-regionais e Taxa de Transbordamento para os setores de Minas Gerais (MG), Restante do Brasil (RB) e Resto do Mundo (RM).

Ainda sobre a Tabela 6, percebe-se que os multiplicadores de produção dos setores do RB foram, em média, um pouco superiores aos de MG. Isto revela que, de um modo geral, investir-se no RB tende a aumentar mais a produção total que investimentos realizados em MG. No entanto, o setor com o maior multiplicador localizado no RB, Metais não ferrosos e outras metalurgias (2,48), não consegue superar o efeito obtido pela Extrativa Mineral de MG (2,57). Além disso, investimentos realizados nos setores do RB fazem com que, em média 12,3% do efeito multiplicador transbordem para o resto do Mundo (RM). No caso de MG esta taxa é de apenas 9,1%. Mais uma vez, o setor Extrativo Mineral, localizado no RB, foi o que obteve a maior taxa de transbordamento para RM (30,5%).

Cabe ressaltar que o setor de Margens e Comércio apresentou a menor taxa de transbordamento para RM, tanto em MG (2,9%) quanto no RB (4,7%). No entanto, esta não seria uma boa opção para impulsionar a produção nacional, uma vez que o multiplicador total deste setor foi o menor em ambas as regiões (MG e RB). O setor de Alimentos e Bebidas, localizado no RB, parece ser o mais conectado com os demais setores de MG. Dado que apresentou a maior taxa de transbordamento da produção para esta região (2,5%). Contudo, este setor não apresenta um elevado multiplicador total (2,08). Logo, se o objetivo fosse aumentar a produção de MG realizando investimentos no RB, seria mais interessante investir no setor de Ferro e Aço, uma vez que, aproximadamente, 0,06 R$ migrariam para MG a cada 1,00 R$ investido neste setor do RB (Tab. 6).28 28 Firme e Perobelli (2012, p.137), analisando dados de 1997 e 2002, já haviam destacado o elevado efeito multiplicador associado ao setor de Ferro e Aço e Metais não ferrosos no Brasil.

Com relação ao RM, nota-se que, em média, o multiplicador de produção é um pouco superior ao do RB e MG. Isto se deve ao elevado coeficiente obtido pela China (2,69), Alemanha (2,39) e o grupo dos Demais Países (2,32). Estes resultados indicam que, de um modo geral, investimentos realizados nestas localidades tendem a impulsionar a produção total de modo mais contundente. Como a região do RM exclui apenas o Brasil (MG e RB), é natural que as taxas de transbordamentos para MG e RB sejam baixas. Porém, o caso da Argentina merece ser destacado. É possível verificar uma taxa de transbordamento total (MG + RB) superior a 3,2%. Isto revela que uma parte importante da produção deste país depende dos setores brasileiros. Ainda sobre as taxas de transbordamento, pode-se destacar que a China foi o país que menos gerou tais efeitos para os setores de MG (0,03%), enquanto o Japão obteve o menor coeficiente para os setores do RB (0,14%) (Tab. 6).

Os multiplicadores de produção, apresentados na Tabela 6, são calculados com base nos insumos necessários à produção de um determinado setor. Portanto, cada setor apresenta uma determinada demanda por bens e serviços, oriundos de outros setores, e o crescimento de um setor precisaria ser acompanhado de uma variação semelhante de seus insumos. Esta análise, embora importante, não revela o quanto um determinado setor é demandado pelos demais (Forward Linkages). Para contornar esta lacuna, foram calculados os Índices de Ligação para os setores de Minas Gerais (MG), Restante do Brasil (RB) e Resto do Mundo (RM).

Analisando os resultados da Tabela 7 pode-se perceber que os setores/países, localizados em qualquer uma das regiões analisadas, que obtiveram um efeito para trás (Backward Linkage) acima da média são exatamente os mesmos setores que apresentaram multiplicadores de produção acima da média (Tab. 6).

Tabela 7
Índices de Ligação dos setores de Minas Gerais (MG), Resto do Brasil (RB) e Resto do Mundo (RM).

Logo, trata-se de um grupo de setores/países que demandam produtos dos demais setores em quantidade elevada. No entanto, tal análise pode induzir a um erro de julgamento. Observe que o os resultados da Tabela 6 mostram que o setor de Margens e Serviços não seria uma boa opção de investimento, tanto para MG quanto para RB, dado que foi o setor com o menor multiplicador de produção em ambas as regiões. Este resultado é corroborado na Tabela 7, onde é possível perceber que este mesmo setor não apresenta índices de ligação para trás acima da média, em MG e no RB (respectivamente, 0,77 e 0,80). Um gestor desatento poderia optar por investir apenas nos setores com maior multiplicador de produção. Porém, o setor de Margens e Serviços detém um elevado índice de ligações para frente (Forward Linkages), portanto, é intensamente demandado pelos demais setores.29 Sendo assim, a falta de investimentos poderia produzir gargalos na economia. Em outras palavras, o crescimento dos setores com maior multiplicador de produção poderia ficar inviabilizado caso o setor de Margens e Serviços não fosse capaz de disponibilizar os insumos necessários à produção.30 30 Considerando o setor de serviços, Kon (1999), corrobora esta análise argumentando que as atividades deste setor na economia mundial contemporânea facilitam as transações econômicas, proporcionando os insumos essenciais ao setor manufatureiro e permitindo efeitos "para trás e para frente" na cadeia produtiva. Para Riddle (1986), os serviços são a "cola que mantêm integrada qualquer economia".

Um setor que além de demandado em excesso (Forward Linkages) também demanda acima da média (Backward Linkages) é denominado "Setor-Chave". No caso de MG apenas as Outras Indústrias se enquadraram neste perfil. No RB pode-se citar o Ferro e Aço, Metais não Ferrosos e outras Metalurgias e a indústria Química.31 31 Cabe destacar que o índice de ligação para frente obtido pela Indústria Química do RB (1,86) só foi menor que a média dos setores do grupo dos Demais Países localizados no RM (3,11). Isto implica que o setor está entre os mais demandados no mundo. Já no RM, tanto a China quanto o grupo dos Demais países apresentaram tais características (Tab. 7).32 32 Poder-se-ia argumentar sobre a importância dos EUA nesta análise. O fato é que, assim como o setor de serviços e margens, os EUA é um dos mais demandados pelos demais setores e países. Portanto, seria de certa forma, essencial para os demais. A análise das ligações para frente e para trás revelou características importantes de cada setor. No entanto, esta abordagem trata cada setor de forma agregada e ignora a possibilidade de que um setor, que demanda muito dos demais setores (ligações para trás), possa estar concentrando suas ligações em um número pequeno de setores. O mesmo vale para as ligações para frente. O Campo de Influência (Fig. 1) identifica onde estão os principais elos de ligação que contribuem para que um setor apresente ligações, para frente ou para trás, acima da média.

Figura 1
Campo de Influência dos Setores/Países de Minas Gerais (MG), Restante do Brasil (RB) e Resto do Mundo(RM).

Repare que os resultados do Campo de Influência se intensificam à medida que se move do quadrante MG×MG para RM×RM. Isto ocorre porque o método consiste em realizar pequenas alterações em cada coeficiente da matriz de coeficientes técnicos original, matriz A, e verificar a mudança total gerada na inversa de Leontief, matriz B. Sendo assim, uma elevação de 10% no uso de produtos Agrícolas, oriundos de MG, pelo setor de Alimentos e Bebidas de MG produziria um efeito menor sobre a produção total quando considerado o mesmo choque nestes setores do RB. Isto porque os setores do RB são responsáveis por uma parcela maior da produção nacional e, consequentemente, total.33 33 Lembre que o setor Agrícola de RB representa a Agricultura de todo o território brasileiro, excluindo apenas o Estado de MG. O mesmo vale para os demais setores de RB. No caso do quadrante RM×RM, não há nenhum tipo de desagregação setorial e um aumento de 10% em qualquer elo de ligação representa uma elevação, neste montante, da necessidade de insumos de um país, considerando todos os seus setores, em relação à outro. Portanto, é natural que elevações neste quadrante produzam os maiores impactos (Fig. 1).34 34 O campo de influência dos setores de Minas Gerais e do restante do Brasil, para o período de 1999 a 2002, foi calculado por Firme e Vasconcelos (2014) usando um modelo inter-regional sem fechamento para exportações.

Para facilitar a análise da Figura 1, foram marcados os 2 principais elos de cada quadrante. Considerando apenas os fluxos intra-regionais de MG (quadrante MG×MG), pode-se destacar as vendas do setor 4 (Ferro e Aço) para o próprio setor 4 e para o 10 (outras Indústrias). Portanto, estes fluxos seriam os principais responsáveis por variações na produção total, quando se considera variações nos fluxos intra-regionais de MG. No RB (quadrante RB×RB), as vendas do setor 3 (Minerais não Metálicos) e do setor 7 (Química) para a Indústria Química são os mais importantes elos intra-regionais. No caso do RM, as vendas da China para a própria China e o grupo dos Demais Países (DP) compõem os principais elos. Como os resultados para o quadrante RM×RM são maiores que os demais quadrantes, tem-se que um aumento na demanda por produtos Chineses, principalmente por parte da própria China ou pelo grupo dos demais países causaria grande impacto na inversa de Leontief e, portanto, na produção total. Embora coeficientes maiores sejam esperados para o RM, devido à agregação, este resultado revela a importância da China para a economia.

6. CONCLUSÃO

Este artigo utilizou uma matriz inter-regional de Insumo-Produto, contendo os fluxos comerciais entre os setores de Minas Gerais (MG) e do Restante do Brasil (RB), com fechamento para as exportações, no intuito de analisar as relações de comércio entre MG, RB e os 5 principais parceiros comerciais do Brasil. Tal fechamento proporcionou a criação de um "setor externo" que, uma vez desagregado em EUA, China, Argentina, Alemanha, Japão mais o grupo dos "demais países", foi denominado "resto do mundo" ou RM.

A matriz resultante deste processo apresenta desagregação para 11 setores produtivos nas regiões de MG e RB e abertura para EUA, China, Argentina, Alemanha, Japão e "demais países" que compõem RM. Os fluxos ficaram expressos em moeda nacional corrente referente ao ano de 2003 e estão coerentes com o Sistema de Contas Nacionais do IBGE.

Segundo os resultados, o setor Extrativo Mineral de MG apresenta o maior multiplicador de produção entre os setores de MG e RB. Apenas o multiplicador associado à China foi mais expressivo neste quesito. No entanto, trata-se de um setor com elevada taxa de transbordamento para o RB e, principalmente, RM. Assim, seria mais interessante investir no setor de Alimentos e Bebidas que, além de gerar o maior impacto possível sobre os setores de MG, ainda apresenta as vantagens de causar o maior impacto sobre os setores do RB e manter grande parte do efeito multiplicador em território nacional.

Comparando os setores de MG com os do RB, percebe-se que, em média, a região do RB produz maiores multiplicadores de produção. No entanto, também apresenta uma taxa de transbordamento para o RM maior. Assim, considerando a média dos multiplicadores em ambas as regiões, concluise que os setores do RB apesar de produzirem maiores impactos sobre a produção total, são piores opções quando o objetivo é incentivar a indústria nacional (MG + RB). Com relação ao RB, nota-se que o setor de Metais não ferrosos e outras metalurgia não apenas apresenta o maior multiplicador de produção como parece ser o mais indicado para impulsionar as demais indústrias da região (elevado efeito intra-regional). Já o setor de Alimentos e Bebidas, localizado no RB, foi o que obteve a maior taxa de transbordamento da produção para MG. Contudo, caso a intenção seja impulsionar, mesmo que indiretamente, a produção de MG, seria melhor investir no setor de Ferro e Aço do RB. Visto que o multiplicador total deste setor supera o de Alimentos e Bebidas e acaba gerando efeitos superiores em MG, mesmo com uma taxa de transbordamento um pouco menor.

Os multiplicadores de produção associados ao RM são, em média, levemente superiores aos do RB e MG. Boa parte deste resultado se deve ao coeficiente obtido pela China e Alemanha. No caso da China, nenhum setor ou país analisado conseguiu superar seu efeito multiplicador. Isto indica que investimentos realizados nesta localidade têm alta capacidade de impulsionar a produção total. Outro aspecto interessante refere-se ao resultado obtido pela Argentina. Embora o multiplicador deste País não seja expressivo, uma parte significativa deste efeito acaba transbordando para o Brasil (mais de 3,2%). Tal resultado indica que a produção da Argentina é, consideravelmente, dependente dos setores brasileiros.

A análise dos índices de ligação mostrou que alguns setores, como o caso de Margens e Serviços, tanto em MG quanto no RB, embora não apresentem elevados multiplicadores de produção ou ligações para trás, não devem ser deixados de lado. Os resultados indicam que estes setores são muito demandados pelos demais e a falta de investimento nos mesmos poderia gerar gargalos no processo de produção. Em MG o setor de Margens e Serviços só não foi mais demandado que as Outras Indústrias.35 35 O setor de Outras Indústrias de MG foi caracterizado como Setor-Chave da região. No caso do RB o setor Químico e Agrícola, foram os mais demandados na região,36 36 O setor de Margens e Serviços foi o terceiro no RB. com destaque para o setor Químico que, além de apresentar características de Setor-Chave, obteve um índice de ligação para frente inferior apenas à média do RM. Com relação ao RM, os mais demandados foram o grupo dos "demais Países", China e EUA, respectivamente. Porém apenas os demais Países e a China foram considerados Setores-Chave.

Por fim, o Campo de Influência mostrou que os elos de ligação com maior poder de impulsionar a produção total estão relacionados ao comércio entre os países da região do RM. Embora óbvio, devido à agregação utilizada, ressaltou a importância da China para a economia total. O fato é que uma elevação no fluxo de compra e venda dentro da própria China teria capacidade de gerar tamanho efeito multiplicador sobre a produção total que só poderia ser comparado ao elo onde a China vende para o grupo dos demais Países. Sendo assim, fica claro o protagonismo chinês no que se refere à capacidade de induzir crescimento. No caso dos setores de MG, uma elevação no fluxo de vendas do setor de Ferro Aço para as Outras Indústrias de MG causaria o maior impacto sobre a economia total. Já no RB isto ocorre quando os fluxos entre a própria indústria Química aumentam.

  • 1
    Quando um componente da demanda final é endogeneizado no modelo de Insumo-Produto, diz-se que se trata de um modelo "fechado" de Insumo-Produto Miller e Blair (2009)Miller, R. E. & Blair, P. D. (2009). Input-output analysis: foundations and extensions. New York: Cambridge University Press.. No caso deste artigo, foi realizado um "fechamento para as exportações", onde os vetores de exportações e importações são trazidos para dentro da matriz inversa de Leontief. Neste caso, cria-se um novo setor na matriz (e.g.: setor externo) onde é possível identificar não apenas os impactos diretos e indiretos associados a este setor (caso do modelo aberto), mas também os impactos induzidos (modelo fechado), ver maiores detalhes em Porsse (2002)Porsse, A. A. (2002). Multiplicadores de impacto na economia gaúcha: aplicação do modelo de insumoproduto fechado de Leontief. Documentos FEE, n.52. Porto Alegre.. Outros autores que realizaram este tipo de fechamento foram: Haddad et al. (2005)Haddad, E. A., Perobelli, F. S., & dos Santos, R. A. C. (2005). Inserção econômica de Minas Gerais: uma análise estrutural. Nova Economia, 15(2):63-90., Betarelli JR et al. (2008)Betarelli JR, A. A., Bastos, S. Q. A., & Perobelli, F. S. (2008). As pressões das exportações setoriais sobre os modais de transporte: uma abordagem híbrida e intersetorial de insumo-produto. Pesquisa e Planejamento Econômico, 38(3)., Betarelli JR et al. (2011)Betarelli JR, A. A., Bastos, S. Q. A., & Perobelli, F. S. (2011). Interações e encadeamentos setoriais com os modais de transporte: uma análise para diferentes destinos das exportações brasileiras. Economia Aplicada, 15(2):223-258. e Oliveira et al. (2014)Oliveira, D. R., de Assis Cabral, J., & De Freitas, M. V. (2014). Análise Estruturalista-Kaldoriana da Economia Brasileira sob a Abordagem De Insumo Produto. In Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] . ANPEC-Associação Nacional dos Centros de Pósgraduação em Economia [Brazilian Association of Graduate Programs in Economics]..
  • 2
    As possibilidades de utilização da teoria de insumo-produto para análises estruturais e de impacto, entre outras, são apresentadas em Kurz et al. (1998)Kurz, H. D., Dietzenbacher, E., & Lager, C. (1998). Input-output analysis, 3 vols. Cheltenham, UK: Edward Elgar., Lahr e Dietzenbacher (2001)Lahr, M. L. & Dietzenbacher, E. (2001). Input-output analysis: Frontiers and extensions. Houndmills: Palgrave., Hewings et al. (2002)Hewings, G., Sonis, M., & Boyce, D. (2002). Trade, Networks and Hierarchies: Modeling Regional and Interregional Economies. Berlin: Springer Science & Business Media.. Além disso, Haddad (1976)Haddad, P. R. (1976). Contabilidade social e economia regional: análise de insumo-produto. Rio de Janeiro: Zahar Editores. fez um grande esforço no sentido de avaliar potencialidades e limitações envolvendo análises de impacto (efeitos multiplicadores).
  • 3
    Também conhecido de "modelo Isard", devido à aplicação de Isard (1951)Isard, W. (1951). Interregional and regional input-output analysis: a model of a space-economy. The Review of Economics and Statistics, 33(4):318-328..
  • 4
    Neste trabalho as regiões de MG e RB apresentam desagregação para 11 setores. Sendo eles: 1. Agropecuária; 2. Extrativa Mineral; 3. Minerais não metálicos; 4. Ferro e Aço; 5. Metais não ferrosos e outras metalurgias; 6. Papel e celulose; 7. Química; 8. Alimentos e Bebidas; 9. Têxtil e Vestuário; 10. Outras Indústrias; 11. Margens e Serviços. Já o Resto do Mundo (RM) foi desagregada para os 5 principais parceiros econômicos do Brasil: EUA, China, Argentina, Alemanha e Japão, mais os "demais países" contidos em RM (ver Quadro 1).
  • 5
    Os países, oriundos da região RM, são tratados neste modelo como setores que transacionam entre si e com os demais setores de MG e RB.
  • 6
    A hipótese de retornos constantes de escala, impossibilitando economias de escala, é uma limitação do modelo de insumoproduto.
  • 7
    Isto ficará claro no sistema de equações (7).
  • 8
    Um multiplicador de produção para o setor j é definido como o valor total de produção de todos os setores da economia que é necessário para satisfazer uma variação exógena de uma unidade monetária na demanda final do setor j em determinada região (Miller e Blair, 2009Miller, R. E. & Blair, P. D. (2009). Input-output analysis: foundations and extensions. New York: Cambridge University Press.). O multiplicador de produção setorial é definido como sendo a soma de cada coluna da matriz inversa de Leontief. O resultado do multiplicador pode ser interpretado como a variação direta e indireta da produção total da economia.
  • 9
    Como o multiplicador total pode ser subdividido em efeitos intra e inter regionais, é possível obter o efeito transbordamento, que mensura (em termos absolutos ou percentuais) como o aumento da produção setorial em dada região afeta a produção dos setores de outra região.
  • 10
    Segundo Hirschman (1958)Hirschman, A. O. (1958). The strategy of economic development. New Haven: Yale University Press., o crescimento seria desigual entre os setores e quando um deles obtém avanço, os demais buscam alcançá-lo. Este processo, em que um desequilíbrio gerado em um setor, desencadeia alterações nos demais é que geraria crescimento. Para o autor, alguns setores da economia têm a capacidade de induzir novos investimentos, devido à sua forte ligação com os demais setores da economia. Estas ligações, ou linkages, podem gerar efeitos para frente ou para trás. De acordo com Toyoshima e Ferreira (2002)Toyoshima, S. & Ferreira, M. J. (2002). Encadeamentos do setor de transportes na economia brasileira. Revista de Planejamento e Políticas Públicas. IPEA, Brasília, 25:139-166., investimentos realizados sobre um setor que apresenta elevados linkages para frente, geram efeitos positivos sobre os demais setores compradores. Portanto, trata-se de um setor muito demandado na economia. Já no caso dos que apresentam linkages para trás, os efeitos positivos se dariam sobre os vendedores. Logo, trata-se de um setor com alto poder de demanda sobre os demais.
  • 11
    Hirschman (1958)Hirschman, A. O. (1958). The strategy of economic development. New Haven: Yale University Press. afirma que, os setores que apresentam elevado grau de encadeamento junto à cadeia produtiva, propagando assim, efeitos para frente e para trás acima da média, são considerados setores-chave para o crescimento. Portanto, se Uj > 1, então, uma mudança unitária na demanda final do setor j cria um aumento acima da média na economia, ou seja, o setor j gera uma resposta dos outros setores acima da média. E, quando Ui > 1, então, uma mudança unitária na demanda final de todos os setores cria um aumento acima da média no setor i. Logo, o setor i tem uma dependência acima da média da produção dos outros setores. Uma vez que Uj e Ui > 1 têm-se a caracterização de um setor-chave.
  • 12
    O desenvolvimento do conceito de campo de influência se beneficiou das ideias de Sherman e Morrison (1949Sherman, J. & Morrison, W. (1949). Adjustment of an Inverse Matrix to Changes in the Elements of a Given Column or a Given Row in the Original Matrix. Annals of Mathematical Statistics, 20(4)., 1950)Sherman, J. & Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Annals of Mathematical Statistics, 21(1):124-127., Evans (1954)Evans, W. D. (1954). The effect of structural matrix errors on interindustry relations estimates. Econometrica: Journal of the Econometric Society, 22:461-480., Park (1974)Park, S. (1974). On input-output multipliers with errors in input-output coefficients. Journal of Economic Theory, 6(4):399-403., Simonovits (1975)Simonovits, A. (1975). A Note on the Underestimation and Overestimation of the Leontief Inverse. Econometrica, 43:493-498., e Bullard e Sebald (1988)Bullard, C. W. & Sebald, A. V. (1988). Monte Carlo sensitivity analysis of input-output models. The Review of Economics and Statistics, 70:705-712., sendo que uma descrição mais detalhada pode ser encontrada em Sonis e Hewings (1989Sonis, M. & Hewings, G. J. D. (1989). Error and sensitivity input-output analysis: a new approach. In Miller, R. E., Polenske, K. R., & Rose, A. Z. (Eds.), Frontiers of input-output analysis. Nueva York: Oxford, p. 232-244., 1995)Sonis, M. & Hewings, G. J. D. (1995). Fields of influence in input-output systems. Urbana: University of Illinois. Regional Economics Applications Laboratory.. Apesar de os índices de ligação de Rasmussen-Hirschman avaliarem a importância dos setores no sistema como um todo, eles não possibilitam a visualização das ligações setoriais mais importantes dentro da economia. Visando superar esse problema e de modo a verificar como se distribui a influência de cada setor sobre os demais, utiliza-se o enfoque do campo de influência desenvolvido por Sonis e Hewings (1989Sonis, M. & Hewings, G. J. D. (1989). Error and sensitivity input-output analysis: a new approach. In Miller, R. E., Polenske, K. R., & Rose, A. Z. (Eds.), Frontiers of input-output analysis. Nueva York: Oxford, p. 232-244., 1995)Sonis, M. & Hewings, G. J. D. (1995). Fields of influence in input-output systems. Urbana: University of Illinois. Regional Economics Applications Laboratory.. Desse modo, este método proporciona uma análise complementar ao proposto por Rasmussen-Hirschman. De modo que, ambos auxiliam na determinação de "gargalos" que, se desconsiderados, poderiam limitar o crescimento econômico.
  • 13
    Observe que E tem as mesmas dimensões (n × n) da matriz A.
  • 14
    Em valores monetários correntes.
  • 15
    São eles: 1. Agropecuária; 2. Extrativa Mineral; 3. Minerais não metálicos; 4. Ferro e Aço; 5. Metais não ferrosos e outras metalurgias; 6. Papel e celulose; 7. Química; 8. Alimentos e Bebidas; 9. Têxtil e Vestuário; 10. Outras Indústrias; 11. Comércio e Serviços; 12. Transporte; 13. Serviços Públicos.
  • 16
    Outros autores que utilizaram este método foram: Haddad e Domingues (2003)Haddad, E. A. & Domingues, E. P. (2003). Matriz inter-regional de insumo-produto São Paulo/Resto do Brasil. São Paulo: Nereus. Texto para Discussão, 10., Porsse et al. (2003)Porsse, A. A., Haddad, E. A., & Ribeiro, E. P. (2003). Estimando uma matriz de insumo-produto inter-regional Rio Grande do Sul-restante do Brasil. NEREUS-Núcleo de Economia Regional e Urbana da Universidade de São Paulo, Texto para Discussão: 20-2003. e o próprio Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev. que disponibilizou as matrizes para a elaboração deste trabalho.
  • 17
    O modo como Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev. agregou os 42 setores da matriz de Guilhoto e Sesso Filho (2005)Guilhoto, J. J. M. & Sesso Filho, U. A. (2005). Estimação da matriz insumo-produto a partir de dados preliminares das contas nacionais. Economia Aplicada, 9(2):277-299. nos 13 setores que utilizou em seu trabalho está descrita na Tabela A-1 no Apêndice.
  • 18
    A necessidade de que os dados estejam de acordo com o SCN/IBGE (2017)SCN/IBGE (2017). Sistema de Contas Nacionais disponibilizados pelo Instituto Brasileiro de Geografia e Estatística. Disponível online em: http://www.ibge.gov.br/. Acesso em 2017.
    http://www.ibge.gov.br/...
    ficará clara no decorrer da seção 4.
  • 19
    Vale destacar que o somatório das exportações (EXP) com o Consumo, Investimento e Gastos do Governo (C+I+G) resulta na Demanda Final (DF) da economia. Além disso, a Demanda Total (DT) é o somatório da DF com o Consumo Intermediário (CI). Logo, tem-se que, considerando os valores totais para a economia brasileira (MG+RB), em 2003: DF = R$254.770 + R$1.650.450 = R$1.905.220 e DT = R$1.520.059 + R$1.905.220 = R$3.425.279. Tanto DF quanto DT são exatamente iguais aos apresentados no SCN/IBGE (2017)SCN/IBGE (2017). Sistema de Contas Nacionais disponibilizados pelo Instituto Brasileiro de Geografia e Estatística. Disponível online em: http://www.ibge.gov.br/. Acesso em 2017.
    http://www.ibge.gov.br/...
    .
  • 20
    No ALICEweb (2017)ALICEweb (2017). Sistema de Análise das Informações de Comércio Exterior. Disponível online em: http: //aliceweb.desenvolvimento.gov.br. Acesso em: 2017.
    http: //aliceweb.desenvolvimento.gov.br...
    é possível obter dados de comércio exterior (exportações e importações) expressos em dólares correntes dos EUA, na condição de venda Free on Board (FOB). Além disso, estes dados podem ser desagregados por tipo de produto, com até 8 dígitos, de acordo com o Sistema Harmonizado da nomenclatura comum do MERCOSUL (NCM). A agregação dos setores da Matriz Inter-Regional de Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev. com a classificação da NCM pode ser verificada na Tabela A-2, no Apêndice.
  • 21
    Estes 3 setores, oriundos da desagregação proposta por Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev. foram agregados neste artigo e compuseram o setor de Margens e Serviços.
  • 22
    Note que este valor é o mesmo apresentado pelo SCN/IBGE (2017)SCN/IBGE (2017). Sistema de Contas Nacionais disponibilizados pelo Instituto Brasileiro de Geografia e Estatística. Disponível online em: http://www.ibge.gov.br/. Acesso em 2017.
    http://www.ibge.gov.br/...
    para as exportações de bens do Brasil no ano de 2003. O mesmo ocorre com o valor de R$159.608 milhões no caso da importação de bens.
  • 23
    Note que, para compor os fluxos ZijRM×RM (Quadro 1), o mesmo poderia ter sido feito pela ótica das importações. Dado que o montante exportado pelo país X com destino ao país Y deve ser igual ao montante importado por Y oriundo de X.
  • 24
    O anuário de 2003 tem como base o ano de 2002. Embora desejável, não foi possível acessar nenhum anuário mais recente.
  • 25
    São eles: 1. Áustria, 2. Bélgica, 3. República Checa, 3. Dinamarca, 5. Estônia, 6. Finlândia, 7. França, 8. Hungria, 9. Irlanda, 10. Israel, 11. Itália, 12. Coreia do Sul, 13. Luxemburgo, 14. México, 15. Holanda, 16. Noruega, 17. Polônia, 18. Portugal, 19. República Eslovaca, 20. Eslovênia, 21. Espanha, 22. Suécia, 23. Suíça, 24. Reino Unido, 25. Rússia e 26. África do Sul.
  • 26
    Note que o valor obtido na Tabela 5 para o grupo dos Demais Países deve ser somado ao total de exportações de bens que este grupo realiza dentro do próprio grupo (ver Tab. 4), de modo a completar o fluxo ZijRM×RM, quando i = j = Demais Países. Ou seja, R$39.335.993 milhões + (0,6438* R$7.743.127 milhões).
  • 27
    Trata-se do único setor na região onde a taxa de transbordamento para RM é maior que a taxa para RB.
  • 28
    Firme e Perobelli (2012, p.137)Firme, V. A. C. & Perobelli, F. S. (2012). O setor energético brasileiro: uma análise via indicadores de insumo-produto e o modelo híbrido para os anos de 1997 e 2002. Planejamento e Políticas Públicas, 39:123-153., analisando dados de 1997 e 2002, já haviam destacado o elevado efeito multiplicador associado ao setor de Ferro e Aço e Metais não ferrosos no Brasil.
  • 29
    No caso de MG este setor obteve o 2º maior índice de ligação para frente (1,12), ficando muito próximo do 1º (Outras Indústrias). Já no RB, o setor de Margens e Serviços auferiu o 3º maior coeficiente da região. Observando apenas os setores do RB pode-se notar um caso mais expressivo ainda. Trata-se do setor Agropecuário, que até então não havia obtido nenhum resultado relevante, mas agora se configura como o 2º setor mais demandado da região, atrás apenas do setor Químico (Tab. 7).
  • 30
    Considerando o setor de serviços, Kon (1999)Kon, A. (1999). Sobre as atividades de serviços: revendo conceitos e tipologias. Revista de Economia Política, 19(2):64-83., corrobora esta análise argumentando que as atividades deste setor na economia mundial contemporânea facilitam as transações econômicas, proporcionando os insumos essenciais ao setor manufatureiro e permitindo efeitos "para trás e para frente" na cadeia produtiva. Para Riddle (1986)Riddle, D. I. (1986). Service-led growth. The role of the service sector in world development. Nova York: Praeger Publisher., os serviços são a "cola que mantêm integrada qualquer economia".
  • 31
    Cabe destacar que o índice de ligação para frente obtido pela Indústria Química do RB (1,86) só foi menor que a média dos setores do grupo dos Demais Países localizados no RM (3,11). Isto implica que o setor está entre os mais demandados no mundo.
  • 32
    Poder-se-ia argumentar sobre a importância dos EUA nesta análise. O fato é que, assim como o setor de serviços e margens, os EUA é um dos mais demandados pelos demais setores e países. Portanto, seria de certa forma, essencial para os demais.
  • 33
    Lembre que o setor Agrícola de RB representa a Agricultura de todo o território brasileiro, excluindo apenas o Estado de MG. O mesmo vale para os demais setores de RB.
  • 34
    O campo de influência dos setores de Minas Gerais e do restante do Brasil, para o período de 1999 a 2002, foi calculado por Firme e Vasconcelos (2014)Firme, V. A. C. & Vasconcelos, C. R. F. (2014). O setor siderúrgico nacional: uma análise inter-regional de insumo produto para o período de 1999 a 2002. Pesquisa e Planejamento Econômico, 44:117-167. usando um modelo inter-regional sem fechamento para exportações.
  • 35
    O setor de Outras Indústrias de MG foi caracterizado como Setor-Chave da região.
  • 36
    O setor de Margens e Serviços foi o terceiro no RB.
  • 37
    Cabe lembrar que a matriz inter-regional de Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev. apresentava desagregação para 13 setores produtivos. No entanto, no caso deste artigo, os setores de Comércio e Serviços, Transporte e Serviços Públicos foram agregados e passaram a compor o setor de Margens e Serviços. Assim, a desagregação final apresentada neste trabalho revelava os fluxos entre 11 setores, e não os 13 originais de Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev.. Tal procedimento decorre do fato destes 3 setores não transacionarem bens (apenas serviços). Maiores detalhes na seção 4.3 deste artigo.

A. APÊNDICE

Tabela A-1
Compatibilização das Matrizes de Guilhoto e Sesso Filho (2005) com a matriz Inter-Regional (MG×RB) de Souza (2008)Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev..
Tabela A-2
Compatibilização dos dados do ALICEweb (2017)ALICEweb (2017). Sistema de Análise das Informações de Comércio Exterior. Disponível online em: http: //aliceweb.desenvolvimento.gov.br. Acesso em: 2017.
http: //aliceweb.desenvolvimento.gov.br...
com a matriz de Souza (2008).Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil. Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev.

BIBLIOGRAFIA

  • ALICEweb (2017). Sistema de Análise das Informações de Comércio Exterior Disponível online em: http: //aliceweb.desenvolvimento.gov.br Acesso em: 2017.
    » http: //aliceweb.desenvolvimento.gov.br
  • BDMG-Banco de Desenvolvimento de Minas Gerais e FIPE-Fundação Instituto de Pesquisas Econômicas (2002). Matriz inter-regional de insumo produto para Minas Gerais/resto do Brasil. Belo Horizonte.
  • Betarelli JR, A. A., Bastos, S. Q. A., & Perobelli, F. S. (2008). As pressões das exportações setoriais sobre os modais de transporte: uma abordagem híbrida e intersetorial de insumo-produto. Pesquisa e Planejamento Econômico, 38(3).
  • Betarelli JR, A. A., Bastos, S. Q. A., & Perobelli, F. S. (2011). Interações e encadeamentos setoriais com os modais de transporte: uma análise para diferentes destinos das exportações brasileiras. Economia Aplicada, 15(2):223-258.
  • Bullard, C. W. & Sebald, A. V. (1988). Monte Carlo sensitivity analysis of input-output models. The Review of Economics and Statistics, 70:705-712.
  • Carvalheiro, N. (1998). Observações sobre a elaboração da matriz de insumo-produto. Pesquisa & Debate. Revista do Programa de Estudos Pós-Graduados em Economia Política. ISSN 1806-9029, 9(24):139-157.
  • Crocomo, F. & Guilhoto, J. (1998). Relações inter-regionais e intersetoriais na economia brasileira: uma análise de insumo produto. Economia Aplicada, 24(4):681-706.
  • Domingues, E. P. (2002). Dimensão regional e setorial da integração brasileira na Área de Livre Comércio das Américas Tese de Doutorado, IPE/USP.
  • Duarte Filho, F. C. & Chiari, J. R. P. (2002). Características estruturais da economia mineira. Cadernos BDMGBelo Horizonte, 4:11-43.
  • Evans, W. D. (1954). The effect of structural matrix errors on interindustry relations estimates. Econometrica: Journal of the Econometric Society, 22:461-480.
  • Firme, V. A. C. & Perobelli, F. S. (2012). O setor energético brasileiro: uma análise via indicadores de insumo-produto e o modelo híbrido para os anos de 1997 e 2002. Planejamento e Políticas Públicas, 39:123-153.
  • Firme, V. A. C. & Vasconcelos, C. R. F. (2014). O setor siderúrgico nacional: uma análise inter-regional de insumo produto para o período de 1999 a 2002. Pesquisa e Planejamento Econômico, 44:117-167.
  • Guilhoto, J. J. M. (2011). Input-Output Analysis: Theory and Foundations. Munich Personal RePEc Archive Disponível online em: http://mpra.ub.uni-muenchen.de/32566/MPRA Paper No. 32566, posted 04. August 2011.
    » http://mpra.ub.uni-muenchen.de/32566/MPRA
  • Guilhoto, J. J. M., Hewings, G. J. D., & Sonis, M. (2002). Productive Relations in the Northeast and the Rest-of-Brazil Regions in 1995: Decomposition and Synergy in Input-Output Systems. Geographical Analysis, 34(1):62-75.
  • Guilhoto, J. J. M., Hewings, G. J. D., Sonis, M., & Guo, J. (2001). Research Note: Economic Structural Change Over Time: Brazil and the United States Compared. Journal of Policy Modeling, 23(6):703-711.
  • Guilhoto, J. J. M., Moretto, A. C., & Rodrigues, R. L. (2001a). Decomposition & synergy: a study of the interactions and dependence among the 5 Brazilian macro regions. Economia Aplicada, 5(2).
  • Guilhoto, J. J. M. & Sesso Filho, U. A. (2005). Estimação da matriz insumo-produto a partir de dados preliminares das contas nacionais. Economia Aplicada, 9(2):277-299.
  • Haddad, E. A. (1999). Regional inequality and structural changes: lessons from the Brazilian economy Ashgate, Aldershot.
  • Haddad, E. A. & Domingues, E. P. (2003). Matriz inter-regional de insumo-produto São Paulo/Resto do Brasil São Paulo: Nereus. Texto para Discussão, 10.
  • Haddad, E. A. & Hewings, G. (2000). Linkages and interdependence in the Brazilian economy: an evaluation of the interregional input-output system, 1985. Revista Econômica do Nordeste, 31(3):330-376.
  • Haddad, E. A., Perobelli, F. S., & dos Santos, R. A. C. (2005). Inserção econômica de Minas Gerais: uma análise estrutural. Nova Economia, 15(2):63-90.
  • Haddad, P. R. (1976). Contabilidade social e economia regional: análise de insumo-produto Rio de Janeiro: Zahar Editores.
  • Hewings, G., Sonis, M., & Boyce, D. (2002). Trade, Networks and Hierarchies: Modeling Regional and Interregional Economies Berlin: Springer Science & Business Media.
  • Hirschman, A. O. (1958). The strategy of economic development New Haven: Yale University Press.
  • IMF (2017). International Monetary Fund: Data and Statistics. Disponível online em: http://www.imf.org/external/data.htm Acesso em: 2017.
    » http://www.imf.org/external/data.htm
  • INDEC (2017). Instituto Nacional de Estadística y Censos: MIP_ARG_1997. Disponível online em: http://www.indec.mecon.ar/ Acesso em: 2017.
    » http://www.indec.mecon.ar/
  • Isard, W. (1951). Interregional and regional input-output analysis: a model of a space-economy. The Review of Economics and Statistics, 33(4):318-328.
  • ITC (2017). International Trade Centre: Trade Statistics. Disponível online em: http://www.intracen.org/trade-support/trade-statistics/ Acesso em: 2017.
    » http://www.intracen.org/trade-support/trade-statistics/
  • Kon, A. (1999). Sobre as atividades de serviços: revendo conceitos e tipologias. Revista de Economia Política, 19(2):64-83.
  • Kurz, H. D., Dietzenbacher, E., & Lager, C. (1998). Input-output analysis, 3 vols Cheltenham, UK: Edward Elgar.
  • Lafer, B. M. (1973). Planejamento no Brasil São Paulo: Ed. Perspectiva.
  • Lahr, M. L. & Dietzenbacher, E. (2001). Input-output analysis: Frontiers and extensions Houndmills: Palgrave.
  • Leontief, W. (1975). Structure of the world economy - Outline of a simple input-output formulation. Proceedings of the IEEE, 63(3):345-350.
  • Miller, R. E. & Blair, P. D. (2009). Input-output analysis: foundations and extensions New York: Cambridge University Press.
  • Montoya, M. A. (1998). A matriz insumo-produto internacional do Mercosul em 1990: a desigualdade regional e o impacto intersetorial do comércio inter-regional Tese de Doutorado, Escola Superior de Agricultura Luiz de Queiroz da Universidade de São Paulo.
  • NBSC (2017). National Bureau of Statistics of China: Yearbook 2003. Disponível online em: http://www.stats.gov.cn/english/statisticaldata/yearlydata/yarbook2003\e.pdf Acesso em: 2017.
    » http://www.stats.gov.cn/english/statisticaldata/yearlydata/yarbook2003\e.pdf
  • OECD.STATS (2017). The Organisation for Economic Co-operation and Development Statistics. Disponível online em: http://stats.oecd.org Acesso em: 2017.
    » http://stats.oecd.org
  • Oliveira, D. R., de Assis Cabral, J., & De Freitas, M. V. (2014). Análise Estruturalista-Kaldoriana da Economia Brasileira sob a Abordagem De Insumo Produto. In Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] . ANPEC-Associação Nacional dos Centros de Pósgraduação em Economia [Brazilian Association of Graduate Programs in Economics].
  • Park, S. (1974). On input-output multipliers with errors in input-output coefficients. Journal of Economic Theory, 6(4):399-403.
  • Porsse, A. A. (2002). Multiplicadores de impacto na economia gaúcha: aplicação do modelo de insumoproduto fechado de Leontief Documentos FEE, n.52. Porto Alegre.
  • Porsse, A. A., Haddad, E. A., & Ribeiro, E. P. (2003). Estimando uma matriz de insumo-produto inter-regional Rio Grande do Sul-restante do Brasil NEREUS-Núcleo de Economia Regional e Urbana da Universidade de São Paulo, Texto para Discussão: 20-2003.
  • Rasmussen, P. N. (1956). Studies in intersectoral relations Amsterdam: North-Holland.
  • Riddle, D. I. (1986). Service-led growth. The role of the service sector in world development Nova York: Praeger Publisher.
  • Rodrigues, R. L. , Moretto, A. C., Crocomo, F. C., & Guilhoto, J. J. M. (2005). Transações inter-regionais e intersetoriais entre as macro-regiões brasileiras em 1985 e 1995. Revista Brasileira de Economia, 59(3):445-482.
  • SCN/IBGE (2017). Sistema de Contas Nacionais disponibilizados pelo Instituto Brasileiro de Geografia e Estatística. Disponível online em: http://www.ibge.gov.br/ Acesso em 2017.
    » http://www.ibge.gov.br/
  • Sherman, J. & Morrison, W. (1949). Adjustment of an Inverse Matrix to Changes in the Elements of a Given Column or a Given Row in the Original Matrix. Annals of Mathematical Statistics, 20(4).
  • Sherman, J. & Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Annals of Mathematical Statistics, 21(1):124-127.
  • Simonovits, A. (1975). A Note on the Underestimation and Overestimation of the Leontief Inverse. Econometrica, 43:493-498.
  • Sonis, M. & Hewings, G. J. D. (1989). Error and sensitivity input-output analysis: a new approach. In Miller, R. E., Polenske, K. R., & Rose, A. Z. (Eds.), Frontiers of input-output analysis Nueva York: Oxford, p. 232-244.
  • Sonis, M. & Hewings, G. J. D. (1995). Fields of influence in input-output systems. Urbana: University of Illinois. Regional Economics Applications Laboratory
  • Souza, R. M. d. (2008). Exportações e consumo de energia elétrica: uma análise baseada na integração de modelos econométricos e de insumo-produto inter-regional para Minas Gerais e o restante do Brasil Universidade Federal de Juiz de Fora (UFJF). Dissertação apresentada ao PPGEA/UFJF, Fev.
  • Toyoshima, S. & Ferreira, M. J. (2002). Encadeamentos do setor de transportes na economia brasileira. Revista de Planejamento e Políticas Públicas. IPEA, Brasília, 25:139-166.
  • World Databank (2017). World Development Indicators (WDI) & Global Development Finance (GDF). Disponível online em: http://databank.worldbank.org Acesso em: 2017.
    » http://databank.worldbank.org

Datas de Publicação

  • Publicação nesta coleção
    Oct-Dec 2017

Histórico

  • Recebido
    13 Set 2012
  • Aceito
    17 Jul 2017
Fundação Getúlio Vargas Praia de Botafogo, 190 11º andar, 22253-900 Rio de Janeiro RJ Brazil, Tel.: +55 21 3799-5831 , Fax: +55 21 2553-8821 - Rio de Janeiro - RJ - Brazil
E-mail: rbe@fgv.br