Gas exchange and growth of peanut crop subjected to saline and water stress1 1 Research developed at Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, CE, Brazil

Trocas gasosas e crescimento do amendoim submetido ao estresse salino e hídrico

Andreza S. Barbosa Geocleber G. de Sousa Márcio H. da C. Freire Kelly N. Leite Fred D. B. da Silva Thales V. de A. Viana About the authors

HIGHLIGHTS:

Peanut crops was not affected by the interactive effects of water and salt stress.

Water stress reduced plant height and stem diameter of peanut crop.

Increased irrigation water salinity negatively affected transpiration and leaf temperature.

ABSTRACT

Peanut crops are of great economic interest because their seeds are used as an important source of vegetable protein and edible oil. The objective of this study was to evaluate the physiological indices and growth of peanut crops subjected to saline and water stress. The experiment was conducted in Auroras, Redenção, Ceará, Brazil using a completely randomized split plot statistical design. The plots were composed of irrigation water treatments with varying levels of electrical conductivity - ECw (1.0, 2.0, 3.0, 4.0 and 5.0 dS m-1), while the subplots were formed by the water regimes of 50% and 100% crop evapotranspiration. Plant height, leaf number, shoot dry matter, relative chlorophyll level, transpiration, and leaf temperature were affected by salt stress. The water regime of 100% ETc provided better performance for the variables stem diameter, leaf number, and shoot dry mass of peanuts.

Key words:
Arachis hypogaea L.; water quality; water restriction

RESUMO

A cultura do amendoim apresenta grande interesse econômico, em decorrência de suas sementes, constituírem importante fonte de proteína vegetal e de óleo comestível. O objetivo do presente trabalho foi avaliar a fisiologia e crescimento da cultura do amendoim submetido a estresse salino e hídrico. O experimento foi conduzido em Auroras, Redenção, Ceará, Brasil. O delineamento experimental foi inteiramente casualizado em parcelas subdivididas, cujas parcelas referem-se aos níveis de condutividade elétrica da água de irrigação - CEa (1,0; 2,0; 3,0; 4,0 e 5,0 dS m-1) e as subparcelas aos regimes hídricos de 50 e 100% da evapotranspiração da cultura. O estresse salino afeta negativamente a altura de planta, número de folhas e massa seca da parte aérea, índices relativos de clorofila, transpiração e a temperatura foliar da cultura do amendoim. O regime hídrico de 100% da ETc proporcionou maiores desempenhos para as variáveis diâmetro do caule, número de folhas e massa seca da parte aérea da cultura do amendoim.

Palavras-chave:
Arachis hypogaea L.; qualidade da água; restrição hídrica

Introduction

Peanut (Arachis hypogaea L.), which belongs to the Fabaceae family, is the fourth most sown oilseed crop in the world and is cultivated on a large scale in the Americas, Africa, and Asia. It is considered one of the foremost industrial and food crops worldwide, and is beneficial for human nutrition, both in raw and processed form, or used for oil production (Arruda et al., 2015Arruda, I. M.; Moda-Cirino, V.; Buratto, J. S.; Ferreira, J. R. Crescimento e produtividade de cultivares e linhagens de amendoim submetidas a déficit hídrico. Pesquisa Agropecuária Tropical, v.45, p.146-154, 2015. https://doi.org/10.1590/1983-40632015v4529652
https://doi.org/10.1590/1983-40632015v45...
; Goes et al., 2021Goes, G. F.; Sousa, G. G. de; Santos, S. de O.; Silva Júnior, F. B. da; Ceita, E. D. R.; Leite, K. N. Produtividade da cultura do amendoim sob diferentes supressões da irrigação com água salina. Irriga, v.26, p.210-220, 2021. https://doi.org/10.15809/irriga.2021v26n2p210-220
https://doi.org/10.15809/irriga.2021v26n...
; Guilherme et al., 2021Guilherme, J. M. da S.; Sousa, G. G. de; Santos, S. de O.; Gomes, K. R.; Viana, T. V. de A. Água salina e adubação fosfatada na cultura do amendoim. Revista Irriga, v.1, p.704-713, 2021. http://dx.doi.org/10.15809/irriga.2021v1n4p704-713
http://dx.doi.org/10.15809/irriga.2021v1...
).

Peanut crops is subject to multiple abiotic stresses, such as water stress that is a frequent condition in the northeastern semiarid region of Brazil due to low rainfall levels, and results in reduced crop growth as well as physiological and nutritional disorders (Freitas et al., 2021Freitas, A. G. S.; Sousa, G. G. de; Sales, J. R. da S.; Silva Junior, F. B. da; Barbosa, A. S.; Guilherme, J. M. da S. Morfofisiologia da cultura do amendoim cultivado sob estresse salino e nutricional. Revista Brasileira de Agricultura Irrigada, v.15, p.48-57, 2021. http://dx.doi.org/10.7127/rbai.v1501201
http://dx.doi.org/10.7127/rbai.v1501201...
; Sousa et al., 2021aSousa, J. T. M. de; Sousa, G. G. de; Silva, E. B. da; Silva Junior, F. B. da; Viana, T. V. de A. Physiological responses of peanut crops to irrigation with brackish waters and application of organo-mineral fertilizers. Revista Caatinga, v.34, p.682-691, 2021a. https://doi.org/10.1590/1983-21252021v34n320rc
https://doi.org/10.1590/1983-21252021v34...
).

Water quality in semiarid regions may also influence water stress, as the presence of salts reduces the osmotic potential of the soil solution. Plants exhibit complex reactions in saline environments, including changes to their growth rate, from seed germination to plant growth and productivity (Sousa et al., 2018Sousa, G. G. de; Sousa, C. H. C. de; Souza, M. V. P. de; Freire, M. H. da C.; Silva, G. L. Trocas gasosas na cultura da fava irrigada com águas salinas. Irriga, v.1, p.19-23, 2018. https://doi.org/10.15809/irriga.2018v1n2p19-23
https://doi.org/10.15809/irriga.2018v1n2...
; Pereira Filho et al., 2019Pereira Filho, J. V.; Viana, T. V. de A.; Sousa, G. G. de; Chagas, K. L.; Azevedo, B. M.; Pereira, C. C. M. S. Physiological responses of lima bean subjected to salt and water stresses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.959-965, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n12p959-965
https://doi.org/10.1590/1807-1929/agriam...
; Rodrigues et al., 2021Rodrigues, V. dos S.; Sousa, G. G. de; Soares, S. da C.; Leite, K. N.; Ceita, E. D. R.; Sousa, J. T. M. de. Gas exchanges and mineral content of corn crops irrigated with saline water. Revista Ceres, v.68, p.453-459, 2021.http://dx.doi.org/10.1590/0034-737X202168050010
http://dx.doi.org/10.1590/0034-737X20216...
). Peanuts are considered moderately salt-tolerant, and can tolerate saline water irrigation with an electrical conductivity of up to 3.2 dS m-1 with no reduction in productivity (Ayers & Westcot, 1999Ayers, R. S.; Westcot, D. W. A qualidade da água na agricultura. 2.ed. Campina Grande: UFPB, 1999. 153p. Estudos FAO: Irrigação e Drenagem, 29).

Saline stress also impairs physiological functions, causing stomatal closure, which is one of the first stress responses to prevent excessive water loss under conditions of water restriction (Pereira Filho et al., 2019Pereira Filho, J. V.; Viana, T. V. de A.; Sousa, G. G. de; Chagas, K. L.; Azevedo, B. M.; Pereira, C. C. M. S. Physiological responses of lima bean subjected to salt and water stresses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.959-965, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n12p959-965
https://doi.org/10.1590/1807-1929/agriam...
; Silva et al., 2020Silva, J. A. da; Santos, P. A. B. dos; Carvalho, L. G. de; Moura, E. G.; Andrade, F. R. Gas exchanges and growth of soybean cultivars submitted to water deficiency. Pesquisa Agropecuária Tropical , v.50, p.1-9, 2020. https://doi.org/10.1590/1983-40632020v5058854
https://doi.org/10.1590/1983-40632020v50...
; Magalhães et al., 2021Magalhães, C. L.; Rodrigues, V. dos S.; Santos, S. de O.; Cambissa, P. B. C.; Baldér, B.; Sousa, G. G. de. Adubação nitrogenada e estresse salino na cultura da fava. Revista Brasileira de Agricultura Irrigada , v.15, p.58-64, 2021. https://doi.org/10.7127/rbai.v1501206
https://doi.org/10.7127/rbai.v1501206...
). Based on these factors, the present study hypothesized that saline stress associated with water negatively affects the agronomic performance of peanut crops.

The objective of the present study was to evaluate the physiological indices and growth of peanut crop subjected to saline and water stress.

Material and Methods

The experiment was conducted from August to September 2019 in full sun at the Aurora Seedling Production Unit (Portuguese acronym, UPMA), University of International Integration of Afro-Brazilian Lusophony (UNILAB), Redenção, Ceará, Brazil (4° 13’ 33” S, 38° 43’ 39” W, altitude 88 m). The climate of the region is of the Aw type, characterized as rainy tropical, very warm, with predominant rains in the summer and autumn.

The meteorological data collected during the survey is presented in Figure 1.

Figure 1
Mean values of temperature and relative air humidity during the experimental period

The statistical design was completely randomized into split plots. The plots were separated by the electrical conductivity of the irrigation water received (ECw) (1.0, 2.0, 3.0, 4.0 and 5.0 dS m-1), and the subplots by water regimes (50% and 100% of the crop evapotranspiration; ETc, mm), and five replications were performed.

The peanut seeds Access 26 were used, which belonged to the UNILAB germplasm bank, originated from the subspecies Fastigiata, and were integrated with the Valencia group. The substrate was composed of a mixture of soil and sand at a 3:2 (w/w) ratio, respectively. A sample of the substrate was sent to the Soil and Water Laboratory of the Department of Soil Sciences of the Federal University of Ceará (UFC) for chemical analysis (Table 1) according to the methodology described in the Embrapa Soil Analysis Methods Manual (Teixeira et al., 2017Teixeira, P. C.; Donagemma, G. K.; Fontana, A.; Teixeira, W. G. (eds.). Manual de métodos de análise de solo. 3.ed. Brasília: Embrapa, 2017. 574p.).

Table 1
Chemical attributes of the substrate

Sowing was performed in plastic pots at a volume of 8 L. Five seeds were sown per pot at a depth of 2 cm. Ten days after sowing (DAS), thinning was performed, leaving only two plants per pot. After this period, the treatments were started.

Irrigation water was prepared by adding NaCl, CaCl2.2H2O, and MgCl2.6H2O to the public supply water having electrical conductivity of 0.5 dS m-1 in the equivalent proportion of 7:2:1, respectively, following the correlation of ECw and salt concentration (mmolc L-1 = EC × 10) (Richards, 1954Richards, L. A. Diagnosis and improvement of saline and alkali soils. Washington: US Department of Agriculture, 1954. 160p. USDA Agriculture Handbook, 60). Manual irrigation was performed daily and the volume applied was calculated according to the drainage lysimeter principle (Bernardo et al., 2019Bernardo, S.; Mantovani, E. C.; Silva, D. D. da; Soares, A. A. Manual de irrigação. 9.ed. Viçosa: Editora UFV, 2019. 545p.), maintaining the soil at field capacity by applying a fixed leaching fraction of 15% (0.15), as recommended by Ayers & Westcot (1999Ayers, R. S.; Westcot, D. W. A qualidade da água na agricultura. 2.ed. Campina Grande: UFPB, 1999. 153p. Estudos FAO: Irrigação e Drenagem, 29) according to Eq. 1:

V I = V p - V d 1 - L F (1)

where:

VI - volume of water to be applied in the irrigation event, mL;

Vp - volume of water applied in the previous irrigation event, mL;

Vd - Volume of water drained, mL; and,

LF - leaching fraction of 0.15.

Fertilization was conducted based on the chemical analysis of the substrate and the nutritional requirement of the crop, following the maximum recommendation for chemical fertilization described by Fernandes (1993Fernandes, V. L. B. Recomendações de adubação e calagem para o Estado do Ceará. Fortaleza: UFC, 1993. 248p. ) of 15 kg ha-1 of N, 62.5 kg ha-1 of P2O5, and 50 kg ha-1 of K2O. Therefore, for a 10,000-plant stand, the dosage per pot per plant was 1.5 g of N, 6.25 g of P2O5, and 5.0 g of K2O.

To evaluate the effects of the treatments at 45 DAS, the following growth variables were analyzed: plant height (PH), stem diameter (SD), leaf number (NL), and leaf area (LA) according to the non-destructive method described by Cardozo et al. (2014Cardozo, N. P.; Parreira, M. C.; Panosso, A. R.; Volpe, C. A. Modelagem da área foliar de duas cultivares de amendoim em função das dimensões lineares dos folíolos. Bioscience Journal, v.30, p.101-107, 2014. https://seer.ufu.br/index.php/biosciencejournal/article/view/15192
https://seer.ufu.br/index.php/bioscience...
) (Eq. 2):

L A = L · W · N · f (2)

where:

LA - leaf area, cm2 plant-1;

L - average length of the leaflets, cm (average of six leaflets);

W - largest width of the leaflet, cm;

N - number of leaflets per plant; and,

f - correction factor - 0.71.

Regarding the dry masses of the aerial parts (DMAP) and roots (DMR), samples were collected (at 45 DAS ), separated, identified, and dried in an oven at 65 °C with forced air circulation for 72 hours until reaching a constant dry matter, which was determined on a precision scale. The results are expressed in grams (g plant-1).

During the same period (at 45 DAS), the following physiological indices of peanuts were analyzed: chlorophyll index (SPAD); CO2 assimilation rate, A (μmol CO2 m-2 s-1); stomatal conductance, gs (mol H2O m-2); transpiration, E (mmol H2O m-2 s-1); and internal CO2 concentration, Ci (µmol CO2 mol-1) using an Infrared Gas Analyzer (IRGA, LI 6400 XT, LICOR). The measurements were made in an open system with an airflow of 300 mL min-1 between 08:00 and 10:00 hours under natural conditions of air temperature and CO2 concentration. An artificial radiation source of 1,200 μmol m-2 s-1 was focused on the third leaflet of the fourth compound leaf from the base of the soil of fully expanded sheets.

The variables studied and measured during the study were analyzed using the Kolmogorov-Smirnov test (p ≤ 0.05) to assess normality. Data were subjected to analysis of variance (ANOVA) using the F test. When significant, the data referring to ECw were subjected to regression analysis and water regime data to the Tukey test at 0.01 and 0.05 of significance using the statistical program ASSISTAT 7.7 (Silva & Azevedo, 2016Silva, F. de A. S.; Azevedo, C. A. V. de. The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal Agricultural Research, v.11, p.3733-3740, 2016. https://doi.org/10.5897/AJAR2016.11522
https://doi.org/10.5897/AJAR2016.11522...
).

Results and Discussion

According to the ANOVA (Table 2), there was an isolated significant effect of salinity on the SPAD index, transpiration, and leaf temperature. As for the water regime factor, there was an effect on stomatal conductance and transpiration at 0.01 significance, while on photosynthesis, leaf temperature was significant at 0.05.

Table 2
Summary of analysis of variance for CO2 assimilation rate (A), stomatal conductance (gs), transpiration (E), internal CO2 concentration (Ci), leaf temperature (LT), and chlorophyll index (SPAD) of peanut plants subjected to irrigation with saline water and two water regimes

Photosynthesis was significantly influenced by water regimes (Table 2), with plants that were subjected to the 50% ETc regime showing a reduction of 31.59% compared to those with 100% ETc. This decrease may be related to the partial closure of stomata (Table 2), which reduces CO2 uptake and photosynthesis rates (Sousa et al., 2021bSousa, H. C.; Sousa, G. G. de; Lessa, C. I. N.; Lima, A. F. da S., Ribeiro, R. M. R.; Rodrigues, F. H. da C. Growth and gas exchange of corn under salt stress and nitrogen doses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.174-181, 2021b. https://doi.org/10.1590/1807-1929/agriambi.v25n3p174-181
https://doi.org/10.1590/1807-1929/agriam...
).

When evaluating peanut gas exchange in response to water deficiency, Lessa et al. (2021Lessa, C. I. N.; Sousa, G. G. de; Sousa, H. C.; Silva Junior, F. B. da; Sousa, J. T. M. de; Lacerda, C. F. de. Influência da cobertura morta vegetal e da salinidade sobre as trocas gasosas de genótipos de amendoim. Revista Brasileira de Agricultura Irrigada , v.15, p.88-96, 2021. https://doi.org/10.7127/rbai.v1501203
https://doi.org/10.7127/rbai.v1501203...
) obtained results similar to those of the present study. The same authors observed a reduction in the photosynthetic rate with an increase in water deficit. Pereira Filho et al. (2019Pereira Filho, J. V.; Viana, T. V. de A.; Sousa, G. G. de; Chagas, K. L.; Azevedo, B. M.; Pereira, C. C. M. S. Physiological responses of lima bean subjected to salt and water stresses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.959-965, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n12p959-965
https://doi.org/10.1590/1807-1929/agriam...
) assessed the physiological responses of bean crops cultivated under water stress and found the highest photosynthetic rates in the 100% ETo water regime.

The peanut plants subjected to the 50% regime had a reduction of 46.15% (0.06 mol m-2 s-1) in gs compared to the 100% regime (0.13 mol m-2 s-1) (Table 2). Regulation of stomatal opening to control water loss is a mechanism adopted by some plant species to adjust to adverse conditions. Freitas et al. (2021Freitas, A. G. S.; Sousa, G. G. de; Sales, J. R. da S.; Silva Junior, F. B. da; Barbosa, A. S.; Guilherme, J. M. da S. Morfofisiologia da cultura do amendoim cultivado sob estresse salino e nutricional. Revista Brasileira de Agricultura Irrigada, v.15, p.48-57, 2021. http://dx.doi.org/10.7127/rbai.v1501201
http://dx.doi.org/10.7127/rbai.v1501201...
), working in field conditions with peanut crops under water deficit through water regimes, found results similar to those identified in the present study.

Transpiration was also significantly influenced by water regimes (Table 2). Peanut plants that received the 50% water regime obtained a reduction of 25.94% (0.55 mmol m-2 s-1) compared to that of the 100% regime (2.12 mmol m-2 s-1). The decreased availability of water caused plants to reduce their transpiration rate to reduce water loss and conserve the amount available in the soil (Barbosa et al., 2021Barbosa, I. J.; Sousa, H. C.; Schneider, F.; Sousa, G. G. de; Lessa, C. I. N.; Sanó, L. Mulch with sugarcane bagasse and bamboo straw attenuates salt stress in cowpea cultivation. Revista Brasileira de Engenharia Agrícola e Ambiental, v.25, p.485-491, 2021. https://doi.org/10.1590/1807-1929/agriambi.v25n7p485-491
https://doi.org/10.1590/1807-1929/agriam...
).

Similar results were reported by Freitas et al. (2021Freitas, A. G. S.; Sousa, G. G. de; Sales, J. R. da S.; Silva Junior, F. B. da; Barbosa, A. S.; Guilherme, J. M. da S. Morfofisiologia da cultura do amendoim cultivado sob estresse salino e nutricional. Revista Brasileira de Agricultura Irrigada, v.15, p.48-57, 2021. http://dx.doi.org/10.7127/rbai.v1501201
http://dx.doi.org/10.7127/rbai.v1501201...
) in peanut crops under water deficits. Fasolin et al. (2019Fasolin, J. P.; Zucareli, V.; Carbonieri, J.; Nagashima, G. T.; Morais, H.; Caramori, P. H.; Medri, M. E. Variação anatômica e fisiológica do amendoim (cultivar IAPAR 25 Tição) cultivado sob diferentes regimes hídricos. Acta Iguaçu, v.8, p.92-104, 2019. https://doi.org/10.48075/actaiguaz.v8i3.19583
https://doi.org/10.48075/actaiguaz.v8i3....
) evaluated the anatomical and physiological variation of peanuts (cultivar IAPAR 25 Tição) grown under different water regimes (moderate and severe) and observed a reduction in transpiration.

The peanut plants subjected to the 50% water regime showed an increase in temperature of 1.91% (0.64 °C) compared to that of the 100% regime (32.82 °C; Table 2). The increase in leaf temperature in response to water stress correlated to a reduction in latent heat loss through transpiration, which normally decreases under these conditions. Feitosa et al. (2016Feitosa, S. dos S.; Albuquerque, M. B. de; Oliveira, A. P. de; Pereira, W. E.; Brito Neto, J. F. de. Fisiologia do Sesamum indicum L. sob estresse hídrico e aplicação de ácido salicílico. Irriga, v21, p.711-723, 2016. https://doi.org/10.15809/irriga.2016v21n4p711-723
https://doi.org/10.15809/irriga.2016v21n...
) highlighted that plants exhibit this behavior due to the closure of stomata to reduce water loss under conditions of water deficiency, thereby maintaining the water status. Similar results were reported by Freitas et al. (2021Freitas, A. G. S.; Sousa, G. G. de; Sales, J. R. da S.; Silva Junior, F. B. da; Barbosa, A. S.; Guilherme, J. M. da S. Morfofisiologia da cultura do amendoim cultivado sob estresse salino e nutricional. Revista Brasileira de Agricultura Irrigada, v.15, p.48-57, 2021. http://dx.doi.org/10.7127/rbai.v1501201
http://dx.doi.org/10.7127/rbai.v1501201...
) in peanut plants subjected to water deficit.

For the transpiration values as a function of the electrical conductivity of the irrigation water, the linear model best fit the data (Figure 2A), and there was a 71% reduction in transpiration between the lowest and highest saline levels. The reduction in transpiration in plants can be caused by the presence of absorbed salts (Sousa et al., 2021bSousa, H. C.; Sousa, G. G. de; Lessa, C. I. N.; Lima, A. F. da S., Ribeiro, R. M. R.; Rodrigues, F. H. da C. Growth and gas exchange of corn under salt stress and nitrogen doses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.174-181, 2021b. https://doi.org/10.1590/1807-1929/agriambi.v25n3p174-181
https://doi.org/10.1590/1807-1929/agriam...
).

Figure 2
Transpiration - E (A), leaf temperature - LT (B) and internal concentration of CO2 - Ci (C) of peanuts plants as a function of the electrical conductivity of irrigation water, at 45 days after sowing

Rodrigues et al. (2021Rodrigues, V. dos S.; Sousa, G. G. de; Soares, S. da C.; Leite, K. N.; Ceita, E. D. R.; Sousa, J. T. M. de. Gas exchanges and mineral content of corn crops irrigated with saline water. Revista Ceres, v.68, p.453-459, 2021.http://dx.doi.org/10.1590/0034-737X202168050010
http://dx.doi.org/10.1590/0034-737X20216...
) affirmed that salt stress might reduce the amount of water transpired or absorbed, as well as the transport of K+ and Mg2+ ions into the plants. Pereira Filho et al. (2019Pereira Filho, J. V.; Viana, T. V. de A.; Sousa, G. G. de; Chagas, K. L.; Azevedo, B. M.; Pereira, C. C. M. S. Physiological responses of lima bean subjected to salt and water stresses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.959-965, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n12p959-965
https://doi.org/10.1590/1807-1929/agriam...
) evaluated the physiological responses of bean crops subjected to salt and water stress, and obtained results similar to those of this study. Freitas et al. (2021Freitas, A. G. S.; Sousa, G. G. de; Sales, J. R. da S.; Silva Junior, F. B. da; Barbosa, A. S.; Guilherme, J. M. da S. Morfofisiologia da cultura do amendoim cultivado sob estresse salino e nutricional. Revista Brasileira de Agricultura Irrigada, v.15, p.48-57, 2021. http://dx.doi.org/10.7127/rbai.v1501201
http://dx.doi.org/10.7127/rbai.v1501201...
) evaluated gas exchange in cowpeas under different concentrations of salts in irrigation water and found negative effects on transpiration.

For the leaf temperature as a function of the electrical conductivity of the irrigation water, as shown in Figure 2B, the quadratic polynomial model best fitted the data, with a maximum temperature of 33.49 °C at the ECw of 3.81 dS m-1. Leaf temperature is strongly inversely influenced by transpiration; therefore, transpiration acts as a temperature-regulating mechanism (Feitosa et al., 2016Feitosa, S. dos S.; Albuquerque, M. B. de; Oliveira, A. P. de; Pereira, W. E.; Brito Neto, J. F. de. Fisiologia do Sesamum indicum L. sob estresse hídrico e aplicação de ácido salicílico. Irriga, v21, p.711-723, 2016. https://doi.org/10.15809/irriga.2016v21n4p711-723
https://doi.org/10.15809/irriga.2016v21n...
).

Sousa et al. (2021aSousa, J. T. M. de; Sousa, G. G. de; Silva, E. B. da; Silva Junior, F. B. da; Viana, T. V. de A. Physiological responses of peanut crops to irrigation with brackish waters and application of organo-mineral fertilizers. Revista Caatinga, v.34, p.682-691, 2021a. https://doi.org/10.1590/1983-21252021v34n320rc
https://doi.org/10.1590/1983-21252021v34...
) studied the physiological responses of peanuts under salt stress, and found similar behavior to that of this study, with an increase in the electrical conductivity of irrigation water. Lessa et al. (2021Lessa, C. I. N.; Sousa, G. G. de; Sousa, H. C.; Silva Junior, F. B. da; Sousa, J. T. M. de; Lacerda, C. F. de. Influência da cobertura morta vegetal e da salinidade sobre as trocas gasosas de genótipos de amendoim. Revista Brasileira de Agricultura Irrigada , v.15, p.88-96, 2021. https://doi.org/10.7127/rbai.v1501203
https://doi.org/10.7127/rbai.v1501203...
) found no significant effects of saline water irrigation on the leaf temperature of cowpea plants.

An increase in saline concentration correlated to a trend toward water treatments with a 50% regime, with a maximum value of 250.659 µmol CO2 mol-1 (Figure 2C). Water stress associated with saline may reflect a reduced ability to increase the internal concentration of CO2 since saline stress triggers soil osmotic pressure, thereby restricting gs, and CO2 assimilation. A similar trend was reported by Amaral et al. (2021Amaral, A. M.; Bastos, A. V. S.; Santos, M. A. C. M. dos; Teixeira, M. B.; Soares, F. A. L. Physiological response of sunflower in the reproductive phase to water and salt stress. Revista Research, Society and Development, v.10, p.1-10, 2021. http://dx.doi.org/10.33448/rsd-v10i12.20199
http://dx.doi.org/10.33448/rsd-v10i12.20...
) whereby gas exchange in the sunflower crop as a function of the electrical conductivity of the irrigated water and the water regimes of 50 and 100% ETc, showed a reduction in the internal concentration of CO2.

The linear model showed the best fit for the SPAD index as a function of the electrical conductivity of irrigation water (Figure 3). A 15.3% reduction in chlorophyll occurred with higher salinity water irrigation compared to those of the less saline treatments. This may be related to the climate response to salt stress that leads to greater conservation due to the lower capture of light energy and the consequent reduction of photo-oxidative stress (Sousa et al., 2021bSousa, H. C.; Sousa, G. G. de; Lessa, C. I. N.; Lima, A. F. da S., Ribeiro, R. M. R.; Rodrigues, F. H. da C. Growth and gas exchange of corn under salt stress and nitrogen doses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.174-181, 2021b. https://doi.org/10.1590/1807-1929/agriambi.v25n3p174-181
https://doi.org/10.1590/1807-1929/agriam...
).

Figure 3
SPAD Index of peanuts plants as a function of the electrical conductivity of irrigation water, at 45 days after sowing

Similar results were obtained by Pereira Filho et al. (2019Pereira Filho, J. V.; Viana, T. V. de A.; Sousa, G. G. de; Chagas, K. L.; Azevedo, B. M.; Pereira, C. C. M. S. Physiological responses of lima bean subjected to salt and water stresses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.959-965, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n12p959-965
https://doi.org/10.1590/1807-1929/agriam...
), who evaluated the physiological responses of bean crops subjected to saline and water stress and demonstrated that salt stress causes deleterious effects to the SPAD index values.

The summary of the ANOVA (Table 3) revealed a significant effect of the saline levels of irrigation water (S) on plant height (PH) and leaf number (NL) at a 0.05 probability level of significance, and a 0.01 significance level for the dry mass of the aerial part (DMAP). There was a significant response for the water regime (WR) factor for the variables leaf number (NL), stem diameter (SD), and dry mass of the aerial part (DMAP) at a 0.05 probability level of significance.

Table 3
Summary of analysis of variance for plant height (PH), number of leaves (NL), stem diameter (SD), leaf area (LA), dry mass of aerial part (DMAP), and dry mass of root (DMR) of peanuts plants submitted to irrigation with saline waters and two water regimes

Stem diameter (Table 3) was higher with the 100% ETc water regime, with a 23.61% (1.32 cm) reduction with the 50% regime. This reduction can be related to the physiological disturbance that the plant suffers when exposed to water deficit, and acclimatization morphologically occurs to reduce these damages. Thus, with lower available water content, plants tend to reduce their cell division processes and, consequently, their growth (Sousa et al., 2021bSousa, H. C.; Sousa, G. G. de; Lessa, C. I. N.; Lima, A. F. da S., Ribeiro, R. M. R.; Rodrigues, F. H. da C. Growth and gas exchange of corn under salt stress and nitrogen doses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.174-181, 2021b. https://doi.org/10.1590/1807-1929/agriambi.v25n3p174-181
https://doi.org/10.1590/1807-1929/agriam...
).

A study presented by Freitas et al. (2021Freitas, A. G. S.; Sousa, G. G. de; Sales, J. R. da S.; Silva Junior, F. B. da; Barbosa, A. S.; Guilherme, J. M. da S. Morfofisiologia da cultura do amendoim cultivado sob estresse salino e nutricional. Revista Brasileira de Agricultura Irrigada, v.15, p.48-57, 2021. http://dx.doi.org/10.7127/rbai.v1501201
http://dx.doi.org/10.7127/rbai.v1501201...
) reported a reduction in SD in peanut crops that were subjected to water deficit. Similarly, Fasolin et al. (2019Fasolin, J. P.; Zucareli, V.; Carbonieri, J.; Nagashima, G. T.; Morais, H.; Caramori, P. H.; Medri, M. E. Variação anatômica e fisiológica do amendoim (cultivar IAPAR 25 Tição) cultivado sob diferentes regimes hídricos. Acta Iguaçu, v.8, p.92-104, 2019. https://doi.org/10.48075/actaiguaz.v8i3.19583
https://doi.org/10.48075/actaiguaz.v8i3....
) found that peanut plants maintained at the field capacity had a larger diameter than plants treated with moderate or severe water deficit.

Peanut plants presented a lower NL in the 50% water regime (Table 3), with 100% ETc being statistically higher. The NL of the plants subjected to the 50% regime showed a decline of 37.21% (5.76 leaves) compared to the 100% regime.

This result can be explained by the fact that water stress decreases cell multiplication and division within plant tissues, which leads to a reduction in the growth of the aerial parts, which, when subjected to water reduction, decreases leaf expansion (Souza et al., 2019Souza, M. V. P. de; Sousa, G. G. de; Sales, J. R. S.; Freire, M. H. da C.; Silva, G. L. da; Viana, T. V. de A. Saline water and biofertilizer from bovine and goat manure in the Lima bean crop. Revista Brasileira de Ciências Agrárias, v.14, p.340-349, 2019. https://doi.org/10.5039/agraria.v14i3a5672
https://doi.org/10.5039/agraria.v14i3a56...
; Lessa et al., 2021Lessa, C. I. N.; Sousa, G. G. de; Sousa, H. C.; Silva Junior, F. B. da; Sousa, J. T. M. de; Lacerda, C. F. de. Influência da cobertura morta vegetal e da salinidade sobre as trocas gasosas de genótipos de amendoim. Revista Brasileira de Agricultura Irrigada , v.15, p.88-96, 2021. https://doi.org/10.7127/rbai.v1501203
https://doi.org/10.7127/rbai.v1501203...
).

This result corroborates that of Dias et al. (2019Dias, M. S.; Reis, L. S.; Lima, I. R. V.; Albuquerque, A. W. de; Santos, R. H. S. dos; Almeida, C. A. C. de; Silva, V. M. da. Eficiência do uso da água pela cultura do amendoim sob diferentes lâminas de irrigação e formas de adubação. Revista Colloquium Agrariae, v.15, p.72-83, 2019.), who assessed the efficiency of water use by peanut crops under water deficit and observed a reduction in the number of leaves. Similarly, Silva et al. (2022Silva, E. B. da; Viana, T. V. de A.; Sousa, G. G. de; José, T. M.; Sousa, J. T. M. de; Santos, M. F. dos; Azevedo, B. M. de. Growth and nutrition of peanut crop subjected to saline stress and organomineral fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental , v.26, p.495-501, 2022. http://dx.doi.org/10.1590/1807-1929/agriambi.v26n7p495-501
http://dx.doi.org/10.1590/1807-1929/agri...
) claimed in their study that water deficit in peanut crops affected the number of leaves.

Regarding the water regime, the peanut plant DMAP exhibited a reduction when irrigated with the lowest regime (Table 3), in which the 50% regime had a 40.51% (0.64 g) decline in mass compared to the 100% regime (1.58 g). This result may be related to the decrease in available water during this period, resulting in lower production of photoassimilates (Arruda et al., 2015Arruda, I. M.; Moda-Cirino, V.; Buratto, J. S.; Ferreira, J. R. Crescimento e produtividade de cultivares e linhagens de amendoim submetidas a déficit hídrico. Pesquisa Agropecuária Tropical, v.45, p.146-154, 2015. https://doi.org/10.1590/1983-40632015v4529652
https://doi.org/10.1590/1983-40632015v45...
). Similarly, when evaluating peanut crops under different water regimes, Dias et al. (2019Dias, M. S.; Reis, L. S.; Lima, I. R. V.; Albuquerque, A. W. de; Santos, R. H. S. dos; Almeida, C. A. C. de; Silva, V. M. da. Eficiência do uso da água pela cultura do amendoim sob diferentes lâminas de irrigação e formas de adubação. Revista Colloquium Agrariae, v.15, p.72-83, 2019.) found higher production of DMAP at the lowest water deficit level.

The quadratic polynomial model best fitted the response of plant height to salt stress (Figure 4A), with a maximum PH of 4.35 cm at the ECw of 2.24 dS m-1. This reduction in height may be related to the action of salinity to induce osmotic and ionic stress, thereby reducing the absorption of water and/or nutrients, and growth, or causing disturbances in metabolic activities in general (Sousa et al., 2021bSousa, H. C.; Sousa, G. G. de; Lessa, C. I. N.; Lima, A. F. da S., Ribeiro, R. M. R.; Rodrigues, F. H. da C. Growth and gas exchange of corn under salt stress and nitrogen doses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.174-181, 2021b. https://doi.org/10.1590/1807-1929/agriambi.v25n3p174-181
https://doi.org/10.1590/1807-1929/agriam...
).

Figure 4
Height of plants (A), number of leaves (B) and dry shoot mass (C) of peanuts as a function of the electrical conductivity of irrigation water, at 45 days after sowing

This reduction in height may be related to salinity which causes osmotic stress and may increase nutrient absorption and growth (Barbosa et al., 2021Barbosa, I. J.; Sousa, H. C.; Schneider, F.; Sousa, G. G. de; Lessa, C. I. N.; Sanó, L. Mulch with sugarcane bagasse and bamboo straw attenuates salt stress in cowpea cultivation. Revista Brasileira de Engenharia Agrícola e Ambiental, v.25, p.485-491, 2021. https://doi.org/10.1590/1807-1929/agriambi.v25n7p485-491
https://doi.org/10.1590/1807-1929/agriam...
). A similar trend to this study was observed by Freitas et al. (2021Freitas, A. G. S.; Sousa, G. G. de; Sales, J. R. da S.; Silva Junior, F. B. da; Barbosa, A. S.; Guilherme, J. M. da S. Morfofisiologia da cultura do amendoim cultivado sob estresse salino e nutricional. Revista Brasileira de Agricultura Irrigada, v.15, p.48-57, 2021. http://dx.doi.org/10.7127/rbai.v1501201
http://dx.doi.org/10.7127/rbai.v1501201...
) when irrigating the peanut crop with saline water. Corroborating the result, Pereira Filho et al. (2019Pereira Filho, J. V.; Viana, T. V. de A.; Sousa, G. G. de; Chagas, K. L.; Azevedo, B. M.; Pereira, C. C. M. S. Physiological responses of lima bean subjected to salt and water stresses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.959-965, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n12p959-965
https://doi.org/10.1590/1807-1929/agriam...
) showed a reduction in plant height when estimating the initial growth of cowpea beans subjected to different salinity levels.

Salinity induced a linear decrease in NL with the increase in ECw (Figure 4B), causing a 31% reduction in the number of leaves with the highest electrical conductivity of water. This reduction in the number of leaves may be associated with morphological strategies that the plant develops under stress conditions that induce reduced leaf expansion, causing stomatal closure, and the consequent reduction in the availability of CO2 to the leaves (Silva Júnior et al., 2021Silva Júnior, J. V. da; Bezerra, A. A. de C.; Silva, E. M. da. Crescimento desenvolvimento de cultivares de feijão-caupi em função da salinidade da água de irrigação. Irriga, v.26, p.346-366, 2021. https://doi.org/10.15809/irriga.2021v26n2p343-366
https://doi.org/10.15809/irriga.2021v26n...
; Sousa et al., 2021bSousa, H. C.; Sousa, G. G. de; Lessa, C. I. N.; Lima, A. F. da S., Ribeiro, R. M. R.; Rodrigues, F. H. da C. Growth and gas exchange of corn under salt stress and nitrogen doses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.174-181, 2021b. https://doi.org/10.1590/1807-1929/agriambi.v25n3p174-181
https://doi.org/10.1590/1807-1929/agriam...
). Comparable results to the present study were reported by Sá et al. (2020Sá, F. V. da S.; Santos, M. G. dos; Barros Júnior, A. P.; Albuquerque, J. R. de; Souza, A. R. E. de; Ribeiro, R. M. P. Tolerance of peanut (Arachis hypogea) genotypes to salt stress in the initial phase. Revista Brasileira de Engenharia Agrícola e Ambiental , v.24, p.37-43, 2020. https://doi.org/10.1590/1807-1929/agriambi.v24n1p37-43
https://doi.org/10.1590/1807-1929/agriam...
), who evaluated genotypes of peanuts subjected to different levels of salinity, with a reduction in the number of leaves when saline levels increased.

From the results obtained by the regression analysis, it was possible to verify that salinity reduced the DMAP linearly with the increase of ECw (Figure 4C), with a reduction of 27.03% in the dry mass of the aerial part at the highest salinity level compared to the treatment with the lowest salinity level. This result is possibly related to the harmful effects of the salts present in the irrigation water absorbed by the plants, which reduce the osmotic adjustment capacity of the crop (Barbosa et al., 2021Barbosa, I. J.; Sousa, H. C.; Schneider, F.; Sousa, G. G. de; Lessa, C. I. N.; Sanó, L. Mulch with sugarcane bagasse and bamboo straw attenuates salt stress in cowpea cultivation. Revista Brasileira de Engenharia Agrícola e Ambiental, v.25, p.485-491, 2021. https://doi.org/10.1590/1807-1929/agriambi.v25n7p485-491
https://doi.org/10.1590/1807-1929/agriam...
).

Freitas et al. (2021Freitas, A. G. S.; Sousa, G. G. de; Sales, J. R. da S.; Silva Junior, F. B. da; Barbosa, A. S.; Guilherme, J. M. da S. Morfofisiologia da cultura do amendoim cultivado sob estresse salino e nutricional. Revista Brasileira de Agricultura Irrigada, v.15, p.48-57, 2021. http://dx.doi.org/10.7127/rbai.v1501201
http://dx.doi.org/10.7127/rbai.v1501201...
) found that an increase in salinity of the irrigation water reduced peanut DMAP. Corroborating this study, Barbosa et al. (2021Barbosa, I. J.; Sousa, H. C.; Schneider, F.; Sousa, G. G. de; Lessa, C. I. N.; Sanó, L. Mulch with sugarcane bagasse and bamboo straw attenuates salt stress in cowpea cultivation. Revista Brasileira de Engenharia Agrícola e Ambiental, v.25, p.485-491, 2021. https://doi.org/10.1590/1807-1929/agriambi.v25n7p485-491
https://doi.org/10.1590/1807-1929/agriam...
), evaluating cowpea, observed negative effects of salinity on DMAP.

Conclusions

  1. Plant height, leaf number, shoot dry matter, relative chlorophyll level, and transpiration were negatively affected by salt stress, while leaf temperature of the peanut plants increased under this condition.

  2. The increase in the electrical conductivity of water reduced the internal concentration of CO2, but with less intensity under the 100% ETc water regime.

  3. The water regime of 100% ETc provided better performance for the variables stem diameter, leaf number, and shoot dry mass of peanuts.

Acknowledgments

We would like to thank Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (Funcap) for funding the research and Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB) for their partnership in the development of the experiment.

Literature Cited

  • Amaral, A. M.; Bastos, A. V. S.; Santos, M. A. C. M. dos; Teixeira, M. B.; Soares, F. A. L. Physiological response of sunflower in the reproductive phase to water and salt stress. Revista Research, Society and Development, v.10, p.1-10, 2021. http://dx.doi.org/10.33448/rsd-v10i12.20199
    » http://dx.doi.org/10.33448/rsd-v10i12.20199
  • Arruda, I. M.; Moda-Cirino, V.; Buratto, J. S.; Ferreira, J. R. Crescimento e produtividade de cultivares e linhagens de amendoim submetidas a déficit hídrico. Pesquisa Agropecuária Tropical, v.45, p.146-154, 2015. https://doi.org/10.1590/1983-40632015v4529652
    » https://doi.org/10.1590/1983-40632015v4529652
  • Ayers, R. S.; Westcot, D. W. A qualidade da água na agricultura. 2.ed. Campina Grande: UFPB, 1999. 153p. Estudos FAO: Irrigação e Drenagem, 29
  • Barbosa, I. J.; Sousa, H. C.; Schneider, F.; Sousa, G. G. de; Lessa, C. I. N.; Sanó, L. Mulch with sugarcane bagasse and bamboo straw attenuates salt stress in cowpea cultivation. Revista Brasileira de Engenharia Agrícola e Ambiental, v.25, p.485-491, 2021. https://doi.org/10.1590/1807-1929/agriambi.v25n7p485-491
    » https://doi.org/10.1590/1807-1929/agriambi.v25n7p485-491
  • Bernardo, S.; Mantovani, E. C.; Silva, D. D. da; Soares, A. A. Manual de irrigação. 9.ed. Viçosa: Editora UFV, 2019. 545p.
  • Cardozo, N. P.; Parreira, M. C.; Panosso, A. R.; Volpe, C. A. Modelagem da área foliar de duas cultivares de amendoim em função das dimensões lineares dos folíolos. Bioscience Journal, v.30, p.101-107, 2014. https://seer.ufu.br/index.php/biosciencejournal/article/view/15192
    » https://seer.ufu.br/index.php/biosciencejournal/article/view/15192
  • Dias, M. S.; Reis, L. S.; Lima, I. R. V.; Albuquerque, A. W. de; Santos, R. H. S. dos; Almeida, C. A. C. de; Silva, V. M. da. Eficiência do uso da água pela cultura do amendoim sob diferentes lâminas de irrigação e formas de adubação. Revista Colloquium Agrariae, v.15, p.72-83, 2019.
  • Fasolin, J. P.; Zucareli, V.; Carbonieri, J.; Nagashima, G. T.; Morais, H.; Caramori, P. H.; Medri, M. E. Variação anatômica e fisiológica do amendoim (cultivar IAPAR 25 Tição) cultivado sob diferentes regimes hídricos. Acta Iguaçu, v.8, p.92-104, 2019. https://doi.org/10.48075/actaiguaz.v8i3.19583
    » https://doi.org/10.48075/actaiguaz.v8i3.19583
  • Feitosa, S. dos S.; Albuquerque, M. B. de; Oliveira, A. P. de; Pereira, W. E.; Brito Neto, J. F. de. Fisiologia do Sesamum indicum L. sob estresse hídrico e aplicação de ácido salicílico. Irriga, v21, p.711-723, 2016. https://doi.org/10.15809/irriga.2016v21n4p711-723
    » https://doi.org/10.15809/irriga.2016v21n4p711-723
  • Fernandes, V. L. B. Recomendações de adubação e calagem para o Estado do Ceará. Fortaleza: UFC, 1993. 248p.
  • Freitas, A. G. S.; Sousa, G. G. de; Sales, J. R. da S.; Silva Junior, F. B. da; Barbosa, A. S.; Guilherme, J. M. da S. Morfofisiologia da cultura do amendoim cultivado sob estresse salino e nutricional. Revista Brasileira de Agricultura Irrigada, v.15, p.48-57, 2021. http://dx.doi.org/10.7127/rbai.v1501201
    » http://dx.doi.org/10.7127/rbai.v1501201
  • Guilherme, J. M. da S.; Sousa, G. G. de; Santos, S. de O.; Gomes, K. R.; Viana, T. V. de A. Água salina e adubação fosfatada na cultura do amendoim. Revista Irriga, v.1, p.704-713, 2021. http://dx.doi.org/10.15809/irriga.2021v1n4p704-713
    » http://dx.doi.org/10.15809/irriga.2021v1n4p704-713
  • Goes, G. F.; Sousa, G. G. de; Santos, S. de O.; Silva Júnior, F. B. da; Ceita, E. D. R.; Leite, K. N. Produtividade da cultura do amendoim sob diferentes supressões da irrigação com água salina. Irriga, v.26, p.210-220, 2021. https://doi.org/10.15809/irriga.2021v26n2p210-220
    » https://doi.org/10.15809/irriga.2021v26n2p210-220
  • Lessa, C. I. N.; Sousa, G. G. de; Sousa, H. C.; Silva Junior, F. B. da; Sousa, J. T. M. de; Lacerda, C. F. de. Influência da cobertura morta vegetal e da salinidade sobre as trocas gasosas de genótipos de amendoim. Revista Brasileira de Agricultura Irrigada , v.15, p.88-96, 2021. https://doi.org/10.7127/rbai.v1501203
    » https://doi.org/10.7127/rbai.v1501203
  • Magalhães, C. L.; Rodrigues, V. dos S.; Santos, S. de O.; Cambissa, P. B. C.; Baldér, B.; Sousa, G. G. de. Adubação nitrogenada e estresse salino na cultura da fava. Revista Brasileira de Agricultura Irrigada , v.15, p.58-64, 2021. https://doi.org/10.7127/rbai.v1501206
    » https://doi.org/10.7127/rbai.v1501206
  • Pereira Filho, J. V.; Viana, T. V. de A.; Sousa, G. G. de; Chagas, K. L.; Azevedo, B. M.; Pereira, C. C. M. S. Physiological responses of lima bean subjected to salt and water stresses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.23, p.959-965, 2019. https://doi.org/10.1590/1807-1929/agriambi.v23n12p959-965
    » https://doi.org/10.1590/1807-1929/agriambi.v23n12p959-965
  • Richards, L. A. Diagnosis and improvement of saline and alkali soils. Washington: US Department of Agriculture, 1954. 160p. USDA Agriculture Handbook, 60
  • Rodrigues, V. dos S.; Sousa, G. G. de; Soares, S. da C.; Leite, K. N.; Ceita, E. D. R.; Sousa, J. T. M. de. Gas exchanges and mineral content of corn crops irrigated with saline water. Revista Ceres, v.68, p.453-459, 2021.http://dx.doi.org/10.1590/0034-737X202168050010
    » http://dx.doi.org/10.1590/0034-737X202168050010
  • Sá, F. V. da S.; Santos, M. G. dos; Barros Júnior, A. P.; Albuquerque, J. R. de; Souza, A. R. E. de; Ribeiro, R. M. P. Tolerance of peanut (Arachis hypogea) genotypes to salt stress in the initial phase. Revista Brasileira de Engenharia Agrícola e Ambiental , v.24, p.37-43, 2020. https://doi.org/10.1590/1807-1929/agriambi.v24n1p37-43
    » https://doi.org/10.1590/1807-1929/agriambi.v24n1p37-43
  • Silva, E. B. da; Viana, T. V. de A.; Sousa, G. G. de; José, T. M.; Sousa, J. T. M. de; Santos, M. F. dos; Azevedo, B. M. de. Growth and nutrition of peanut crop subjected to saline stress and organomineral fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental , v.26, p.495-501, 2022. http://dx.doi.org/10.1590/1807-1929/agriambi.v26n7p495-501
    » http://dx.doi.org/10.1590/1807-1929/agriambi.v26n7p495-501
  • Silva, F. de A. S.; Azevedo, C. A. V. de. The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal Agricultural Research, v.11, p.3733-3740, 2016. https://doi.org/10.5897/AJAR2016.11522
    » https://doi.org/10.5897/AJAR2016.11522
  • Silva, J. A. da; Santos, P. A. B. dos; Carvalho, L. G. de; Moura, E. G.; Andrade, F. R. Gas exchanges and growth of soybean cultivars submitted to water deficiency. Pesquisa Agropecuária Tropical , v.50, p.1-9, 2020. https://doi.org/10.1590/1983-40632020v5058854
    » https://doi.org/10.1590/1983-40632020v5058854
  • Silva Júnior, J. V. da; Bezerra, A. A. de C.; Silva, E. M. da. Crescimento desenvolvimento de cultivares de feijão-caupi em função da salinidade da água de irrigação. Irriga, v.26, p.346-366, 2021. https://doi.org/10.15809/irriga.2021v26n2p343-366
    » https://doi.org/10.15809/irriga.2021v26n2p343-366
  • Sousa, G. G. de; Sousa, C. H. C. de; Souza, M. V. P. de; Freire, M. H. da C.; Silva, G. L. Trocas gasosas na cultura da fava irrigada com águas salinas. Irriga, v.1, p.19-23, 2018. https://doi.org/10.15809/irriga.2018v1n2p19-23
    » https://doi.org/10.15809/irriga.2018v1n2p19-23
  • Sousa, H. C.; Sousa, G. G. de; Lessa, C. I. N.; Lima, A. F. da S., Ribeiro, R. M. R.; Rodrigues, F. H. da C. Growth and gas exchange of corn under salt stress and nitrogen doses. Revista Brasileira de Engenharia Agrícola e Ambiental , v.25, p.174-181, 2021b. https://doi.org/10.1590/1807-1929/agriambi.v25n3p174-181
    » https://doi.org/10.1590/1807-1929/agriambi.v25n3p174-181
  • Sousa, J. T. M. de; Sousa, G. G. de; Silva, E. B. da; Silva Junior, F. B. da; Viana, T. V. de A. Physiological responses of peanut crops to irrigation with brackish waters and application of organo-mineral fertilizers. Revista Caatinga, v.34, p.682-691, 2021a. https://doi.org/10.1590/1983-21252021v34n320rc
    » https://doi.org/10.1590/1983-21252021v34n320rc
  • Souza, M. V. P. de; Sousa, G. G. de; Sales, J. R. S.; Freire, M. H. da C.; Silva, G. L. da; Viana, T. V. de A. Saline water and biofertilizer from bovine and goat manure in the Lima bean crop. Revista Brasileira de Ciências Agrárias, v.14, p.340-349, 2019. https://doi.org/10.5039/agraria.v14i3a5672
    » https://doi.org/10.5039/agraria.v14i3a5672
  • Teixeira, P. C.; Donagemma, G. K.; Fontana, A.; Teixeira, W. G. (eds.). Manual de métodos de análise de solo. 3.ed. Brasília: Embrapa, 2017. 574p.

  • 1 Research developed at Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção, CE, Brazil

Publication Dates

  • Publication in this collection
    25 July 2022
  • Date of issue
    Aug 2022

History

  • Received
    20 Dec 2021
  • Accepted
    15 Mar 2022
  • Published
    04 Apr 2022
Departamento de Engenharia Agrícola - UFCG Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com