Accessibility / Report Error

Production and water yield of cauliflower under irrigation depths and nitrogen doses

Produção e produtividade da água do couve-flor sob lâminas de irrigação e doses de nitrogênio

ABSTRACT

Cauliflower is a brassica produced and consumed in Brazil, whose cultivation depends on the adequate supply of water and nutrients. The objective of this study was to evaluate the effect of irrigation depths and nitrogen doses on the production components and water yield of cauliflower hybrid Barcelona CMS. The treatments consisted of five irrigation water depths (0, 75, 100, 125 and 150% of the crop evapotranspiration) combined with five nitrogen doses (0, 75, 150, 300 and 450 kg ha-1). The experiment was conducted in a completely randomized design with a split-plot arrangement. The effects of these factors were evaluated using the response surface methodology. The water yield of the crop decreases with increasing irrigation water depth; therefore, the yield is higher when water replenishment is lower than the recommended. The highest estimated total inflorescence yield is 24,547.80 kg ha-1, with a inflorescence mean diameter of 19.60 cm, a inflorescence mean height of 12.25 cm, and an inflorescence fresh weight of 858.90 g plant-1, obtained with an irrigation water depth equivalent to 132.09% of the crop evapotranspiration (ETc) and a nitrogen dose of 450 kg ha-1. The highest inflorescence diameter and height are obtained with an irrigation depth equivalent to 128.70 and 108.20% of ETc, respectively, and a nitrogen dose of 450 kg ha-1. Therefore, the best productivity response of the Barcelona CMS cauliflower hybrid can be obtained using an irrigation depth greater than the crop evapotranspiration, regardless of the nitrogen doses.

Key words:
Brassica oleracea L.; irrigation management; nitrogen fertilization

RESUMO

A couve-flor é uma brássica bastante produzida e consumida no Brasil, cujo cultivo é dependente do suprimento adequado de água e nutrientes. Portanto, objetivou-se com este estudo, avaliar o efeito da aplicação de lâminas de irrigação e doses de nitrogênio nos componentes de produção e na produtividade da água da cultura da couve-flor híbrida ‘Barcelona CMS’. Foram avaliadas as lâminas de 0, 75, 100, 125 e 150% da evapotranspiração da cultura combinadas com cinco doses de nitrogênio (0, 75, 150, 300 e 450 kg ha-1). O experimento foi conduzido em delineamento inteiramente casualizado com arranjo em parcelas subdivididas. Os efeitos da desses fatores foram avaliados pela metodologia de superfície de resposta. Observou-se que a produtividade da água pela cultura apresenta relação decrescente com a lâmina de água aplicada; portanto, a produtividade é maior quando a reposição de água é menor que o recomendado. A maior produtividade total da couve-flor estimada é de 24.547,80 kg ha-1, com diâmetro médio de 19,60 cm, altura média de 12,25 cm e massa fresca da inflorescência de 858,90 g por planta, obtida com irrigação equivalente a 132,09% da evapotranspiração da cultura e 450 kg ha-1 de nitrogênio. Para obtenção do maior diâmetro e altura de inflorescência é necessária lâminas de irrigação equivalentes a 128,70 e 108,20% da evapotranspiração da cultura, respectivamente, na dose de 450 kg ha-1 de nitrogênio. Portanto, a melhor resposta da produtividade da couve-flor híbrida ‘Barcelona CMS’ pode ser obtida com lâmina de irrigação superior à evapotranspiração da cultura, independentemente da dose de nitrogênio aplicada.

Palavras-chave:
Brassica oleracea L.; manejo da irrigação; adubação nitrogenada

Introduction

Cauliflower (Brassica oleracea L. var botrytis L.) is one of the most cultivated and consumed brassicas in Brazil (Castoldi et al., 2009Castoldi, R.; Charlo, H. C. de O.; Vargas, P. F.; Braz, L. T. Crescimento, acúmulo de nutrientes e produtividade da cultura da couve-flor. Horticultura Brasileira , v.27, p.438-446, 2009. https://doi.org/10.1590/S0102-05362009000400007
https://doi.org/10.1590/S0102-0536200900...
; Torres et al., 2015). Horticulture can provide farmers with a good economic return when crop species are cultivated considering adequate fertilization, cultural practices and water supply.

In general, fertilization of cauliflower is inadequately managed and thus, nutrients such as phosphorus, nitrogen and potassium are applied in larger quantities, increasing production costs (Oliveira et al., 2005Oliveira, F. L. de; Ribas, R. G. T.; Junqueira, R. M.; Padovan, M. P.; Guerra, J. G. M.; Almeida, D. L. de; Ribeiro, R. de L. D. Desempenho do consórcio entre repolho e rabanete com pré-cultivo de crotalária, sob manejo orgânico. Horticultura Brasileira , v.23, p.184-188, 2005. https://doi.org/10.1590/S0102-05362005000200004
https://doi.org/10.1590/S0102-0536200500...
).

Cauliflower is a short-cycle crop specie; therefore, it has high demand for nitrogen, that has a structural function in the plant; participates in the processes of ionic absorption, photosynthesis, respiration, and cell multiplication and differentiation (Kano et al., 2010Kano, C.; Salata, A. C.; Higuti, A. R. O.; Godoy, A. R.; Cardoso, A. I. I.; Evangelista, R. M. Produção e qualidade de couve-flor cultivar Teresópolis Gigante em função de doses de nitrogênio. Horticultura Brasileira , v.28, p.453-457, 2010. https://doi.org/10.1590/S0102-05362010000400013
https://doi.org/10.1590/S0102-0536201000...
); and it is fundamental for rapid and vigorous vegetative development of cauliflower. Nitrogen directly influences inflorescence growth (May et al., 2007May, A.; Tivelli, S. W.; Vargas, P. F.; Samra, A. G.; Sacconi, L. V.; Pinheiro, M. Q. A cultura da couve-flor. Campinas: Instituto Agronômico de Campinas, 2007. 43p. Boletim Técnico, 200). Increases in productivity response to nitrogen fertilization have been reported by several authors (Camargo et al., 2009Camargo, M. S. de; Mello, S. de C.; Foltrán, D. E.; Carmello, Q. A. de C. Produtividade e podridão parda em couve-flor ‘Sharon’ influenciadas pela aplicação de nitrogênio e boro. Horticultura Brasileira, v.27, p.30-34, 2009. https://doi.org/10.1590/S0102-05362009000100006
https://doi.org/10.1590/S0102-0536200900...
; Kano et al., 2010).

In addition, adequate water replenishment in vegetable species for cultivation, such as cauliflower, can directly affect the quantity and quality of production (Tomassoni et al., 2013Tomassoni, F.; Santos, R. F.; Rocha, A. A. da; Galdino, T. S.; Nadaleti, W. C.; Rossi, E. de; Carpinski, M. Sensibilidade da couve-flor ao excesso de água no solo. Acta Iguazu, v.2, p.1-6, 2013.; Tangune et al., 2016Tangune, B. F.; Pereira, G. M.; Sousa, R. J. de; Gatto, R. F. Produção de brócolis irrigado por gotejamento, sob diferentes tensões de água no solo. Semina: Ciências Agrárias, v.37, p.7-16, 2016.). Inexistence of irrigation management is common in irrigated vegetable production areas, which generates a wastage of water in addition to energy and socio-environmental problems. Proper irrigation management practices contribute to increases in productivity, improving the quality of agricultural products, and preserving water resources.

Considering the importance of cauliflower crops and the lack of information about their water and nutritional requirements, the objective of the present study was to evaluate the effect of different irrigation depths and nitrogen dose on the production of the cauliflower hybrid ‘Barcelona CMS’.

Material and Methods

The research was conducted in the experimental area of the irrigation and drainage at the Departamento de Engenharia Agrícola da Universidade Federal de Viçosa (DEA/UFV), Viçosa, MG State, Brazil (20° 45' S, 42° 51' W, at altitude of 651 m).

The soil in the area was classified as an Oxisol with sandy-clay texture, specific mass of 1.1 kg dm-3, field capacity of 0.326 m3 m-3, and a wilting point of 0.208 m3 m-3. The soil chemical analysis showed 2.71 dag kg-1 of organic matter, pH in water of 5.70, 23.46 mg dm-3 of P, 106.80 mg dm-3 of K, 3.26 cmolc dm-3 of Ca2+, 0.71 cmolc dm-3 of Mg2+, 0 cmolc dm-3 of Al, 3.48 cmolc dm-3 of H+Al, CEC of 7.72 cmolc dm-3, and a base saturation of 54.82%, according to methodologies described by EMBRAPA (2017EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo. 3.ed. rev. ampl. Brasília: Embrapa Informação Tecnológica, 2017. 573p. ).

Seedlings of a cauliflower hybrid ‘Barcelona CMS’ 38 days after sowing (DAS), produced in 200-cell plastic trays, were transplanted on August 14, 2014. The spacing used was 0.70 m between planting rows and 0.50 m between plants, corresponding to 28.570 plants ha-1. Each experimental unit consisted of 24 plants distributed in three parallel rows with eight plants each, resulting in a total area of 8.40 m2, and an experimental area of 2.10 m2. The six central plants were used in the evaluations.

The experiment was conducted in a completely randomized design with a split-plot arrangement; the plots consisted of five irrigation water depth treatments based on the crop evapotranspiration (ETc) (L0 = 0% ETc; L1 = 75% ETc; L2 = 100% ETc; L3 = 125% ETc; and L4 = 150% ETc); and the subplots consisted of five nitrogen doses (N0 = 0 kg ha-1; N1 = 75 kg ha-1; N2 = 150 kg ha-1; N3 = 300 kg ha-1; and N4 = 450 kg ha-1).

The recommended fertilization dose was obtained based on soil analysis and by following the recommendation of fertilizer use for the State of Minas Gerais, Brazil - 5th Approximation (CFSEMG, 1999CFSEMG - Comissão de Fertilidade do Solo do Estado de Minas Gerais. Recomendação para o uso de corretivos e fertilizantes em Minas Gerais: Quinta aproximação. Viçosa: CFSEMG, 1999. 359p.). Thus, fertilization at planting was carried out using 300 kg ha-1 of P2O5, 20 kg ha-1 of borax, 20 kg ha-1 of zinc sulfate, and 80 kg ha-1 of K2O; this measure of potassium is 25% of the recommended amount, and the other quantities were applied together with the nitrogen topdressing.

The nitrogen topdressing was applied to all plots using urea (45% of N), according to the evaluated doses, and was divided into three applications. The first application (20% of the dose) was carried out 15 days after transplanting (DAT), the second (40%) at 30 DAT, and the last (40%) at 45 DAT. The fertilizers were diluted in 7.20 L of water, and 300 mL was applied near each plant. Also, fertilization with molybdenum in the form of sodium molybdate at the concentration of 1 g L-1, was applied by spraying at 15 and 30 DAT (Vidigal et al., 2007Vidigal, S. M.; Pereira, P. R. G. Couve-flor. In: Venzon, M.; Paula Júnior, T. J. de. 101 culturas: Manual de tecnologias agrícolas. Belo Horizonte: EPAMIG, 2007. Cap.36, p.301-304.).

The irrigation was carried out using a drip irrigation system, with a mean flow of 2.24 L h-1 per dripper, a service pressure of 140 kPa, and a Christiansen Uniformity Coefficient (CUC) of 94.50%. The pressure-compensating drippers were spaced 0.50 m apart, and each line was positioned close to the plant row at 0.70 m, providing an application intensity of 6.40 mm h-1, with daily irrigation frequency.

The same irrigation water depths, corresponding to 100% of ETc, were applied in all treatments during the first 12 days. The program REF-ET (Allen, 2000Allen, R. G. REF-ET: Reference evapotranspiration calculation software for FAO and ASCE standardized equations - version 2.0. Idaho: Idaho University, 2000. 82p.) was used to calculate the estimated reference evapotranspiration (ET0). Subsequently, the ET0 was used to calculate the ETc. The water demand was estimated according to the water balance, in which the water output was estimated by the ETc and the water inputs were represented by irrigation depths and precipitation events, using coefficients of adjustment in relation to the ET0 to calculate the irrigation water depth. The crop evapotranspiration was estimated using Eq. 1 (Mantovani et al., 2009Mantovani, E. C.; Bernardo, S.; Palaretti, L. F. Irrigação: Princípios e métodos. 3.ed. Viçosa: Editora UFV, 2009. 355p.):

E T c = E T 0 K c K L K s (1)

where:

ETc - crop evapotranspiration (mm d-1);

ET0 - reference evapotranspiration (mm d-1);

Kc - crop coefficient, dimensionless;

KL - location coefficient, dimensionless; and,

Ks - stress coefficient, dimensionless.

The plants were irrigated daily, assuming the value of Ks equal to 1.0. The KL value was determined by Eq. 2 (Mantovani et al., 2009Mantovani, E. C.; Bernardo, S.; Palaretti, L. F. Irrigação: Princípios e métodos. 3.ed. Viçosa: Editora UFV, 2009. 355p.):

K L = 0 .1 P (2)

where:

P - percentage value of wet or shaded area, whichever is greater.

For the initial stage of crop growth, 20% of the wet area was considered. The shaded area was measured daily, and when it became larger than the wet area, its value was used. Kc values for initial, vegetative, flowering, and maturation stages of 0.45, 0.80, 1.05 and 0.90, respectively, were used for the calculations (Doorenbos & Kassam, 1979Doorenbos, J.; Kassam, A. H. Yield response to water. Rome: Food and Agriculture Organization of the United Nations, 1979. 201p. ).

Harvesting was carried out when the cauliflower plants were firm and compact, at 71 DAT; six central plants of each treatment were harvested by cutting close to the ground. Subsequently, the stem, leaves and inflorescence of each plant were separated individually. Fresh weight, number of leaves, and diameter and height of the inflorescence were determined; the dry weight of each part of the plant was obtained by drying in an oven at 65 °C in subsamples of approximately 200 g.

The water yield (WY) (kg m-3) was determined by the ratio between the inflorescence yield per unit area (kg ha-1) and the volume of water applied per unit area (m-3 ha-1) during the crop cycle. The total water yield (TWY) was determined as a function of the water from irrigation and precipitation, and the irrigation water yield (IWY) was determined as a function of only the irrigation depth.

The data were submitted to the response surface methodology. The models were chosen based on the significance of the regression coefficients using the t test, at p ≤ 0.05, on the coefficient of determination (R2) and on the behavior of phenomenon being studied.

Results and Discussion

Table 1 shows the total irrigation water depths applied to each treatment and the total precipitation events in the experimental period.

Table 1
Total irrigation water depths applied and precipitation during the crop stages

The number of irrigations applied were 11 (crop stage I), 31 (stage II) and 28 (stage III), totaling 70 irrigation events.

Table 2 shows the regression equations adjusted to the production components of the Barcelona CMS cauliflower, in which the crop presented quadratic response to the irrigation depths and linear response to the nitrogen doses.

Table 2
Coefficients of regression equations adjusted as a function of irrigation water depths (L) and nitrogen doses (D) for inflorescence diameter (ID), inflorescence height (IH), inflorescence fresh weight (IFW), total inflorescence yield (TIY), total water yield (TWY) and irrigation water yield (IWY), according to the model Y= β0+ β1L+ β2L2+ β3D and the respective significances

Figure 1 shows the response surface of the inflorescence diameter (ID) (Figure 1A) and inflorescence height (IH) (Figure 1B) of cauliflower as a function of irrigation depths and nitrogen doses. The critical irrigation depths that allowed the estimation of maximum values of ID (19.65 cm) and IH (12.43 cm) were 128.70 and 108.20% of ETc, respectively, considering the application of 450 kg ha-1 of N.

Figure 1
Response surface for inflorescence diameter - ID (A) and inflorescence height - IH (B), in centimeters, as a function of irrigation depth (L) and nitrogen doses (D)

These results indicate a positive relationship between the cauliflower ID and IH with water depth and nitrogen doses, considering the increase of its respective values.

Monteiro et al. (2010Monteiro, B. C. B. de A.; Charlo, H. C. de O.; Braz, L. T. Desempenho de híbridos de couve-flor de verão em Jaboticabal. Horticultura Brasileira , v.28, p.115-119, 2010. https://doi.org/10.1590/S0102-05362010000100022
https://doi.org/10.1590/S0102-0536201000...
) evaluated several cauliflower hybrids in Jaboticabal, SP State, Brazil, and found ID ranging from 23.55 to 26.37 cm and IH from 10.03 to 12.84 cm. Contrastingly, Morais Júnior et al. (2012Morais Júnior, O. P. de; Cardoso, A. F.; Leão, É. F.; Peixoto, N. Desempenho de cultivares de couve-flor de verão em Ipameri. Ciência Rural, v.42, p.1923-1928, 2012. https://doi.org/10.1590/S0103-84782012005000085
https://doi.org/10.1590/S0103-8478201200...
) found IH from 11.99 to 14.10 cm and ID from 18.60 to 21.91 cm in a study in Ipameri, GO State, Brazil. These differences can be justified by the climate diversity between experimental regions, growing seasons, combinations of treatments, and genetic differences among the varieties being studied.

Figure 2 shows the response surface of total inflorescence yield (TIY) (Figure 2A) and inflorescence fresh weight (IFW) (Figure 2B) of cauliflower as a function of irrigation depths and nitrogen doses. Based on the adjusted model, the critical irrigation depth that promotes the highest TIY and IFW within each nitrogen doses is 132.09% of ETc. The IFW obtained under these conditions was 860.54 g, which was a similar result to those found by Zanuzo et al. (2013Zanuzo, M. R.; Ribeiro, L. M.; Lange, A.; Machado, R. A. F.; Massaroto, J. A. Desempenho agronômico de genótipos de couve-flor nas condições edafoclimáticas de Sinop. Horticultura Brasileira , v.31, p.332-337, 2013. https://doi.org/10.1590/S0102-05362013000200026
https://doi.org/10.1590/S0102-0536201300...
) in several cultivars.

Figure 2
Response surface for total inflorescence yield - TIY (A) and inflorescence fresh weight - IFW (B) as a function of irrigation depth (L) and nitrogen doses (D)

Considering the irrigation depth of 132.09% ETc with the N dose of 0, the mean estimated TIY was 24,515.64 kg ha-1. The TIY increased by only 32.26 kg when considering the N dose of 450 kg ha-1, indicating that nitrogen availability was not a limiting factor in production under the experimental conditions and that the use of nitrogen fertilizer under similar conditions results in small yield gains when compared to use of irrigation. Camargo et al. (2009Camargo, M. S. de; Mello, S. de C.; Foltrán, D. E.; Carmello, Q. A. de C. Produtividade e podridão parda em couve-flor ‘Sharon’ influenciadas pela aplicação de nitrogênio e boro. Horticultura Brasileira, v.27, p.30-34, 2009. https://doi.org/10.1590/S0102-05362009000100006
https://doi.org/10.1590/S0102-0536200900...
) found a cauliflower yield of 18,780.00 kg ha-1 and reported it as satisfactory, whereas Pizetta et al. (2005Pizetta, L. C.; Ferreira, M. E.; Cruz, M. C. P. da; Barbosa, J. C. Resposta de brócolis, couve-flor e repolho à adubação com boro em solo arenoso. Horticultura Brasileira , v.23, p.51-56, 2005. https://doi.org/10.1590/S0102-05362005000100011
https://doi.org/10.1590/S0102-0536200500...
) found a yield of 29,600.00 kg ha-1, evaluating different boron rates in sandy soils.

Figure 3 shows the response surface adjusted for TWY and IWY as well as the adjusted equations and respective determination coefficients.

Figure 3
Response surface for total water yield - TWY (A) and irrigation water yield - IWY (B) as a function of irrigation depth (L) and nitrogen doses (D)

Considering the water depth, there is a negative relationship between total water yield and irrigation water depth, and a positive relationship between total water yield and nitrogen dose (Figure 3A). This was not found when evaluating only the water depth applied by the irrigation system (Figure 3B). This is the most used, since it presents the costs involved with irrigation. The highest total water yield (TWY) and irrigation water yield (IWY) found were 11.90 and 89.15 kg m-3, respectively, with the lowest water depth and the highest nitrogen doses. According to Oliveira et al. (2012Oliveira, P. G. F. de; Moreira, O. da C.; Branco, L. M. C.; Costa, R. N. T.; Dias, C. N. Eficiência de uso dos fatores de produção água e potássio na cultura da melancia irrigada com água de reúso. Revista Brasileira de Engenharia Agrícola e Ambiental, v.16, p.153-158, 2012. https://doi.org/10.1590/S1415-43662012000200004
https://doi.org/10.1590/S1415-4366201200...
), well-nourished plants have lower water requirements.

Water use efficiency decreased with increasing irrigation water depth. This was also observed by Barros et al. (2002Barros, V. da S.; Costa, R. N. T.; Aguiar, J. V. de. Função de produção da cultura do melão para níveis de água e adubação nitrogenada no vale do Curu - CE. Irriga, v.7, p.98-105, 2002. https://doi.org/10.15809/irriga.2002v7n2p98-105
https://doi.org/10.15809/irriga.2002v7n2...
) when evaluating the economic yield of melon under different water depths and nitrogen fertilization doses. Similarly, Santana et al. (2009Santana, M. J. de; Vieira, T. A.; Barreto, A. C. Efeitos dos níveis de reposição de água no solo na produtividade do tomateiro. Horticultura Brasileira , v.27, p.1378-1384, 2009.) reinforce that an increase in the irrigation depth tends to decrease water use efficiency.

Cauliflower crops have greater water use efficiency (WUE) compared to other species, such as watermelon with WUE of 24.39 kg m-3 (Morais et al., 2008Morais, N. B. de; Bezerra, F. M. L.; Medeiros, J. F. de; Chaves, S. W. P. Resposta de plantas de melancia cultivadas sob diferentes níveis de água e de nitrogênio. Revista Ciência Agronômica, v.39, p.369-377, 2008.) and 33.34 kg m-3 (Oliveira et al., 2012Oliveira, P. G. F. de; Moreira, O. da C.; Branco, L. M. C.; Costa, R. N. T.; Dias, C. N. Eficiência de uso dos fatores de produção água e potássio na cultura da melancia irrigada com água de reúso. Revista Brasileira de Engenharia Agrícola e Ambiental, v.16, p.153-158, 2012. https://doi.org/10.1590/S1415-43662012000200004
https://doi.org/10.1590/S1415-4366201200...
), lettuce (14.11 kg m-3) (Silva & Queiroz, 2013Silva, V. D. da; Queiroz, S. O. P. Manejo de água para produção de alface em ambiente protegido. Irriga, v.18, p.184-199, 2013. https://doi.org/10.15809/irriga.2013v18n1p184
https://doi.org/10.15809/irriga.2013v18n...
), and tomato (62.72 kg m-3) (Silva et al., 2013Silva, J. M. da; Ferreira, R. S.; Melo, A. S. de; Suassuna, J. F.; Dutra, A. F.; Gomes, J. P. Cultivo do tomateiro em ambiente protegido sob diferentes taxas de reposição da evapotranspiração. Revista Brasileira de Engenharia Agrícola e Ambiental , v.17, p.40-46, 2013. https://doi.org/10.1590/S1415-43662013000100006
https://doi.org/10.1590/S1415-4366201300...
). Oliveira et al. (2012Oliveira, P. G. F. de; Moreira, O. da C.; Branco, L. M. C.; Costa, R. N. T.; Dias, C. N. Eficiência de uso dos fatores de produção água e potássio na cultura da melancia irrigada com água de reúso. Revista Brasileira de Engenharia Agrícola e Ambiental, v.16, p.153-158, 2012. https://doi.org/10.1590/S1415-43662012000200004
https://doi.org/10.1590/S1415-4366201200...
) emphasize that the economy of water resources is very important, especially in crops that have greater water use efficiency.

Conclusion

Variations in irrigation water depths have greater effect on the yield of the ‘Barcelona CMS’ cauliflower than the variation in nitrogen fertilization doses. Higher yields can be obtained with an irrigation depth of 132.09% of the crop evapotranspiration (ETc).

Literature Cited

  • Allen, R. G. REF-ET: Reference evapotranspiration calculation software for FAO and ASCE standardized equations - version 2.0. Idaho: Idaho University, 2000. 82p.
  • Barros, V. da S.; Costa, R. N. T.; Aguiar, J. V. de. Função de produção da cultura do melão para níveis de água e adubação nitrogenada no vale do Curu - CE. Irriga, v.7, p.98-105, 2002. https://doi.org/10.15809/irriga.2002v7n2p98-105
    » https://doi.org/10.15809/irriga.2002v7n2p98-105
  • Camargo, M. S. de; Mello, S. de C.; Foltrán, D. E.; Carmello, Q. A. de C. Produtividade e podridão parda em couve-flor ‘Sharon’ influenciadas pela aplicação de nitrogênio e boro. Horticultura Brasileira, v.27, p.30-34, 2009. https://doi.org/10.1590/S0102-05362009000100006
    » https://doi.org/10.1590/S0102-05362009000100006
  • Castoldi, R.; Charlo, H. C. de O.; Vargas, P. F.; Braz, L. T. Crescimento, acúmulo de nutrientes e produtividade da cultura da couve-flor. Horticultura Brasileira , v.27, p.438-446, 2009. https://doi.org/10.1590/S0102-05362009000400007
    » https://doi.org/10.1590/S0102-05362009000400007
  • CFSEMG - Comissão de Fertilidade do Solo do Estado de Minas Gerais. Recomendação para o uso de corretivos e fertilizantes em Minas Gerais: Quinta aproximação. Viçosa: CFSEMG, 1999. 359p.
  • Doorenbos, J.; Kassam, A. H. Yield response to water. Rome: Food and Agriculture Organization of the United Nations, 1979. 201p.
  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo. 3.ed. rev. ampl. Brasília: Embrapa Informação Tecnológica, 2017. 573p.
  • Kano, C.; Salata, A. C.; Higuti, A. R. O.; Godoy, A. R.; Cardoso, A. I. I.; Evangelista, R. M. Produção e qualidade de couve-flor cultivar Teresópolis Gigante em função de doses de nitrogênio. Horticultura Brasileira , v.28, p.453-457, 2010. https://doi.org/10.1590/S0102-05362010000400013
    » https://doi.org/10.1590/S0102-05362010000400013
  • Mantovani, E. C.; Bernardo, S.; Palaretti, L. F. Irrigação: Princípios e métodos. 3.ed. Viçosa: Editora UFV, 2009. 355p.
  • May, A.; Tivelli, S. W.; Vargas, P. F.; Samra, A. G.; Sacconi, L. V.; Pinheiro, M. Q. A cultura da couve-flor. Campinas: Instituto Agronômico de Campinas, 2007. 43p. Boletim Técnico, 200
  • Monteiro, B. C. B. de A.; Charlo, H. C. de O.; Braz, L. T. Desempenho de híbridos de couve-flor de verão em Jaboticabal. Horticultura Brasileira , v.28, p.115-119, 2010. https://doi.org/10.1590/S0102-05362010000100022
    » https://doi.org/10.1590/S0102-05362010000100022
  • Morais, N. B. de; Bezerra, F. M. L.; Medeiros, J. F. de; Chaves, S. W. P. Resposta de plantas de melancia cultivadas sob diferentes níveis de água e de nitrogênio. Revista Ciência Agronômica, v.39, p.369-377, 2008.
  • Morais Júnior, O. P. de; Cardoso, A. F.; Leão, É. F.; Peixoto, N. Desempenho de cultivares de couve-flor de verão em Ipameri. Ciência Rural, v.42, p.1923-1928, 2012. https://doi.org/10.1590/S0103-84782012005000085
    » https://doi.org/10.1590/S0103-84782012005000085
  • Oliveira, F. L. de; Ribas, R. G. T.; Junqueira, R. M.; Padovan, M. P.; Guerra, J. G. M.; Almeida, D. L. de; Ribeiro, R. de L. D. Desempenho do consórcio entre repolho e rabanete com pré-cultivo de crotalária, sob manejo orgânico. Horticultura Brasileira , v.23, p.184-188, 2005. https://doi.org/10.1590/S0102-05362005000200004
    » https://doi.org/10.1590/S0102-05362005000200004
  • Oliveira, P. G. F. de; Moreira, O. da C.; Branco, L. M. C.; Costa, R. N. T.; Dias, C. N. Eficiência de uso dos fatores de produção água e potássio na cultura da melancia irrigada com água de reúso. Revista Brasileira de Engenharia Agrícola e Ambiental, v.16, p.153-158, 2012. https://doi.org/10.1590/S1415-43662012000200004
    » https://doi.org/10.1590/S1415-43662012000200004
  • Pizetta, L. C.; Ferreira, M. E.; Cruz, M. C. P. da; Barbosa, J. C. Resposta de brócolis, couve-flor e repolho à adubação com boro em solo arenoso. Horticultura Brasileira , v.23, p.51-56, 2005. https://doi.org/10.1590/S0102-05362005000100011
    » https://doi.org/10.1590/S0102-05362005000100011
  • Santana, M. J. de; Vieira, T. A.; Barreto, A. C. Efeitos dos níveis de reposição de água no solo na produtividade do tomateiro. Horticultura Brasileira , v.27, p.1378-1384, 2009.
  • Silva, J. M. da; Ferreira, R. S.; Melo, A. S. de; Suassuna, J. F.; Dutra, A. F.; Gomes, J. P. Cultivo do tomateiro em ambiente protegido sob diferentes taxas de reposição da evapotranspiração. Revista Brasileira de Engenharia Agrícola e Ambiental , v.17, p.40-46, 2013. https://doi.org/10.1590/S1415-43662013000100006
    » https://doi.org/10.1590/S1415-43662013000100006
  • Silva, V. D. da; Queiroz, S. O. P. Manejo de água para produção de alface em ambiente protegido. Irriga, v.18, p.184-199, 2013. https://doi.org/10.15809/irriga.2013v18n1p184
    » https://doi.org/10.15809/irriga.2013v18n1p184
  • Tangune, B. F.; Pereira, G. M.; Sousa, R. J. de; Gatto, R. F. Produção de brócolis irrigado por gotejamento, sob diferentes tensões de água no solo. Semina: Ciências Agrárias, v.37, p.7-16, 2016.
  • Tomassoni, F.; Santos, R. F.; Rocha, A. A. da; Galdino, T. S.; Nadaleti, W. C.; Rossi, E. de; Carpinski, M. Sensibilidade da couve-flor ao excesso de água no solo. Acta Iguazu, v.2, p.1-6, 2013.
  • Torres, J. L. R.; Araújo, A. S.; Barreto, A. C.; Silva Neto, O. F.; Silva, V. R.; Vieira, D. M. S. Desenvolvimento e produtividade de couve-flor e repolho influenciados por tipos de cobertura do solo. Horticultura Brasileira , v.33, p.510-514, 2010. https://doi.org/10.1590/S0102-053620150000400017
    » https://doi.org/10.1590/S0102-053620150000400017
  • Vidigal, S. M.; Pereira, P. R. G. Couve-flor. In: Venzon, M.; Paula Júnior, T. J. de. 101 culturas: Manual de tecnologias agrícolas. Belo Horizonte: EPAMIG, 2007. Cap.36, p.301-304.
  • Zanuzo, M. R.; Ribeiro, L. M.; Lange, A.; Machado, R. A. F.; Massaroto, J. A. Desempenho agronômico de genótipos de couve-flor nas condições edafoclimáticas de Sinop. Horticultura Brasileira , v.31, p.332-337, 2013. https://doi.org/10.1590/S0102-05362013000200026
    » https://doi.org/10.1590/S0102-05362013000200026

Publication Dates

  • Publication in this collection
    15 July 2019
  • Date of issue
    Aug 2019

History

  • Received
    14 May 2018
  • Accepted
    16 June 2019
  • Published
    01 July 2019
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com