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Abstract Introduction: This study investigates a gait research protocol to assess the impact of a walker model with 
forearm supports on the kinematic parameters of the lower limb during locomotion. Methods: Thirteen healthy 
participants without any history of gait dysfunction were enrolled in the experimental procedure. Spatiotemporal 
and kinematic gait parameters were calculated by using wireless inertial sensors and analyzed with Principal 
Component Analysis (PCA). The PCA method was selected to achieve dimension reduction and evaluate the 
main effects in gait performance during walker-assisted gait. Additionally, the interaction among the variables 
included in each Principal Component (PCs) derived from PCA is exposed to expand the understanding of the 
main differences between walker-assisted and unassisted gait conditions. Results: The results of the statistical 
analysis identifi ed four PCs that retained 65% of the data variability. These components were associated with 
spatiotemporal information, knee joint, hip joint and ankle joint motion, respectively. Conclusion: Assisted 
gait by a walker model with forearm supports was characterized by slower gait, shorter steps, larger double 
support phase and lower body vertical acceleration when compared with normal, unassisted walking.
Keywords Biomechanics, Principal Component Analysis, Intervention effectiveness, Walker-assisted gait.

Introduction
Walker-assisted gait rehabilitation is a popular treatment 
method of several disabling clinical conditions. The 
structure of a walker allows the use of the residual 
motion capabilities of the users to improve motor 
strength and locomotion performance. Such devices 
can be used to provide partial weight bearing during 
daily functional activities, preventing functional loss 
and the progression of disability (Youdas et al., 2005).

In conventional walker-assisted rehabilitation, 
therapists evaluate motor function and patients’ 
performance based on qualitative information and 
personal expertise about the movement patterns. Joint 
displacement and muscle force are also manually 
assessed, which makes the fi nal clinical decisions 
empirical and subjective (Frizera et al., 2012).

To make this evaluation more objective and precise, 
researchers have used 3D motion systems based on 
infrared cameras, electromyography, goniometers and 
dynamic force plate measurements to track the human 
body and perform multidimensional analysis of gait. 
However, these systems present some major drawbacks, 
such as marker occlusions during data acquisition, 
the need of a considerable workspace, expensive 
processing devices, pre-calibration experiments 
and dedicated personnel to conduct the procedures. 
Such devices are limited to laboratory research, are 
problematic to be used in daily clinical practice and 

cannot be used to assess gait patterns in external 
environments (Karaulova et al., 2002).

Studies of human motion analysis, traditionally 
performed with photogrammetry techniques, are 
starting to be conducted with different implementations 
of Inertial Measurement Units (IMU) (Acht et al., 
2007). IMU devices combine different MEMS sensors 
through data fusion techniques to estimate the body 
segment orientation. Usually, 3D accelerometers 
(inclination), 3D gyroscopes (angular velocity), 
magnetometers (heading angle), and temperature 
sensors (thermal drift compensation) are used together 
(Frizera et al., 2013). It has been demonstrated that 
3D orientation can be accurately estimated by fusing 
the information derived from accelerometers and 
gyroscopes (Luinge et al., 1999). Magnetometers 
are used to avoid heading drift. However, they are so 
sensitive to magnetic disturbances (Roetenberg et al., 
2005). In addition, IMU sensors can provide accurate 
3D movement analysis, but this process does not 
provide any information concerning relative positions 
on the human body. This can be solved, in many 
cases, by using additional knowledge such as human 
kinematic models (Veltink and De Rossi, 2010).

There is not a great diversity of studies in the 
literature that provide for a compelling quantitative 
evidence of the limitations and benefi ts that walkers 
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can bring to their users. In addition, the majority of 
the studies (Alkjaer et al., 2006; Bateni and Maki, 
2005; Youdas et al., 2005) focused on standard frames 
and rollators with handgrips and used optical motion 
capture systems. In the research of Alkjaer et al. (2006), 
Bateni and Maki (2005), Youdas et al.(2005) and 
Frizera et al.(2012) one identified some differences 
on gait performance with and without these types 
of walkers: improved balance, improved stability, 
decrease in speed and step width, and increase of 
stance phase time. However, only Alkjaer et al. (2006) 
presented a kinematic analysis of the lower limbs, 
concluding that a rollator with handgrips causes an 
increase in hip flexion due to trunk forward flexion 
and also a reduction in the range of motion of all 
lower limbs’ joints.

The present study will evaluate the lower limb 
gait kinematics with the use of a walker with forearm 
supports. In addition, the authors expect to obtain 
similar results as Alkjaer et al. (2006), with respect 
of the joint motion characteristics. The authors’ 
preliminary hypothesis is that the users will present 
weight-bearing strategies during walk that will 
influence joint motion. The effects of the changes in 
the joints’ motion, bodyweight support and the act 
of push the walker forward may be converted in a 
decrease of speed, cadence and increase in stance phase 
time. Since the forearm supports were designed to 
help the user maintain an upright posture and improve 
dynamic stability, reduced excursion of the trunk in 
all planes are also expected to occur.

Gait analysis yields redundant information that is 
often difficult to interpret and it is not always clear 
what measurements or which analyses are the most 
appropriate for a particular clinical purpose (Karg et al., 
2010; Kavanagh, 2009; Olney et al., 1998).

The complex interactions among the biomechanical 
parameters measured during gait trials have been 
addressed by multivariate statistical approaches to 
minimize bias and reduce data dimensionality to 
improve interpretation. Principal Component Analysis 
(PCA) is currently one of the most used statistical 
methods to achieve both of such objectives and 
produces a summary of the interactions by its Principal 
Components (PCs) (Jolliffe, 2002; Karg et al., 2010; 
Kavanagh, 2009; Olney et al., 1998; Sadler et al., 2011).

The analysis of the PCs constitutes a valuable 
mean to interpret the most important relationships 
in the data. The correlation coefficients between the 
PC scores and the original variables measure the 
importance of each variable in accounting for the 
variability in the PC. For example, a high loading 
value between the first PC and a variable indicates 
that the variable is associated with the direction of 

the maximum amount of variation in the data. If a 
variable does not correlate to any PC, or correlates 
only with the least important PCs, it may suggest 
that the variable has small or no contribution to the 
variability in the data and should be removed to 
improve the overall analysis (Olney et al., 1998).

The goal of this paper is to perform a gait analysis 
experiment to investigate the main differences 
between kinematic parameters of unassisted (normal) 
and assisted gait by a walker model with forearm 
supports. Spatiotemporal parameters and lower 
limb joint kinematics were acquired using wearable 
inertial sensors and the PCA technique was applied 
to determine the main features (PCs) that explained 
most of the effects of assisted gait and therefore 
could be used to emphasize a comparison between 
both methods of locomotion. The correlation patterns 
among the variables included in the selected PCs were 
also explored to provide a broad understanding of the 
walker influence over gait kinematics.

Methods

Participants
Thirteen healthy male subjects without any history 
of gait dysfunction or injuries in the lower limbs 
volunteered to participate in this study. The summary 
statistics (mean ± standard deviation) of the subjects 
characteristics are: Age (years): 26.84±4.55; Weight 
(kg): 68.76±10.74; Height (m): 1.76±0.08; Body Mass 
Index (kg/m2): 22.05±2.58.

Written informed consent for publication was 
obtained from all individuals and this study was 
approved by the Ethics Committee of the Federal 
University of Espirito Santo, Brazil.

Equipment
Inertial Measurement Unit (IMU) is executed by 
integrating the output of gyroscopes and accelerometers 
to compute velocity, position and orientation.

As previously mentioned, a fusion algorithm 
combines the MEMS sensor information to get the 
3D orientation. Kalman filters have been widely used 
to design IMU fusion algorithms (Seong-hoon et al., 
2008). On the other hand, Direction-cosine-matrix 
(DCM) algorithm is used for IMU application in 
model planes and helicopters. The latter algorithm 
reduces the overhead and improves the portability 
due to mathematical simplicity (Frizera et al., 2013).

In this sensor application, the Three Axis Gyroscope 
Data is the primary source of orientation. This angular 
rate output is integrated in every axis, in order to update 
the kinematic of the movement through DCM routine 
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implementation. Additionally, this algorithm does a 
normalization to the matrix, due to the numerical 
errors in the integration will gradually violate the 
orthogonally constraints that the DCM must satisfy. 
It is necessary to perform adjustments to the elements 
of the matrix to satisfy the constraints.

IMU design was developed using the K53N512 
microcontroller that is shown in Figure 1. As one 
can be observed, it is necessary to apply a gyroscope 
Drift Detection, as the gyroscope offset will gradually 
accumulate errors in the DCM elements. This feature 
is realized in three stages: (1) use orientation reference 
vectors to detect orientation error by computing 
a rotation vector that will bring the measured and 
computed values of reference vectors into alignment. 
These vectors are obtained from the magnetometer, 
used to detect yaw error, and the accelerometer, used 
to detect pitch and roll; (2) feed the rotation error 
vector back through a proportional-integral controller 
to produce a rotation rate adjustment for the gyros; 
(3) subtract the rotation error to the actual gyro signals.

The initial orientation is guaranteed at the beginning 
of the every test by the correct posture and sensor 
positioning, both performed with the assistance of 
a therapist. Angular parameters are captured by the 
gyroscope and, as previously discussed, the IMU 
algorithm corrects this data by using tridimensional 
accelerometers and gyroscopes. This approach was 
evaluated with an optical system in (Cifuentes et al., 
2010) showing high repeatability inter and intra 
subject without the presence of artifacts or signal 
distortion. However, it is important to mention that 
this implementation does not consider changes in the 
magnetic field during experiment as the magnetometer 
calibration is performed at the beginning of each 
experiment. This is not a limitation in this work 
considering the duration of each experiment and the 
environment in which they were performed.

The sensor sampling is performed at 60 Hz. The 
IMU sensor was integrated in a wearable sensor 
system developed consists on a ZigBee network 
named ZIMUED composed of one Coordinator (ZC) 
and several sensor nodes named End Devices (ZED) 
(Cifuentes et al., 2010). This network was a star 

configuration where ZC receives patient’s signals data 
from several ZEDs. The proposed network protocol 
was based on Time Division Multiplexing (TDM), 
where a specific time was defined for the transmission 
of every ZED to the ZC (Cifuentes et al., 2010).

Experimental setup
The participants were instructed to perform a level 
walking gait trial in two different test conditions: 
unassisted (normal) and walker-assisted ambulation. 
In each trial, the subjects kept a self-selected speed 
to avoid artificial motion patterns that could bias the 
final results.

The height of the forearm support was adjusted to 
be the height between the elbow of the user and the 
ground. This adjustment was necessary for the user to 
keep an upright posture during walker-assisted trials.

The inertial sensors were placed in the middle of 
the thigh and calf (10 cm below the patella) segments 
of the dominant lower limb and sacrum in two different 
configurations (Figure 2), since only 3 inertial sensors 
were available.

All subjects were barefoot and asked to perform 
three repetitions of each test condition along 10 m.

Data processing
Custom Matlab software (Mathworks, Natick, MA, 
USA) was used for all data processing, calculations 
and analysis of gait parameters.

The variables selected for statistical analysis were 
grouped into 2 categories: (1) spatiotemporal and 
(2) joint kinematics. Considering that the subjects 
presented no motor dysfunctions, symmetrical gait 
pattern was assumed (Winter, 1987). The spatial 
orientation can be described by three consecutive 
angular rotations, named Euler angles: 1) yaw ψ, 
rotate the segment about its z axis; 2) pitch θ, rotate 
the segment about its y axis; and 3) roll φ, rotate the 
segment about its x axis (Figure 3).

The parameter definitions are shown in Table 1. 
These variables are commonly reported in gait analysis 
(Olney et al., 1998; Sadler et al., 2011; Winter, 1987). 
Spatiotemporal parameters were calculated following 
the work of Watanabe et al. (2011) and kinematic 
joint angles and accelerations were extracted directly 
from the inertial sensors. The median values over 
the three test trials were calculated for each variable 
per subject, and formed the basis for all subsequent 
analyses. This procedure reduced the influence of 
random errors that could affect the measurements.

Principal Component Analysis
In this application, PCA was applied to an n x p 
matrix, where n = 26 is the number of participants 
and p = 31 is the number of variables, with prior Figure 1. Block diagram of the IMU sensor design.
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normalization (Jolliffe, 2002). Due to the existence of 
two study groups (assisted and unassisted ambulation) 
with 13 users each, this resulted in a 26 × 31 matrix. 
Furthermore, a standardized covariance matrix was 
constructed and used for all subsequent analysis 
with PCA.

The PCs were constructed successively as follows: 
the first PC (PC1) was the linear combination of 
variables for which the variation between subjects 
was the greatest (%). The second PC (PC2) worked 
in the same fashion, using the variability that was left 
after the first PC had been removed. This process was 
repeated for all the other PCs.

The PC score vectors were composed by the 
coefficients that measured the contribution of 

the principal components to each individual. The 
interpretation of the PCs in this work was accomplished 
by examining the loading values and the individual 
gait parameters. The number of selected PCs was 
estimated by keeping the first few PCs that retained 
the most variation of data, according to the following 
criteria. The first criterion (Kaiser’s criterion) was to 
select PCs with eigenvalues greater than one. The 
second criterion to determine how many PCs were 
required to explain the variation in the data was 
based on the analysis of the scree plot (a graph of 
the relationship between the relative magnitude of 
the eigenvalues and the number of components). The 
PCs along the level part of the scree graph (including 
the transition point) were discarded and only the PCs 
along the precipitously dropping part of the graph that 
explained 60% to 70% of the variability were retained, 
effectively achieving dimensionality reduction of the 
data (Jolliffe, 2002).

In order to inspect interactions between subjects, 
variables and components, biplots were used to 
visualize the magnitude and sign of each variable’s 
contribution to the PCs.

Analysis of group differences in the PC 
scores
The PC scores were analysed for determining group 
differences by using Student’s t-tests and discriminant 
analysis. Normality assumptions were checked using 
the Kolmogorov-Smirnov test (Conover, 1971) and 
the asymmetry coefficient (Cramér, 1946).

Figure 2. Inertial sensors position a) type 1: A-Thigh; B-Calf; C-Foot; and b) type 2: A-Sacrum; B-Hip; C-Thigh.

Figure 3. Position and coordinates of the sensor units.
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A Student’s t-test for paired data was used to 
identify statistical differences between use and non-use 
of walker in the selected PCs. The level of significance 
in all statistical tests was set to 5%.

Results

Basic gait parameters
The mean, standard deviation (SD) and median 
values of each gait parameter (Table 1) for each 
condition over all trials are presented in Table 2. A 
great effect for speed was identified for all spatial-
temporal parameters. The cadence, step length and 
swing duration are lower when the user is assisted 
by the walker. As a consequence, double support is 
higher, as well as step time and stance duration. In 
terms of joint excursions, hip, knee and ankle range 
of motions decreased as well as the range of motion 
of sacrum when the user is assisted. In the opposite 

way, hip flexion increased. It is also noteworthy that 
the users present a lower flexion of the sacrum as 
well as a lower excursion of the sacrum in all planes.

Principal Components Analysis

The PCA algorithm resulted in 9 PC’s with eigenvalues 
greater than 1, taking into account the Kaiser’s 
criterion. Therefore, the final number of PCs was 
mainly determined by the analysis of the scree plot 
(Figure 4), which descends more rapidly towards the 
5th PC before leveling out. The first four PCs were 
retained for subsequent analysis, and accounted for 
65% of the variation of the gait variables. While this 
could result in discarding some important information, 
the objective was to explain the majority of variation 
in the data. Furthermore, the smaller variance PCs can 
be harder to interpret (Deluzio et al., 1999; Jolliffe, 
2002). Table 3 presents the variables with the highest 
loadings for the four retained principal components.

Table 1. Definition of gait analysis variables.

Name Variable
Step length (m) (1) Step_l
Cadence (step/min) (1) CAD
Stance (%) (1) Stance
Swing (%) (1) Swing
Double support (%) (1) DS
Average Speed (m/s) (1) Speed
Step time (s) (1) Step_t
Ankle plantarflexion maximum (degrees) (2) APF
Ankle dorsiflexion maximum (degrees) (2) ADF
Ankle range of motion during gait cycle (degrees) (2) ADPF
Maximum flexion of the knee (degrees) (2) KF
Maximum extension of the knee (degrees) (2) KE
Knee range of motion during gait cycle (degrees) (2) KT
Maximum flexion of hip (degrees) (2) HF
Maximum extension of hip (degrees) (2) HE
Hip range of motion during gait cycle in the sagittal plane (degrees) (2) HT
Maximum abduction of the hip (degrees) (2) Hab
Maximum adduction of the hip (degrees) (2) Had
Hip range of motion during gait cycle in the frontal plane (degrees) (2) Haadb
Foot maximum progression deviation (interior rotation) (degrees) (2) AI
Foot maximum progression deviation (exterior rotation) (degrees) (2) AE
Foot range of progression deviation during gait cycle (degrees) (2) AEI
Range of acceleration of sacrum in the transverse plane (m/s2) (2) ROMup
Up acceleration of the sacrum (m/s2) (2) Sup
Down acceleration of the sacrum (m/s2) (2) Sdo
Lateral flexion (right) acceleration of the sacrum (m/s2) (2) SR
Lateral flexion (left) acceleration of the sacrum (m/s2) (2) SL
Sacrum lateral range of acceleration (m/s2) (2) ROMlat
Sacrum maximum flexion acceleration (m/s2) (2) SF
Sacrum maximum extension acceleration (m/s2) (2) SE
Range of acceleration of Ext/Flex of the Sacrum (m/s2) (2) ROMFlexExt
Total 31
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Table 3 shows that PC1 was positively high 
correlated with 8 variables and negatively high 
correlated with 3 variables. The included variables 
suggested that PC1 was related to the spatiotemporal 
parameters of the users. PC2, PC3 and PC4 were 

related to the changes in total excursion of the knee, 
hip and ankle joint, respectively.

For a better visual inspection of these results, 
it was built a biplot for the interaction between 
PC1/PC2 (Figure 5), PC1/PC3 (Figure 6) and PC1/
PC4 (Figure 7). In the biplots, the odd numbers 
corresponded to unassisted gait condition subjects 
and even numbers corresponded to assisted gait 
condition subjects.

As PC1 was the component with higher variance, 
incorporating more relevant information, it was 
plotted PC1 against the other three components to 
provide expanded information about walker-assisted 
effects on gait.

Biplot result of PC1 with PC2

The biplot of Figure 5 shows the high correlated 
variables related with PC1 and PC2 in comparison 
with Table 3. ROMup, ROMFlexExt, Speed, CAD, and 
Swing were positively high correlated with PC1; Stance 

Table 2. Variables’ values (Mean±Standard Deviation(Median)).

Variables Non-assisted Walker assisted
step_l (m) 0.66±0.13(0.62) 0.53±0.13(0.55)
CAD (step/min) 132.88±16.32(130.59) 95.60±23.74(86.86)
Stance (%) 61.06±4.22(61.23) 73.23±5.72(72.94)
Swing (%) 38.94±4.22(38.78) 26.77±5.72(27.06)
DS (%) 26.85±4.63(27.78) 36.61±8.36(37.59)
Speed (m/s) 1.37±0.23(1.41) 0.83±0.18(0.83)
step_t (m) 0.92±0.10(0.93) 1.32±0.26(1.38)
HF (º) 31.24±4.62(30.37) 34.53±6.67(35.08)
HE (º) 8.22±4.26(6.56) 11.05±5.54(12.18)
HT (º) 22.60±5.35(21.76) 21.11±7.42(20.39)
KF (º) 40.49±7.63(40.20) 37.72±8.74(34.00)
KE (º) 10.38±3.94(10.32) 11.26±4.87(11.07)
KT (º) 30.34±6.51(28.43) 26.74±6.76(25.37)
ADF (º) 16.76±4.72(17.44) 10.10±4.92(9.76)
APF (º) –19.92±7.33(–20.87) –12.86±7.87(–16.16)
ADPF (º) 36.20±8.04(35.63) 22.50±7.38(19.49)
AE (º) –21.78±7.85(–18.65) –17.10±7.69(–18.19)
AI (º) 9.24±4.39(9.31) 4.28±4.04(4.64)
AEI (º) 31.85±9.82(31.17) 21.36±7.72(20.03)
ROMFlex/Ext (º) 25.84±9.49(25.76) 11.06±3.66(10.24)
ROM lateral (º) 16.98±8.86(13.42) 7.85±6.40(7.39)
SF (º) 11.29±6.72(9.03) –1.33±5.66(0.98)
SE (º) –14.97±3.84(–15.92) –12.87±3.48(–12.14)
SR (º) 14.25±8.82(19.09) 10.27±13.57(16.08)
SL (º) –3.28±9.60(–2.18) 2.33±14.92(7.87)
Hab (º) –3.32±2.31(–2.20) –3.73±2.97(–2.92)
Had (º) 3.82±2.01(2.839 3.57±2.42(3.07)
Haadb (º) 7.15±3.90(4.88) 7.39±4.42(6.22)
Sup (º) 8.62±4.56(8.86) 4.36±2.89(4.29)
Sdo (º) –13.10±3.74(–14.11) –8.37±2.33(–8.22)
ROMUP (º) 22.57±5.98(20.51) 12.52±2.08(11.81)

Figure 4. Scree graph showing percentage of variance explained by 
each of the firs 9 principal components.
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Table 3. Variables correlating with each of the four PCs.

PC1 Correlation PC2 Correlation PC3 Correlation PC4 Correlation
ROMUP 0.294781 KF 0.375953 HT 0.388293 APF 0.461993
speed 0.263151 KT 0.314162 Had 0.385747 AEI 0.349821
ROM Flex/Ext 0.260647 Haadb 0.256178 Haadb 0.354397 ADPF –0.33875
SF 0.260483 SR –0.2413 HF 0.346192 AE –0.42192
SwingE 0.259065 Hab –0.26071 Hab –0.24603
CAD 0.254311 SE –0.31963
AEI 0.224974
Sup 0.219248
Sdown –0.21966
StanceE –0.25906
step time –0.26787

Figure 5. Biplot relating PC1 with PC2. Non users of the walker correspond to odd numbers and users of the walker correspond to even numbers.

Figure 6. Biplot relating PC1 with PC3. Non users of the walker correspond to odd numbers and users of the walker correspond to even numbers.
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and Step_t were negatively high correlated with PC1; 
KF and KT were positively high correlated with PC2; 
SE and Hab were negatively high correlated with PC2.

Observing the case samples, one can notice that 
the ones related with unassisted walking were mostly 
in the first and forth quadrants, whereas those case 
samples related with the use of the walker were in 
the second and third quadrants. Therefore, the first 
and fourth quadrants had variables with positive 
correlations with PC1, which means that cases located 
in such regions were faster and presented greater 
body accelerations, which were related to normal 
walking. The variables that are located in the second 
and third quadrants presented slower gait patterns 
and more stable ones, which were related to the use 
of walker. PC2 alone was not able to make a clear 
division between groups.

Biplot results of PC1 with PC3

In Figure 6, one can verify the same high correlated 
variables for PC1 as in Figure 5, and One can observe 
that Had, HT, Haadb and HF were positively high 
correlated with PC3. In contrast, Hab was negatively 
high correlated with PC3 (Table 3).

Observing the case samples, PC1 presented the 
same data separation as before, whereas PC3 was 
not able to make a clear division between groups, in 
a similar fashion than PC2.

Biplot results of PC1 with PC4

In Figure 7, one can verify the same high correlated 
variables for PC1 as in Figure 5, and one can observe 
that APF was positively high correlated, whereas 

AE and ADPF were negatively high correlated with 
PC4 (Table 3).

Analysis of group differences in the PC 
Scores

The retained PC scores were tested with the 
Kolmogorov-Smirnov test and the asymmetry 
coefficient for normality assessment (Conover, 
1971; Cramér, 1946). All groups were validated as 
normal data and Student’s T-test was applied to assess 
differences between groups.

This statistical analysis, together with the PC 
scores, revealed that the assisted gait provides a 
lower speed than non-assisted gait (p-value < 0.05). 
No statistical difference between both conditions in 
terms of knee, hip and ankle joints movement was 
observed (p-value > 0.05 for each comparison).

Discussion

Basic gait parameters

Analyzing all gait parameters one can notice that the 
average gait velocity (Speed), cadence (CAD), and step 
length (Step_l) are larger when the person is walking 
without assistance. As a consequence, Swing duration 
is larger, double support (DS) is shorter, as well as 
step time duration (Step_t). This happens because 
the walker usage has a great influence on the speed 
of the user that influences the overall spatiotemporal 
parameters (Frizera et al., 2012; Liu et al., 2009; 
Youdas et al., 2006).

Figure 7. Biplot relating PC1 with PC4. Non users of the walker correspond to odd numbers and users of the walker correspond to even numbers.
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In terms of joint excursions, hip, knee, ankle and 
hip excursions decrease as well as the range of motion 
of sacrum when the user is assisted. This decrease is 
explained by the reduction of weight load over the 
lower limbs and the extra support that is given by 
the forearms of the walker. In the opposite way, hip 
flexion (HF) increased since the user has to push the 
walker to move forward. All these kinematic changes 
can be related to posture, speed and balance changes 
that are affected by the use of the walker (Alkjaer et al., 
2006; Bateni and Maki, 2005).

A limitation of this work is the lack of information 
regarding changes in upper limb’s kinematics that 
occurs with the use of this type of walker. Previous 
studies were already done with standard walkers and 
rollators (Bachschmidt et al. 2001; Haubert et al. 2006; 
Takanokura, 2010), but their main focus was in the 
kinetics of the upper limbs. Their conclusion was that 
the walker increased load on the shoulder and elbow 
and to decrease this effect the walker needs a correct 
adjustment of its height. Thus, the effects on these 
joints caused by the forearms are still unknown and 
further studies are required.

Principal components analysis
The primary purpose of this study was to investigate 
the effects of walker usage over gait kinematic patterns 
and if PCA technique could be used to identify the 
main effects in gait performance during walker-
assisted locomotion.

According to the established criteria, the principal 
components that resulted from PCA were considered 
for analysis when the eigenvalues were greater 
than one. Consequently, nine PCs were selected but 
only four were chosen since these were enough to 
explain the majority of variance in the data (65%). 
The number of PCs required to account for greater 
than 65% of variance was extremely low compared 
to the 31 dimensional set of absolute possibilities.

The following sections present a detailed analysis 
for each one of the four PCs previously introduced and 
attempts to gain further insight into the differences 
between unassisted and walker-assisted gait.

The PC1 is associated with speed-related 
variables, which presented positive correlation with 
cadence (CAD) and swing duration (swing), and 
negative correlation with stance and step times. Body 
acceleration was also influenced by speed as shown 
by the increased motion of the sacrum in sagittal and 
frontal planes.

The PC2 was related to knee joint movement. In 
particular, greater knee range of motion is related to 
an increase of knee flexion. One can observe that the 
users presented different weight-bearing strategies 

during walker-assisted gait, augmenting the variability 
of the knee excursion values. This should be explored 
in a future study, in order to explore the relationship 
between different strategies of weight-bearing and 
knee range of motion.

The PC3 was related to hip joint movement. 
One can also observe that different weight-bearing 
strategies potentially influenced hip joint kinematics, 
especially HT and Haadb.

The PC4 was related to ankle joint movement, 
since the major variables of this component were 
variables associated with ankle joint.

The statistical analysis showed that only PC1 was 
capable to distinguish both conditions. Therefore, 
speed-related parameters presented significant changes 
during walker-assisted ambulation.

Biplot analysis of PC1 against PC2
The biplot presented in Figure 5 shows the correlation 
between features of PC1 and PC2. This interaction 
present some high correlated variables such as: (a) 
Had with KT: this correlation, located in the 1st 
quadrant, indicates that when the excursion of the 
knee increases, hip adduction also increases. (b) 
AEI with step_l and ROMflexExt: this correlation is 
located in the 1st quadrant and indicates that during 
unassisted gait (user 15), step_l was related with 
increased ankle excursion in the frontal plane and 
increased knee motion in the sagittal plane. These 
findings suggest that unassisted ambulation was 
marked by larger step length, increased knee excursion 
and increased adduction/abduction of the foot. Such 
pattern is consistent with larger spatio-temporal 
parameters (specially speed) (Jolliffe, 2002); (c) 
Speed with SF and ROMup: this correlation is located 
in the 1st quadrant and have a strong correlation with 
PC1, which indicates that higher speed is associated 
with higher vertical body acceleration and sacrum 
flexion, which is consistent with Ishikura (2001). This 
interaction was more pronounced during unassisted 
ambulation (user 17); (d) ROMlat with CAD and Sup: 
This interaction is located in the 2nd quadrant of the 
biplot and suggests an increase in the range of lateral 
acceleration of the sacrum in response to increased 
CAD, especially during unassisted gait.; (e) SL and SE: 
located in the third quadrant, this interaction indicates 
that walker-assisted gait was marked by extension and 
left inclination of the sacrum, as a function of lower 
values of speed; (f) HT and SR: The unassisted gait 
presented increased hip range of motion in z-axis 
and was associated with some degree of right lateral 
inclination of the sacrum (user 13 and 11).

In Figure 5 one can also verify negative correlations 
between variables, located in opposite quadrants, such 
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as: (a) Stance and Swing: this correlation indicated 
that swing and stance phases are opposite phases, 
as expected (6 compared with 1). Stance phase time 
increases with the use of the walker; (b) DS and 
CAD: this correlation indicates that greater CAD was 
associated with reduced time that the feet were on the 
floor. This is more accentuated when the person was 
walking unassisted (1 compared with 4); (c) Step_t 
and Sup: this correlation indicates that increased step 
time suggested a slower and more stable pace, which 
was associated with lower vertical acceleration of the 
body. This interaction was stronger during walker-
assisted ambulation (4 compared with 1); (d) HE 
and ADPF: increased extension of the hip joint was 
associated to a lower excursion of the ankle during 
walker-assisted gait (14 compared with 25).

Based on the presented interactions, walker-assisted 
gait was marked by smaller speed and increased stance 
phase time as compared to unassisted gait. These 
results corroborate previous findings by Frizera et al. 
(2012), who also reported increased stance phase time 
and double support phase time during walker-assisted 
ambulation. In particular, such findings suggest that 
walker-assisted gait is stable.

It is noteworthy that KF and KT, besides being 
the variables with greater PC2, are not related with 
any specific case sample and were not correlated to 
any spatiotemporal parameters, specifically step_t 
and CAD.

Biplot analysis of PC1 against PC3
The biplot presented in Figure 6 shows the correlation 
between features of PC1 and PC3. The main 
interactions between variables of this plot are: (a) 
SF with step_l: this correlation is located in the 1st 
quadrant and shows that when the step is bigger, the 
person inclines his trunk forward, (user 1); (b) APF 
with step_t: this correlation is located in the 2nd 
quadrant and indicates that step_t is associated with 
the plantar-flexion angle of the ankle joint. These 
variables were greater with the use of the walker 
(user 2); (c) ADPF with ROMUp: this correlation is 
located in the 1st quadrant and explains the fact that 
the vertical acceleration of the body was associated 
with ADPF, and both variables increased during 
unassisted ambulation (user 15); (d) KF with Hab: this 
correlation is located in the 4th quadrant and shows the 
interaction between knee flexion and hip abduction, 
which presented greater values during unassisted 
gait (user 5); (e) CAD with Swing: this correlation 
is located in the 4th quadrant and confirms that speed 
and CAD are strongly positive correlated (user 25).

Figure 6 also reveals some negative correlations 
between variables, located in opposite quadrants, such 

as: (a) step_t with Swing and CAD: this correlation 
explains that a bigger step time associated with walker 
use is opposite to the increase of the swing phase 
(swing) and CAD, suggesting slower gait speed (2 
compared with 25); (b) AE with Step_l and SF: this 
correlation shows that the decrease of AE (in module) 
is associated with the increase of SF and step length, 
meaning that an increase of speed makes the foot 
progression (exterior) to increase (1 compared with 
24); (c) HE with ADPF: this correlation indicates that 
hip extension, related to walker usage, decreases the 
vertical excursion of the ankle (24 compared with 1); 
(d) HF with KT: this correlation indicates that the 
increase of the hip flexion is related to the decrease 
of the knee excursion. However, since the user sample 
has individuals with different heights and the walker 
was not perfectly adjusted to them, the hip flexion 
parameter was not capable of differentiating between 
the two groups of study.

The location of HF in the 2nd quadrant corroborates 
our preliminary hypothesis that walking with a device 
with forearm supports can lead to increased hip 
flexion due to anterior flexion of the trunk further 
corroborating the work of Ishikura (2001).

Biplot analysis of PC1 against PC4
The biplot presented in Figure 7 shows the positively 
high correlated variables in this interaction: (a) SE 
with Step_t: this correlation is located in 2nd quadrant 
and was related to the association between extension 
of the sacrum and step time. The increase of these 
parameters was associated with walker-assisted cases 
(user 6); (b) Speed with ROMFlexExt and Step_l: this 
is located in the 4th quadrant and relates the speed 
with ROMFlexExt and Step_l. These components 
were greater unassisted gait (user 25); (c) KT with 
KF: this correlation is located in the 4th quadrant and 
relates KF with KT. This was expected since KF is the 
maximum of the range of motion KT. The increase 
of these variables is not related to a specific group.

Some negative correlations were also identified: 
(a) APF with KT and KF: this correlation suggested 
that the increase (in absolute value) of the plantar 
flexion of the ankle was associated with the increase 
of the knee flexion and its excursion as well; (b) HE 
with AEI: this correlation showed that extension of 
the hip reduced ankle motion in the sagittal plane.

Main contributions
In conclusion, it has been identified four PC’s that 
retained 65% data variability. These components 
were associated with spatiotemporal parameters 
(PC1), knee joint (PC2), hip joint (PC3) and ankle 
joint (PC4) motion, respectively. The results showed 
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that only the first PC was able to detect differences 
between the two study groups. Based on such analysis, 
walker-assisted gait was characterized by slower gait, 
short steps, higher double support phase and reduced 
body vertical acceleration. These conclusions are in 
accordance with previous studies. Additionally, several 
correlations patterns among the variables included in 
each PC were presented and discussed.

The knowledge of gait parameters and 
biomechanical properties of walker-assisted ambulation 
(with forearm supports) may contribute to future studies 
regarding the development of novel robotic walker 
models and the design of specific rehabilitation or 
functional compensation strategies that incorporate 
such devices. Improved adaptation of patient’s 
individual needs and treatment progression by the 
clinician are major benefits that can be achieved with 
the enhancement of this technology.
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