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This paper presents a brief review on regularization methods and shows that the combination of two techniques
could preserve symmetries in all orders of the Perturbation Theory. We will see, with two simple examples in the
one-loop-order, what a regularization method needs to preserve symmetries. Furthermore, it will be shown that
the problems with symmetry violations by regularization methods are related to the consequences of not being
able to simply shift a variable in these divergent integrals. To facilitate the analysis between methods and provide
analytical expressions for the finite parts of amplitudes, it was systematized in terms of a set of special functions.
In the Appendix we introduce these functions and then cases of specific interest, functions continuity and some
useful limits will be presented.
Keywords: Propagator, Regularization.

1. Introduction

In Quantum Field Theory (QFT), problems with di-
vergent integrals are common in several models that
propose to describe interacting physical particles. The
procedure that allows the elimination of these infini-
ties in favor of a redefinition of the parameters of a
Lagrangian is known as Renormalization Theory. It is
crucial for the applicability of Quantum Field Theories
in general. The process of renormalizing a theory begins
with the study of the renormalizability of that theory
by using dimensional arguments and power counting
to study the basic divergence properties of the model.
The Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ)
theorem [1–3] states that all divergences from quantum
field theories can be removed by building counter-terms
for the superficially divergent Feynman graphs. Next,
we have to choose a regularization method to deal with
divergent integrals. Historically, during the construction
of Quantum Electrodynamics (QED) [4, 5], Dimensional
Regularization (DR) [6, 7] was what made it possible to
renormalize QED while preserving, in each order, the
Lagrangian symmetries. It was undoubtedly an advance
in the battle against the infinite, which also infest other
QFT. Despite the enormous success of DR, it was
soon realized that this method presents difficulties in
some contexts, for example, when objects such as the
γ5 matrix or anti symmetric tensors εµνα are present
in the theory. Appropriate extensions of DR must be
constructed so that the properties of these objects do
not clash with the idea of analytical continuation in the
space-time dimension. During the text that follows we
consider only the cases where the Perturbation Theory
and, consequently, Feynman’s rules apply. We show, with
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a simple example, that only three relations between
divergent integrals are needed to preserve symmetries
in the first order in a renormalizable Lagrangian, such
as that of QED, in four dimensions. In addition, it
will be clear that the problems with violations of
symmetries by regularization methods are related to
the consequences of not being able to do “shifts” in
the integration variable in divergent integrals. For this
we will consider three methods of regularization. The
first fails to preserve symmetries, the second respects
symmetries but presents difficulties with the space-
time dimensionality and a third that, if we take some
care, respects symmetries and can be used without
restriction in any space-time dimension. The methods
are: the regularization of Pauli Villars [8], a pioneer
of regularization methods; Dimensional Regularization
(DR) that preserves the symmetries of QED; and the
Implicit Regularization Method (IR) [9–12]. In the latter
we say that the integral is regularized for the purposes
of algebraic manipulations, but we do not need to use
any regularization method explicitly. The results are
presented in terms of a sum of terms proportional to the
implicitly regularized integrals, which do not depend on
the external moment, and a finite part that is directly
integrated. This procedure will be made clear in the
sections below where the result of the explicit calculation
of some amplitudes are shown. The terms containing the
divergent integrals can be identified as being the counter-
terms necessary to renormalize the fields, masses and
coupling constants of a theory in a certain order of the
Perturbation Theory. On the other hand, using a result
in terms of regularized integrals [9], one can reproduce
any result of other regularization methods, showing
where a given method fails or succeeds in preserving
the symmetries of a theory. This will be clear from the
procedures in the sections below where we will show in
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detail the identities that some divergent integrals must
obey in order to preserve the symmetries contained in a
Lagrangian, in the “one loop” approximation and in a
space with four dimensions.

In this paper we use the standard notation found in
the QFT literature [13] and it is organized as follows: in
the next section we will give an example of a divergent
amplitude where the result of the calculation will be
presented in terms of the Z and Y functions. In this
example, the relationship between shifting integrals and
possible ambiguities in the calculation of two-point
Green functions will be shown. Three different regula-
rization methods will be used so that we can clearly
analyze their differences. In the penultimate section we
will show that the possible ambiguities generated by
not being able to shift divergent integrals are related
to violations of symmetries contained in the original
Lagrangian. Finally, we will have the conclusions and
bibliographic references. In the Appendix we will define
the functions which we call Z and Y and explicitly
present some important results. It will also contain some
limits, useful for analyzing the calculations resulting
from different regularization methods.

2. Comparing Regularization Methods

In renormalizable QFTs which gauge symmetry, like
QED, we have the following procedure: Lagrangian with
original symmetries → divergent corrections → regula-
rization methods → renormalized Lagrangian. In this
procedure, we need to be careful so that the renormalized
Lagrangian continues with its original symmetries. We
will now show where the terms responsible for sym-
metries violations in divergent amplitudes come from.
Let us use a simple example of divergent amplitude to
show how the regularization methods work, focusing on
the Pauli-Villars Regularization, Dimensional Regulari-
zation and Implicit Regularization Methods.

We will use an arbitrary parameter “α” for the internal
momentum of the loop to highlight a possible amplitude
dependency with the choice of momentum routing. The
parameter “α” is a real number and, by choosing a value
for “α”, we select one possible label for each internal line
in the diagram. Let us consider the diagram in Figure 1.
We can see that, in principle, “α” can have any value
since none violates the momentum energy conservation
at the vertices. The external lines represent a scalar field,

Figure 1: Fermion loop.

so we will use the notation Tss indicating that we have
two external scalar fields. The internal lines correspond
to spin 1

2 and mass m fermions. We will use the notation
6p = γµpµ. The Feynman’s rules for this diagram give us
the amplitude:

Tss =
∫

d4k

(2π)4Tr

×
[

1
[( 6k + α 6q)−m]

1
[ 6k + (α− 1) 6q −m]

]
(1)

Note that the integral is quadratic divergent. To see
this, just count the power of the integration variable in
the numerator and denominator, as the integral’s degree
of divergence D will be the power of the numerator
subtracting the power of the denominator. If it were
finite, or logarithmically divergent, we could change the
integration variable to eliminate the alpha parameter.
By means of the redefinition

6 k′ = 6k + α 6q (2)

the parameter “α” in (1) will be eliminated. We will
now present the results for this amplitude using three
methods in chronological order in the evolution of
regularization methods.

2.1. Pauli-Villars Regularization

The covariant regularization or Pauli-Villars regulariza-
tion consists of modifying the integrals by transforming
the propagator as follows

1
k2 −m2 →

1
k2 −m2 +

∑
i

ai
k2 − Λ2

i

where Λ is the regularization parameter that must satisfy
the condition Λ2

i � m2. The effect of this modification
is, in short, equivalent to multiplying the integral by
functions of the type

(
m2−Λ2

i

k2−Λ2
i

)
. That way, when we take

the limit Λ2
i →∞ these functions tend to one. Multiply

as many functions as necessary so that the integral
becomes finite. We generally use the same regularization
parameter for all functions, that is, we multiply the
integrand by (m

2−Λ2

k2−Λ2 )n where n + 1 is the number of
times the operation is necessary.

So let us apply this to our example. After taking the
trace of the Dirac matrices, regularizing the integrals
and integrating directly we obtain:

Tss = 2i
(4π)2 {(−m

2)−1 (m2 − Λ2)2
·
[
Y0(Λ2,m2, α2q2) + Y0(Λ2,m2, (α− 1)2q2)

]
+ [4m2 − q2]

[
Z0(Λ2,m2, q2)− Z0(m2, q2)

]
}
(3)

Note the explicit alpha dependency on the second line
of (3).
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2.2. Dimensional Regularization

This method consists of modifying the dimensionality of
the integrals, which are originally in a four-dimensional
space to a 2ω dimensional space, so that they become
finite. We solve the integral in that space and then return
to the original space taking the limit of ω tending to
two. When this limit is taken we get the sum of finite
terms and divergent terms as in the previous method.
The gamma matrices are defined in a 2ω dimensional
space. The metric tensor, in this space, is defined in
such a way that gµνgµν = 2ω and so we have a set
of gamma matrices that satisfy the anticommutation
relation {γµ, γν} = 2gµν . The gamma matrices and the
matrix unit 1 are f(2ω)× f(2ω) matrices. The trace of
a gamma matrix or a product of an odd number of these
matrices is always equal to zero. Taking the trace in this
space and following a path analogous to that made in
four-dimensional space we obtain the final expression:

Tss = if(2ω)
2(4π)ω

{
2(−m2)ω−1

[
1

(2− ω)(1− ω) + A

(1− ω)

]
+[4m2− q2]

[
1

2− ω −Z0(m2, q2) + ln(m2) +A

]}
(4)

where “A” is a constant that appears with the Gamma
Function expansion. We only consider terms up to the
first order in the constant “A” in the expansion. Note
that the result is automatically independent of “α” as
it should be. This was already expected because, in an
omega dimensional space, the integrals are finite and
therefore we can do (2) before taking the trace in (1)
and eliminate the dependency with parameter “α”.

2.3. Implicit Regularization Method

The Implicit Regularization Method is based on alge-
braic identities to rewrite the amplitude as a sum of
integrals and follows the steps below:

– After taking the trace of the Dirac matrices and
identifying the divergent integrals, each of these
integrals is manipulated only at the level of the
integral function, until all dependence on the
external momenta is strictly contained in finite
integrals. The identity below, as we can see, can
be used successively in order to isolate the internal
momenta from the external ones.

1
[(p− kj)2 −m2]

= 1
k2
j −m2 + 2p · kj − p2

(k2
j −m2)

{
1

[(p− kj)2 −m2]

}
(5)

– Finite integrals must be integrated without
restrictions.

– In each order of the Perturbation Theory, it is
necessary that some differences between diver-
gent integrals, totally independent of the external
momenta, vanish. This procedure ensures the in-
variance of the integral result with the variable
changing (2). In one loop order, as we will see,
the divergent integrals, independent of the external
momenta, are reduced to basic integrals Iquad
and Ilog:

Iquad(m2) =
∫

d4k

(2π)4
1

[k2 −m2] (6)

Ilog(m2) =
∫

d4k

(2π)4
1

[k2 −m2]2 (7)

The application of the method provides the following
result for equation (1)

Tss = 4
[
Iquad(m2) + [4m2 − q2]

2 Ilog(m2)

− [4m2 − q2]
2

i

(4π)2Z0(m2, q2)
]

− 2(2α2 − 2α− 1){
q2Ilog(m2)− 4qµqν

∫
d4k

(2π)4
kµkν

[k2 −m2]3

}
.

(8)

We can see that the only term that depends on the
“α” parameter is the last one. The amplitude does not
depend on “α” parameter if the difference between the
divergent integrals in the last term in (8) is zero, that is

1
4g

µνIlog(m2) =
∫

d4k

(2π)4
kµkν

[k2 −m2]3 (9)

Any regularization method that succeeds satisfying
equality (9) will be a regularization method that pre-
serves symmetries, as will be clear in the next section.
The DR satisfies equality (9) as we can easily verify.

We can explicitly see that by Pauli Villars regulariza-
tion equality (9) is not achieved, since∫

d4k

(2π)4
(m2 − Λ2)

[k2 −m2]2[k2 − Λ2]

= i

(4π)2 ·
(Λ2 −m2)

Λ2 Y0(m2,Λ2, 0) (10)

and∫
d4k

(2π)4
kµkν(m2 − Λ2)

[k2 −m2]3[k2 − Λ2]

= i

(4π)2

· (Λ2 −m2)
4Λ2 gµν [Y0(m2,Λ2, 0)− Y1(m2,Λ2, 0)]

(11)
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3. Symmetry and Divergent Integrals

Now let us consider a renormalizable theory, in space-
time dimension n + 1 that can be expanded into a
Perturbative series, such as QED. In each order of
the Perturbation Theory, how can we find the surface
terms, that is, the differences between divergent integrals
in order to, with the choice of momentum routing,
ensure the invariance of the integrals result? For the
renormalization of a given theory, we must identify these
differences between integrals, with the same degree of
divergence in each order. We can see that the use of
identity (5) will gradually lower the degree of divergence
of the integral. Therefore, if we study a process with the
highest degree of divergence of the theory, all differences
between integrals of the lowest orders will appear.

Now we consider the QED Lagrangian. In the case
of QED [11], we chose the diagram in the Figure 2
because it has a cubic divergence. Another reason for
choosing this diagram is that it is related to the following
theorem and the following symmetry relation. In the
Furry theorem [14], the vacuum expectation value of any
odd number of electromagnetic currents must vanish.
As a consequence, the fermionic amplitude of a point
coupled with an odd number of external photons should
cancel itself out because it possesses an odd number of
vector indexes. The Furry theorem is a consequence of
the charge conjugation symmetry in QED. This ensures
that there are no physical processes that evolve only
photons and have an odd number of external photons.
In the case of one external photon, we have

Tµ = 0 (12)

On the other hand, the conservation of the vector
current (gauge invariance), that is ∂µJµ(x) = 0, or in
the momentum space qµJµ(q) = 0, will lead to a set of
QED Ward identities. For our specific case, the Ward
identity is

qµTµ = 0 (13)

The conservation of the vector current, by the Noether

Figure 2: Tadpole diagram.

theorem, guarantees the conservation of the electric
charge.

Now let us consider the diagram in Figure 2. The QED
Feynman rules result in

TVµ = e

∫
Λ

d4k

(2π)4Tr

{
γµ

1
[(6k + α 6q)−m]

}
(14)

Again, if we do 6 k′ = 6 k + α 6 q the alfa dependence dis-
appears.

The integral (14) has a cubic divergence as we can see.
After taking the trace of the Dirac matrices, using the
identity (5) and directly integrating the finite parts, the
amplitude can be expressed as:

TµV = 4e
{
αqµIquad(m2)− αqν

∫
Λ

d4k

(2π)4
2kµkν

(k2 −m2)2

+ α3q2qν

[∫
Λ

d4k

(2π)4
4kµkν

(k2 −m2)3 − gµνIlog(m2)
]

+ 4α3qνqρqσ[∫
Λ

d4k

(2π)4
gρσkµkν

(k2 −m2)3 −
∫

Λ

d4k

(2π)4
2kµkνkρkσ

(k2 −m2)4

]}
(15)

The conditions

gµνIquad(m2) =
∫

Λ

d4k

(2π)4
2kµkν

(k2 −m2)2 (16)∫
Λ

d4k

(2π)4
4kµkν

(k2 −m2)3 = gµνIlog(m2) (17)

∫
Λ

d4k

(2π)4
gραkµkν

(k2 −m2)3 =
∫

Λ

d4k

(2π)4
2kµkνkρkσ
(k2 −m2)4 (18)

are necessary for the amplitude to be alpha independent
and equally null. Notice that, by Dimensional Regulari-
zation, the amplitude is also zero. Through Dimensional
Regularization (16), (17) and (18) are also satisfied.
Therefore, as became clear in this example, one of
the reasons behind the consistency of the Dimensional
Regularization is this.

The Pauli-Villars Regularization will not satisfy them
as we can see below: The equality (9) is the same as
that found in (17), and we show in (10) and (11) that
the integrals regularized by Pauli-Villars will not satisfy
(9). We need to check only relations (16) and (18). The
left side of (18) regularized results in (11). On the right
side of (18), we have∫

d4k

(2π)4
kµkνkαkβ(m2 − Λ2)
[k2 −m2]4[k2 − Λ2]

= i

(4π)2 gµναβ
(m2 − Λ2)
−4Λ2

· [Y0(m2,Λ2, 0)− 2Y1(m2,Λ2, 0) + Y2(m2,Λ2, 0)]
(19)
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where gµνρσ = gµνgρσ + gρµgνσ + gρνgµσ. Finally, on the
right side of (16), we have∫

d4k

(2π)4
kµkν(m2 − Λ2)2

[k2 −m2]2[k2 − Λ2]2

= i

(4π)2 ·
(m2 − Λ2)2

−m2 gµνY1(m2,Λ2, 0) (20)

and on the left side of (16)∫
d4k

(2π)4
(m2 − Λ2)2

[k2 −m2][k2 − Λ2]2

= i

(4π)2 ·
(m2 − Λ2)2

−m2 Y0(m2,Λ2, 0) (21)

As we can see, the Pauli-Villars regularization violates
the three conditions necessary to guarantee the symme-
tries and the momentum label invariance.

4. Conclusions

We show, in a QED example, that the same three
relations, equations (16), (17) and (18), that guarantee
the invariance under momentum routing, also ensure
the validity of the Furry theorem (charge conjugation
symmetry) and the conservation of the electric charge
(gauge symmetry). The origin of the symmetry vio-
lations introduced by regularization methods can be
mapped through relations between divergent integrals.
These relations appear as differences between integrals
with the same degree of divergence and must be canceled
so that the amplitude is independent of the choice of the
loop moment labeling. The same differences between di-
vergent integrals are responsible for symmetry violations
contained in the original Lagrangian. Note that equality
(9) is the same as that found in (17). In the first order of
approximation, in four dimensions, only three conditions
must be satisfied so that the amplitude is alpha inde-
pendent and consequently preserves all symmetries. The
Implicit Regularization Method will only be consistent
in all orders if we are able to cancel all these surface
terms in each order. The use of identity (5) will gradually
lower the integral’s degree of divergence. Therefore, if we
study a process of the theory with the highest degree
of divergence, all differences between integrals of the
lowest orders will appear. In all orders of Perturbation
Theory we can see that a combination of the Implicit
Regularization Method with any regularization method
that cancels out unwanted surface terms, will always be
able to preserve the original symmetries of a Lagrangian.

A. The Functions Zk and Yk

The integrals, divergent or finite, that we obtain in the
calculation of Green’s functions in QFT, in the first
order of the perturbative series, when treated by any
regularization method or directly integrated, lead to

results that can be expressed in terms of a particular
class of functions. In this appendix we will define these
functions and present some of their relevant limits. This
procedure facilitates the analysis of the results presented
in this work. An important physical aspect that can be
read in these results is the mandatory existence of an
imaginary part in the region where the square module
of the four-vector moment energy is greater than the sum
of the squares of the masses. Other important physical
aspects are the behavior of these functions in the mass
shell and their continuity in all regions of momentum
space.

Let functions Zk(λ2
1, λ

2
2, p

2) and Yk(λ2
1, λ

2
2, p

2) of the
constants λ2

1 and λ2
2 represent two different masses and

the module square of the moment-energy four-vector p2.
Let us first define them in a general way and then
study them in the particular cases where the results
of amplitudes calculated in QFT can be expressed, as
shown in [9] and [12].

The Zk and Yk functions are defined as:

Zk
(
λ2

1, λ
2
2, p

2)
=
∫ 1

0
dz ln

[
p2z (1− z) + z

(
λ2

1 − λ2
2
)
− λ2

1
(−λ2

2)

]
zk

(22)

Yk
(
λ2

1, λ
2
2, p

2)
=
∫ 1

0
dz

zk(1− z)(−λ2
2)

[p2z (1− z) + z (λ2
1 − λ2

2)− λ2
1] (23)

k = 0,±1,±2 . . . . These functions, as we can see from
the expression above, are related by:

Yk+1
(
λ2

1, λ
2
2, p

2) = −λ2
2
∂

∂p2Zk
(
λ2

1, λ
2
2, p

2) (24)

When we calculate these integrals, for k = 0, 1, 2 we get
as results:

Z0 = −1
2

[
(p2 − λ2

2 + λ2
1)

p2 ln
(
λ2

2
λ2

1

)
+ F ·G

p2 + 4
]

(25)

Z1 = −1
2

{[
(p2 − λ2

2 + λ2
1)2

2p4 − λ2
1
p2

]
ln
(
λ2

2
λ2

1

)
+ (p2 − λ2

2 + λ2
1)

p2 + 1 + (p2 − λ2
2 + λ2

1)
2p4 F ·G

}
(26)

Z2 = −1
3

{
1
2

[
(p2 − λ2

2 + λ2
1)3

p6 − 3λ2
1

(p2 − λ2
2 + λ2

1)
p4

]
ln
(
λ2

2
λ2

1

)
+ (p2 − λ2

2 + λ2
1)2

p4 + (p2 − λ2
2 + λ2

1)
2p2 − 2λ

2
1
p2 + 2

3
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+ 1
2

[
(p2 − λ2

2 + λ2
1)2

p6 − λ2
1
p4

]
F ·G

}
(27)

Y0 = λ2
2

2p2

{
ln
(
λ2

2
λ2

1

)
+ (p2 − λ2

2 + λ2
1)G
F

}
(28)

Y1 = λ2
2

2p2

{[
1− (p2 − λ2

2 + λ2
1)

p2

]
ln
(
λ2

2
λ2

1

)
+
[
(p2 − λ2

2 + λ2
1) + 2λ2

1

− (p2 − λ2
2 + λ2

1)2

p2 − 2
]
G

F

}
(29)

Y2 = λ2
2

2p2

{
1
2

[
(p2 − λ2

2 + λ2
1)2

p4

+ (p2 − λ2
2 + λ2

1)
p2 − λ2

1
p2

]
ln
(
λ2

2
λ2

1

)
+ 1 + 2(p2 − λ2

2 + λ2
1)

p2

+
[

(p2 − λ2
2 + λ2

1)3

p4 + (p2 − λ2
2 + λ2

1)2

p2

− 3λ2
1

(p2 − λ2
2 + λ2

1)
p2 − 2λ

2
1
p2

]
G

F

}
(30)

where F = F (λ1, λ2, p
2) and G = G(λ1, λ2, p

2). They
are functions defined in three distinct regions:
region 1: p2 < (λ1 − λ2)2,

F = −
√

(λ1 − λ2)2 − p2
√

(λ1 + λ2)2 − p2 (31)

G = 2 ln
[√

(λ1 + λ2)2 − p2 −
√

(λ1 − λ2)2 − p2√
(λ1 + λ2)2 − p2 +

√
(λ1 − λ2)2 − p2

]
(32)

region 2: p2 > (λ1 + λ2)2,

F =
√
p2 − (λ1 − λ2)2

√
p2 − (λ1 + λ2)2 (33)

G = 2 ln
[√

p2 − (λ1 − λ2)2 −
√
p2 − (λ1 + λ2)2√

p2 − (λ1 − λ2)2 +
√
p2 − (λ1 + λ2)2

]
+ 2iπ

(34)

region 3: (λ1 − λ2)2 < p2 < (λ1 + λ2)2 ,

F = i
√
p2 − (λ1 − λ2)2

√
(λ1 + λ2)2 − p2 (35)

G = −4i arctan
[√

(λ1 + λ2)2 − p2√
p2 − (λ1 − λ2)2

]
(36)

The study of the behavior of these functions at points
p2 = (λ1 − λ2)2 and p2 = (λ1 + λ2)2 is required to
interpret them as part of amplitudes related to some
physical processes. A brief study of the limits shows that
the Z functions are continuous at these points and the
Y functions are discontinuous at the considered points.

A.1. Functions Zk(λ2, p2) and Yk(λ2, p2)

The results in this section are useful for calculating
processes involving fermion loops or theories with a
single mass. For this purpose we replace λ2

1 = λ2
2 = λ2 in

the functions Y and Z. As we have equal masses there
are two different situations, which we will separate into
region a and b. Region a when p2 < 4λ2 and region
b when p2 > 4λ2. With that we can finally write the
functions Z s and Y s as:

Za0 (λ2, p2) =
√

4λ2 − p2

|p|

×

[
2 arctan

(√
4λ2 − p2

|p|

)
+ π

]
− 2

(37)

Zb0(λ2, p2) = −
√
p2 − 4λ2

|p|

×

[
ln
(
|p| −

√
p2 − 4λ2

|p|+
√
p2 − 4λ2

)
+ iπ

]
− 2

(38)

The other functions can be written in terms of Z0 as we
can verify, namely:

Z0 = −F ·G2p2 − 2

Z1 = −1
2

(
F ·G
2p2 + 2

)
= Z0

2

Z2 = −1
3
F ·G
2p2

(
1− λ2

p2

)
+ 2λ2

3p2 −
13
18

= Z0/3
(

1− λ2

p2

)
− 1

18 (39)

In the same way for the Y functions we have:

Y0 = λ2

2
G

F

Y1 = λ2

p2 (2Y0 − 1)

Y2 =
(

2− 3λ
2

p2 − 2λ
2

p4

)
Y0 −

λ2

2p2 (40)

where

Y a0 (λ2, p2) = λ2

2


2π + 4 arctan

(√
4λ2−p2

|p|

)
|p|
√

4λ2 − p2

 (41)

Y b0 (λ2, p2) = λ2

2


2 ln

(
|p|−
√
p2−4λ2

|p|+
√
p2−4λ2

)
+ 2iπ

|p|
√
p2 − 4λ2

 (42)
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A.2. Functions Zk(p2 � 1) and Yk(p2 � 1)

In this section we will study the behavior of the functions
Zs and Y s, equations (4) to (9), at the limit where the
four-vector moment-energy module tends to zero and see
that these functions are well behaved at the origin.

If we expand function Z0 and function Y1 to small
values of p2, as an example, and then take the limit, we
see that these functions are well behaved at the origin.
We have the expression below, considering we only have
up to p4:

Z0
(
λ2

1, λ
2
2, p

2 � 1
)

= −
[

λ2
1λ

2
2

(λ2
1 − λ2

2)3 p
2 + (λ2

1 + λ2
2)

2(λ2
1 − λ2

2) + 1
2

]
ln
(
λ2

2
λ2

1

)
− (λ2

1 + λ2
2)2 + 4λ2

1λ
2
2

2(λ2
1 − λ2

2)4 p4 − (λ2
1 + λ2

2)
2(λ2

1 − λ2
2)2 p

2 − 1

(43)

Y1
(
λ2

1, λ
2
2, p

2 � 1
)

= λ2
2

{
p2[(λ2

1 + λ2
2)2 + 4λ2

1λ
2
2]− (λ2

1 + λ2
2)(λ2

1 − λ2
2)2

2[2p4λ2
1λ

2
2 + p2(λ2

1 + λ2
2)(λ2

1 − λ2
2)2− (λ2

1 − λ2
2)4]

− λ2
1λ

2
2(λ2

1 − λ2
2)

[2p4λ2
1λ

2
2 + p2(λ2

1 + λ2
2)(λ2

1 − λ2
2)2 − (λ2

1 − λ2
2)4]

× ln
(
λ2

2
λ2

1

)}
(44)

Taking the limit p2 = 0 we have:

Z0
(
λ2

1, λ
2
2, 0
)

= −
(

(λ2
1 + λ2

2)
2(λ2

1 − λ2
2) + 1

2

)
ln
(
λ2

2
λ2

1

)
− 1

(45)

Y1
(
λ2

1, λ
2
2, 0
)

= λ2
2(λ2

1 + λ2
2)

2(λ2
1 − λ2

2)2 + λ2
1λ

4
2

(λ2
1 − λ2

2)3 ln
(
λ2

2
λ2

1

)
(46)

We can see by these expressions that the coefficient
of p2 in Z0 expansion is just Y1(λ2

1, λ
2
2, 0) which is in

accordance with the equation (A.3). The other functions
Zk and Yk can be obtained by replacing p2 = 0 and
directly integrating (A.1) and (A.2).

A.3. Functions Zk(λ2
1 � 1) and Yk(λ2

1 � 1)

Finally, we show the behavior of these functions at the
limit λ→∞. These results are useful mainly to calculate
divergent amplitudes using the regularization of Pauli-
Villars, in which we introduce a regularization parameter
λ playing the role of one of the masses. Taking this limit
for the functions Z0 and Y0 we have:

lim
λ2

1→∞
Z0(λ2

1, λ
2
2, p

2) = lim
λ2

1→∞

(
1− λ2

2
2p2

)
ln
(
λ2

2
λ2

1

)
− 2

(47)

and

lim
λ2

1→∞
Y0(λ2

1, λ
2
2, p

2) = lim
λ2

1→∞
− λ2

2
2p2 ln

(
λ2

2
λ2

1

)
(48)

that diverge logarithmically. The other functions Zk and
Yk will have the same behavior as can be easily verified.
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