
Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167 (2020) Articles
www.scielo.br/rbef cb

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167 Licença Creative Commons

An acquisition system framework for mechanical
measurements with Python, Raspberry-Pi and MEMS

sensors
Gabriel H. Cassel Barbosa1, Marcus Varanis*1 , Kelven M. S. Delgado1, Clivaldo de Oliveira1

1Universidade Federal da Grande Dourados, Faculdade de Engenharia, Dourados, MS, Brasil

Received on April 30, 2020. Revised on September 08, 2020. Accepted on September 10, 2020.

In this paper, we propose the development of a low-cost acquisition system using Raspberry-Pi 3 and MEMS
accelerometers to measure vibrations in mechanical systems. The main objective is to assemble a signals acquisition
system easy to handle, of low cost and good accuracy for teaching and industrial purposes. The central idea is that
the signals are acquired and processed in the Raspberry-Pi. The Python language and numerical libraries (scipy,
numpy and matplotlib) are used for implementation of acquisition and signal processing. This paper proposes
the study of vibrations in time and frequency domain. The acquisition system proposed can be easy implemented
and the results obtained had good precision (time and frequency domain) and agree with the literature.
Keywords: Acquisition system, Raspberry-Pi, Python, MEMS, Mechanical vibrations.

1. Introduction

Open platform-based microcontrollers, which, in gen-
eral, use the Arduino and Raspberry-Pi microcontroller
as an acquisition system in conjunction with several
MEMS sensors to measure vibrations in mechanical sys-
tems are now available to a wide range of students, pro-
fessionals and young researchers, in the most diverse
areas of knowledge.

Mechanical vibrations measurement is one of the most
important types of measurement applied to engineering
today, either for the study itself as modal analysis [1, 2]
or even the development of control of dynamical sys-
tems based on these studies [3], and we can mention the
structural health monitoring of machine components [4],
such as rotating elements [5], wind turbines [6], com-
pressors, pumps, fans, among others. Linked to such a
study is the use of accelerometers that are sensors of
the most variety such as piezoelectric, piezoresistives and
capacitives [7].

With the growing availability of low-cost, open source
technology in a wide range of devices, associated with
ease of use, such as the Arduino and Raspberry-Pi
microcontrollers, the application of these devices has
been widely used in teaching and scientific develop-
ment [8]. This work is in line with these new technolo-
gies, including a modal study of vibrations using micro-
electromechanical system accelerometers (MEMS) and
the development of high-level Python programming, all
together in an affordable Raspberry-Pi based acquisition
system.

* Correspondence email address: marcusvaranis@ufgd.edu.br

The Raspberry-Pi is a card-sized microcomputer,
whose initial proposal was to bring programming and
computer teaching to schools of developing countries.
However, the Raspberry-Pi has brought together other
open source technologies in which it has enabled appli-
cations in various areas of modern physics and engi-
neering. A system based on MEMS accelerometers and
Raspberry-Pi can be found in [9], it is a proposal for
an urban seismic network in real time in Sicily (Italy).
MEMS are already being used in applications such as
fall detection systems [10, 11], angle measurement [12]
and robot control [13]. Another important part of the
Raspberry-Pi development is the possibility of devel-
oping applications with cloud storage [14], internet of
things (IoT) [15], face recognition [16].

This work also aims to expand the proposals initi-
ated in [17] where the introduction of an easy to use,
low cost and good precision signal acquisition system
is presented, with didactic objectives for applications in
teaching physics and engineering. The same mechanical
system proposed in [18] is used here, to compare using
Raspberry-Pi, where the performance of two accelerom-
eters of the MEMS type, ADXL335 and MPU6050 with
an acquisition system based on the Arduino microcon-
troller, is evaluated, where the results are obtained to
evaluate the dynamic structure response Shear build-
ing type with 3 degrees of freedom, excited by a non-
ideal source. A long and in-depth study on the use
of MEMS accelerometers for the analysis of mechani-
cal vibrations can be seen in [19]. In-depth study of
mechanical vibrations and modal analysis with teach-
ing applications using Arduino and MEMS sensors can
be seen in [20–22]. In this way, this study proposes the

Copyright by Sociedade Brasileira de F́ısica. Printed in Brazil.

www.scielo.br/rbef
https://orcid.org/0000-0001-8932-1035
emailto:marcusvaranis@ufgd.edu.br

e20200167-2 An acquisition system framework for mechanical measurements

use of a data acquisition system based on Raspberry-
Pi, Python language and MEMS sensors for mechan-
ical measurement applications. As already mentioned,
to avoid the complexity of the experiments and espe-
cially the high cost involved, this study uses the mini-
PC Raspberry-Pi 3 using the Python 3 language and
MEMS sensors (ADXL345, MPU6050 and MMA7555).
The paper is organized as follows. Some definitions of
framework Overview and setup is presented in Section 2.
The Experimental Procedure is presented in Section 3.
Section 4 describes the experimental results. In Section 5
the paper ends with some final remarks.

2. Framework Overview and Setup

2.1. Raspberry-Pi

The board used in this project is the version Raspberry-
Pi 3 model B, which is provided with a BCM2837B0
Broadcom chipset with a 1.4 Ghz clock, 1 GB of RAM
memory and a 8 GB Sd card for its removable hard disk
memory, there is also a 4.1 Bluetooth, an on board wire-
less, one HDMI port, four USB port, one Ethernet input
and 40 GPIO connection pins for custom hardware con-
nection. It uses 2.5 A and must be adequate connected
to a stable 5V power source. All of this concentrated
in an 8,56cm × 5,6cm × 2,1cm board. Before using the
Raspberry-Pi, it must be properly setup. As it comes
with no factory configuration, the operation system (OS)
and its installation inside an SD card is essential and for
that a personal computer with an SD card reader and
internet is needed. This first setup is crucial and the
Raspbian operational system comes with all program-
ming software and other programs entirely used in the
project. With the SD card already containing the OS and
inserted in the device it is also necessary to establish
physical connection between Raspberry-Pi and MEMS
accelerometer. The digital I2C transmission cables con-
nection is made in the proper Raspberry-Pi’s Pins, as
shown in Figure 1.

Figure 1: Sensor connection to GPIO ports.

Even with the proper connection, the communication
between both devices is yet not possible. Before, the I2C
port must be enable inside the Raspberry-Pi configura-
tions so the microprocessor will be able to initialize and
use its I2C port. After this, the next step is to install a
tool package to detect the accelerometers addresses that
are connect to the I2C port. Besides that, in some cases,
another configuration must be done inside the folders
that define the I2C communication parameters, this is
done so the transmission velocity limit is raised using
Raspbian system terminal commands.

The last setup is about installing the needed mod-
ules for the Python software already incorporated to the
OS. Then, the modules used during the project, such as
SMBus, datetime and numpy can be installed.

After all the setup steps properly conducted, the
Raspberry-Pi can detect the accelerometers and iden-
tify its addresses. And the program, written in Python
language, will be able to use its modules to configure
and collect digital data coming from the accelerometer,
according to its respective limitations and factory inter-
nal functions further discussed.

2.2. MEMS sensors

In this work, the accelerometers ADXL345, MPU6050
and MMA7455 are used. The ADXL345 is a small, low-
power, three-axis accelerometer, with high resolution
measurement (13 bits) at 16g (gravity), it has digital
output from Analog Devices and selectable measure-
ment ranges in gravities, 2 g, 4 g, 8 g or 16 g, which
determine the range of motion, and a fixed sensitivity of
4 mg/LSB. Measuring only 3mm × 5mm × 1mm and
with low energy consumption, which is between 40 A
to 145 A, and by default the connection via the digital
interface I2C and SPI [23]. Its data rate at the output is
between 6.25Hz and 3200Hz with a bandwidth between
3.125Hz and 1600Hz. The minimum operating tempera-
ture of −40C and the maximum of +85C.

The MPU6050 is the first integrated 6-axis Motion-
Tracking device that combines a 3-axis gyroscope, a
3-axis accelerometer, and a Digital Motion Processor,
all on a 4mm × 4mm × 0.9mm plate. The user-
programmable accelerometer features scales of 2g, 4g,
8g and 16g, its 16-bit resolution, with a consumption of
500uA in normal operations, and the I2C communication
interface. The operating temperature is between −40C
to 85C, with bandwidth ranges from 5Hz to 260Hz, and
acquisition rate from 10Hz to 520Hz [24].

The MMA7455 is an I2C digital output sensor, low
power, capacitive and with signal conditioning and low
pass filter. It has a resolution for 3 acceleration ranges,
2g, 4g, 8g. It has a resolution of 10 bits, a consumption of
400uA, operates between the voltage of 2.4V and 3.6V,
and works in the temperature range of −40C to 85C.
Their bandwidths are 62.5Hz and 125Hz, with their data
collection rates of 125Hz and 250Hz [25].

Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167

Barbosa et al. e20200167-3

Figure 2: Acquisition system schemes.

2.3. Mechanical system

The acquisition system scheme (Figure 2) that was used
is validated from a test bench, already used in [18],
Figure 3. As shown in [18] the natural frequencies of
the structure are 4.09 Hz, 12.54 Hz and 19.32 Hz. So the
experimental procedures and the structure are the same
applied previously in a vibration analysis using MEMS
and Arduino.

Figure 3: Mechanical system studied (Three story shear
building).

2.4. Python programming

The program made in python language must attend the
objective of creating an acquisition instrument and pro-
vide data storage so the user is able to access, transport
and handle the numerical data collected, being free to
use it in others software or platforms.

As the python language is vast, there are several
useful modules that can manage all the work required
by the data acquisition system. Thus, eliminating the
need to use more software and others programming lan-
guages. Thereby, creating a light program with low com-
putational cost and easy utilization. According to the
simple and powerful Raspberry-Pi hardware along the
accelerometers.

The most important module is the SMBus, whose uti-
lization aims at controlling the accelerometers by func-
tions which inputs are the accelerometer I2C address, the
functions registers and the hexadecimals numbers that
define the way the device perform its internal functions
which parameters are provided by each accelerometer
user guide. All the three show a variety of configurations.
Emphasizing that the same module will be used for all
the devices, this way there is a possibility of adapting an
already completed program so it can work with certain
device that offers a I2C digital connection port.

Then, using the module functions, it is possible to
send and collect the device data with a proper Python
program.

Each function (register) from an accelerometer have
its own specific address determined by its user guide in
the register map. Not all the functions are configurable,
some have only the ability to be readable so can uniquely
send information, other functions can only be writable so

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167 Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020

e20200167-4 An acquisition system framework for mechanical measurements

can just receive configuration parameters and some have
both abilities. It is necessary to read all the information
from the manuals, so all functions utilities and modifi-
cations are known for appropriate usage. The functions
inputs parameters are performed by hexadecimal values.
In each user guide configurable register there is a way of
modifying internal functions. For that reason, when pro-
gramming, care must be taken to interpret how to acti-
vate and disable what is interesting as output. Finally,
the adjusted value for the function configuration must
be converted from its binary or decimal base to a hex-
adecimal base that is introduced in a function as input.
Then, the registers are used in the program so the mea-
surement is configured according to the user preferences.

Even though the three accelerometers have different
internal functions, the digital communication and the
modules utilized are the same. Besides that, the logical
sequence conducted by the three is the same.

The discrepancy between the accelerometers is in the
configuration of measurements parameters and the data
outputted conversion. For each accelerometer, its scales
define how the digital data are going to be transformed
into decimal base numbers that represent a value of
acceleration in a known unity of measure. The more rel-
evant differences are going to be explained next for each
accelerometer.

As mentioned before, each accelerometer has differ-
ent registers, which hexadecimals values, obtained from
the user manual, are used in SMBus module functions
to change the internal configurations. So, the main dif-
ferences are the values that represent the register and
the parameters that the registers can change. In the
ADXL345, the most relevant registers, in hexadecimal
base are: 0 × 2D, which can change the measurement
mode of data; the register 0 × 2C, that alter the band-
width; and the register 0 × 31, responsible for deter-
mining the measuring range. Furthermore, the registers,
0 × 32 to 0 × 37, are the output for accelerations data
for each axis. For each one of the three axes, there are
two outputs, an LSB (Least Significant Bit) and an MSB
(Most Significant Bit) output, both having 8 bits each,
that need to be converted, as further explained. For the
MPU6050, the most significant registers are: 0 × A1,
capable of setting the bandwidth; the 0 × 1C register,
which is responsible for the scale adjusting for the mea-
sures; and for configuring the measuring mode, the reg-
ister 0 × 6B. The registers 0 × 59 to 0 × 64 are the
acceleration output for each axis, also in LSB and MSB,
each one having 16 bits of data.

Worth mentioning that this accelerometer also has a
gyroscope which can measure angular velocity in three
axes. However, neither gyroscope measurements neither
internal thermometer are being used in this project, but
both can be easily added by implementing the rights
registers in the program. Beyond that, this one diverges
from the others in his manual, because the configurations
are made from a decimal entry to the proper hexadecimal

utilized in the program. Different from the others that
the configuration of each of the 8-user defined binary
bits, which are too switched to hexadecimal values.

Differently from the others, this accelerometer has
scale and measure mode configuration in the same regis-
ter defined by the hexadecimal 0 × 16. Using the 0 × 18
register, the bandwidth is chosen, in this case, between
62.5 and 125 Hz. The data output is done through the
registers 0 × 00 to 0 × 05, which output values have the
size of 10 bits and each axis present data in LSB and
MSB. In the same way as the ADXL345, the configura-
tion parameters must be determined from a binary base
and then converted to the hexadecimal base, the correct
input in the functions from the SMBus module.

2.5. Data acquisition

Having all the register and the proper configurations
parameters, the write functions inside the SMBus mod-
ule are used to send and determine which scale, band-
width and measure mode will be assigned. After that, a
loop made with the output acceleration data registers is
used to gather the data. This loop was based on another
used in a project that collected data with Arduino and
MEMS accelerometers [17].

To deal with time, the datetime class from the date-
time module was chosen due to its accuracy and easy
handle of operations in the microsecond resolution.
Thus, the loop compares the times between the dif-
ference of start from the previous acquisition and the
current time so when the period from the user deter-
mined frequency is reached a new acquisition is started
and the process of comparison initiates again. This loop
keeps gathering data until the user determined duration
is reached, stopping the measurement.

When using datetime module in time comparison
operations, attention should be taken in the fact that
only objects of the same kind from these modules can
be compared. For that reason, frequency and measure
duration inserted by the user, which are “string” class
objects, must be converted to datetime class objects, so
both can be compared.

In each data gathering, output functions for the three
axes are used together with hexadecimal registers and
the IC accelerometers registers. Is now that the read
functions from the SMBus module are applied with the
output data registers for each axis in LSB and MSB
and all data from the record is stored in a list, in which
each line is a samples and the six columns are the values
obtained from the registers. Beyond that, the time when
each sample was gathered is stored in another list so
it can be displayed with the acceleration to the user.
Much importance was given to use low processing mem-
ory from the Raspberry-Pi. Therefore, real time data
is no shown to the user as this operation would waste
memory. Thus, all data is only stored by the list method
“append”, which add elements to the acceleration and

Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167

Barbosa et al. e20200167-5

time lists each time data is collect in the loop so compu-
tational cost during measurement is reduced. This way,
lower is the chance of a gathering take more time than
the period required by the frequency inserted by the
user.

2.6. Data conversion

After the acquisition, all the acceleration is inside a large
list and inside each column there is a list containing both
LSB and MSB data for each axis. The next step is to
apply a function defined inside the program to make the
proper conversion for the accelerometer out- put data.
This is done for the three axis and for all the values
inside the lines which are the samples recorded in each
loop and stored in the large acceleration list.

Each accelerometer has a different conversion function
because theirs outputs have different sizes. While the
ADXL345 and MMA7455 data in 10 bits, the MPU6050
sends it in 16 bits. Thus, each acceleration output in
LSB must be combined with the MSB out- put and
then multiplied by a scale factor so the output values
are turned in to decimal values in the standard gravity
acceleration unit.

The conversion function uses python logic operators
to manipulate and combine binary data. Depending on
the output value a function is used so is necessary one
for the 8 bits output and another for the 16 bits. Then,
the acceleration list that holds the collected data from
the loop is converted into a list with only three columns,
one for each axis.

After combined, the values must be multiplied by the
scale factors, which transforms data to the gravity accel-
eration units. The factors change for each scale and
output measured so they must be obtained inside the
accelerometers devices documentation.

A code implementation allows the user to choose the
measurement scale, so the adequate factor is adjusted for
the last conversion to the proper magnitude. After that,
the values can be easily transformed to the international
acceleration unity system (m/s2) by a simple multiplica-
tion. Thus, the final values are ready to be stored utilized
outside the measurement device program.

2.7. Data storage

An easy and well known way to extract and save this
already converted data is by creating a cvs (“Comma
Separated Value”) format file, in which can be read by
the most common and free spreadsheet editors, already
incorporated in the Raspberry-Pi operational system.

For this purpose, a csv module must be utilized and
the data inside the list be converted to string class when
writing the new file. The file name takes the actual date
and time when the creation is being done to make easier
to handle sequential measurements. Beyond that, a loop
is used so all lines and columns from the list are placed
inside the new archive which is closed and saved when
the loop reaches its end.

2.8. Signal processing

In the acquisition and experimental signals for the anal-
ysis of mechanical vibrations, through accelerometers, it
is ideal to analyze not only their representation in the
time domain, but also their response in the frequency
domain. For the response in the frequency domain, the
Fast Fourier Transform (FFT) algorithm was used. In
this work, it was used the fftpack module from the scipy
library.

Another important implementation was the devel-
opment of time-frequency analysis through Short time
Fourier Transform (STFT), in order to quantify the
change in the frequency of a non-stationary signal over
time. In this work, it was used the module signal.stft
from the scipy signal processing library. All graphics gen-
erated by the acquisition system are made with the Mat-
plolib module from the same library.

In order to produce the FFT and STFT it is necessary
a time step, that is the sample rate of the measurement.
During the data gathering loop, the code compares the
previous time that data was collected with real time pro-
vided by the Raspberry Pi to assure that the right period
of time determined by the user is followed. However, the
time collected from the microcomputer comes with its
own part of error and commands used in the code take
some time to be processed by the computer. Therefore,
sample rate is asynchronous and each measurement has
different errors in time period that depends of compu-
tational processing. As time sample is not uniform, the
value used for FFT and STFT is a mean, provided by
the division of total gathering operation time and total
samples. It is a very complex task to obtain synchronous
rates using such a simple wiring connection and depend-
ing on computers, even more time accuracy must be pur-
sued in future research.

3. Experimental Procedure

For the resonance condition, using an unbalanced motor,
whose vibration frequency is defined by the voltage sup-
plied which is described by the Figure 4 graph, receiv-
ing power from a controllable voltage power source. The
data were collected using the measuring instruments for
the exciting motor in the frequencies of 4.2Hz, 13.12Hz
and 20.4Hz, corresponding respectively to a voltage of
3V, 6V and 9V. All measurements were made within
a given interval of 10 seconds, enough time to observe
the vibratory nature of the structure in resonance. In
order to demonstrate the application of signals with non-
stationary characteristics through the STFT, a second
experiment conditioned the structure with a motor that
started from zero up to the frequency of 20.4 Hz with
its corresponding 9V of voltage in the power source of
the motor. Then, the same 10 seconds interval applied
in this procedure for all accelerometers. The location of
the accelerometer sensor is presented in Figure 5.

In the experiment, all three accelerometers must be
positioned in the right place, the placement is in the

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167 Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020

e20200167-6 An acquisition system framework for mechanical measurements

Figure 4: Voltage vs frequency curve of the motor used.

Figure 5: Location of the accelerometer sensor.

lower part on the side of the highest plate that made
the structure as shown in Figure 6. The Raspberry-Pi
was connected to the accelerometer and the necessary
display controller and its power source Figure 6.

Each type of measurement must be evaluated prior
to determine the parameters chosen to suite the limits

Figure 6: Raspberry-Pi 3 and connections during experiment.

of the measurement instrument and the magnitude of
the evaluated phenomenon. Then, for the measurement
of the excited structure at a maximum of 20.4 Hz,
the minimum quality requires a sampling frequency of
40.5 Hz, twice the original signal frequency of the struc-
tural excitation, following the Nyquist Sampling Theo-
rem for the correct construction of the signal by the Fast
Fourier Transform. As each accelerometer presents dif-
ferent bandwidth configurations, different sampling fre-
quencies are used as needed for the vibration accelera-
tion signal of the structure.

First, for the MPU6050 accelerometer, all collections
were made with the measuring instrument set to the
same bandwidth of 94 Hz and a 188 Hz sampling fre-
quency. Being 94 Hz the appropriate bandwidth for the
maximum rated excitation of 20.4 Hz.

Using the MMA7455, the instrument settings for the
measurements excited by 4.2 Hz and 13.12 Hz were
62.5 Hz for a bandwidth and 125 Hz for a sampling
frequency. For the 20.4 Hz excitation, a bandwidth
and sampling frequency respectively set to 125 Hz and
250 Hz.

For the ADXL345 configuration, the 4.2 Hz and
20.4 Hz frequency excitation measurements were made
with 50 Hz bandwidth and 100 Hz sample collection fre-
quency. Then for 13.12 Hz excitation, 100 Hz bandwidth
and 200 Hz sampling frequency were selected for the
acceleration acquisition.

The experimental procedure followed all the instruc-
tion to be as close as the procedures of vibration mea-
suring conducted in the previous works using the same
mechanical structure. Thus, more details in how to cor-
rectly repeat the experiment can be found in [18], which
results will be compared to the obtained in this work.

4. Results

As the results show in Figures 7, 8 and 9 for the mea-
sure of the mechanical system in a resonance condition,

Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167

Barbosa et al. e20200167-7

Figure 7: Signal measured when the structure is excited by a
frequency of 4.2 Hz using the ADXL-345 accelerometer: a) Time
history and b) Fast Fourier Transform.

Figure 8: Signal measured when the structure is excited by a fre-
quency of 12.99 Hz using the ADXL-345 accelerometer: a) Time
history and b) Fast Fourier Transform.

Figure 9: Signal measured when the structure is excited by a fre-
quency of 20.89 Hz using the ADXL-345 accelerometer: a) Time
history and b) Fast Fourier Transform.

the FFT was capable of provide a peak that approaches
the frequency expected from the excitation of the unbal-
anced motor in the three different vibration frequencies
(4.2 Hz, 12.99 Hz, 20.89 Hz) provided by the motor using

the ADXL345. The other accelerometers presented sim-
ilar results of acceleration and the same peak for the
frequencies in this condition. This peak is observed and
comparable to previous works and matches with the
results obtained for the measuring instrument from this
work in the same experimental procedure. All the com-
parisons are in evidence in Table 1.

For the starting motor experiment, the results at
Figures 10, 11 and 12, the STFT shows that the vibra-
tion frequency increases over the 10 seconds interval. It is
possible to notice, in all the analyzes made with STFT,
the characterization of the 3 natural frequencies of the
structure, during the excitation through the motor start,
non-stationary regime.

Table 1: Comparison table of the results of this work with the
previous of [17] and [18].

This work
ω1 ω2 ω3

MPU6050 4.1 Hz 13.09 Hz 20.89 Hz
MMA7455 4.2 Hz 12.99 Hz 20.89 Hz
ADXL345 4.4 Hz 12.99 Hz 20.89 Hz

Varanis 2017
Analytical 4.09 Hz 12.54 Hz 19.32 Hz
ADXL335 4.08 Hz 12.94 Hz 20.26 Hz
MPU6050 4.10 Hz 12.84 Hz 20.25 Hz

Varanis 2018
Analytical 4.09 Hz 12.54 Hz 19.32 Hz
FEM 4.75 Hz 14.69 Hz 24.36 Hz
DeltaTron 4.028 Hz 12.94 Hz 20.26 Hz
MPU6050 4.028 Hz 12.94 Hz 20.26 Hz
ADXL345 4.028 Hz 12.94 Hz 20.26 Hz
ADXL335 4.028 Hz 12.94 Hz 20.26 Hz

Difference (Calculated in relation to
Analytical results – Varanis 2018)

MPU6050 0,24% 4.39% 8.13%
MMA7455 2.69 % 3.59% 8.13%
ADXL345 7.58% 3.59% 8.13%

Figure 10: Signal measured (motor run-up 0-9v) measurement
with MPU6050: a) Time history and b) Short Time Fourier
Transform.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167 Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020

e20200167-8 An acquisition system framework for mechanical measurements

Figure 11: Signal measured (motor run-up 0-9v) measurement
with MMA7455: a) Time history and b) Short Time Fourier
Transform.

Figure 12: Signal measured (motor run-up 0-9v) measurement
with ADXL345: a) Time history and b) Short Time Fourier
Transform.

5. Final Remarks

This article presents an expansion of previous works
started in [17, 18], which proposed to measure mechan-
ical vibrations using the Arduino microcontroller and
low-cost sensors for educational purposes. The results
presented in this work show good precision of the acqui-
sition system in the domain of time and frequency, when
compared to other instruments and analytical analyzes
for the same mechanical structure in two conditions of
vibration. Its low cost and small size have proven to be
an easy-to-use resource in modal analysis and mechani-
cal vibration applications. One of the great advantages
of the proposed system is the fact that the acquisition,
processing, and storage of the signals takes place in
the Raspberry-Pi itself, in an automated way without
the need for external software to export the registered
data. With respect to signal processing, the system can
perform analysis via FFT and time-frequency analysis
using STFT, which allows the analysis of non-stationary
signals. The Python language was also shown to be
suitable for project implementation due to the ease of
communication with the sensors and the construction of

data acquisition and signal processing mechanisms using
the mentioned libraries. The sensors used showed results
in accordance with the literature, as shown in Table 1.
Due to the low cost, ease of customization and presented
results, the presented framework is very useful for appli-
cations in undergraduate and graduate courses gradua-
tion in physics and engineering, in addition to presenting
the possibility of being used in a wide range of applica-
tions, from teaching and research to even industrial.

For accelerometers used, there is a maximum data
rate, a maximum sample frequency, that the connec-
tions can receive and sending between the two devices
that make up the instrument. This is because the digi-
tal I2C communication between the accelerometers and
the Raspberry-Pi is simple but limited in the number
of bytes that can be transferred per second. Therefore,
that one used for the measuring instrument is suitable
only in the case of acceleration measurements whose
sampling rate is below the frequency specified for each
accelerometer.

Acknowledgments

The authors acknowledge the Conselho Nacional de
Desenvolvimento Cient́ıfico e Tecnológico (CNPq) for
the support.

Appendix

ADXL345
import smbus2 as smbus
#import smbus
from datetime import datetime, timedelta
import time
from numpy import∗

bus = smbus.SMBus(1) # Defines Bus as object of class
Smbus

address = 0x53 # Accelerometer hexadecimal address

PARAMETERS AND RECORDS IN HEXADECIMAL
ADXL345

ACCEL 2G = 0x00 #RANGE
ACCEL 4G = 0x01
ACCEL 8G = 0x02
ACCEL 16G = 0x03
SCALE MULTIPLIER 2G = 4/1024

MULTIPLICATORS FOR G
SCALE MULTIPLIER 4G = 8/1024
SCALE MULTIPLIER 8G = 16/1024
SCALE MULTIPLIER 16G = 32/1024
BW RATE 1600HZ = 0x0F
BW RATE 800HZ = 0x0E
BW RATE 400HZ = 0x0D
BW RATE 200HZ = 0x0C
BW RATE 100HZ = 0x0B
BW RATE 50HZ = 0x0A
BW RATE 25HZ = 0x09
BW RATE 12 5HZ = 0x08

Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167

Barbosa et al. e20200167-9

BW RATE 6 25HZ = 0x07
BW RATE 3 13HZ = 0x06
BW RATE 1 56HZ = 0x05
BW RATE 0 78HZ = 0x04
BW RATE 0 39HZ = 0x03
BW RATE 0 20HZ = 0x02
BW RATE 0 10HZ = 0x01
BW RATE 0 05HZ = 0x00
SCALE REGISTER = 0x31 #RANGE CONTROL
BW REGISTER = 0x2C # CONTROL BANDWIDTH
MODE REGISTER = 0x2D # CONTROL THE

MEASUREMENT MODE
MEASURE MODE = 0x08 # MEASURE MODE
−− Functions −−

def convert LSBandMSB(raw val): # CONVERTS DATE
TO 10 BITS

convert val = (raw val [1] \& 0x03) ∗ 256 + raw val [0]
if convert val > 511:

convert val −= 1024
return convert val

def option scale(SCALE):
if scale == int(2):

return [ACCEL 2G,SCALE MULTIPLIER 2G]
elif scale == int(4):

return [ACCEL 4G,SCALE MULTIPLIER 4G]
elif scale == int(8):

return [ACCEL 8G,SCALE MULTIPLIER 8G]
elif scale == int(16):

return [ACCEL 16G,SCALE MULTIPLIER 16G]

def option banda(banda):
if banda == int(0.05):

return BW RATE 0 05HZ
elif banda == int(0.10):

return BW RATE 0 10HZ
elif banda == int(0.20):

return BW RATE 0 20HZ
elif banda == int(0.39):

return BW RATE 0 39HZ
elif banda == int(0.78):

return BW RATE 0 78HZ
elif banda == int(1.56):

return BW RATE 1 56HZ
elif banda == int(3.13):

return BW RATE 3 13HZ
elif banda == int(6.25):

return BW RATE 6 25HZ
elif banda == int(12.5):

return BW RATE 12 5HZ
elif banda == int(25):

return BW RATE 25HZ
elif banda == int(50):

return BW RATE 50HZ
elif banda == int(100):

return BW RATE 100HZ
elif banda == int(200):

return BW RATE 200HZ
elif banda == int(400):

return BW RATE 400HZ
elif banda == int(800):

return BW RATE 800HZ
elif banda == int(1600):

return BW RATE 1600HZ

− USER INPUTS

RANGE XG=int()
scale = int(input(''Scale [2,4,8,16]:''))
RANGE XG = option scale(scale)

BANDW XHZ=int()
banda = int(input(''Bandwidth [0.05, 0.1, 0.2, 0.39, 0.78,

1.56, 3.13, 6.25, 12.5, 25, 50, 100, 200, 400, 800,
1600]:''))

BANDW XHZ = option banda(banda)

freqInput = input(''Measuring frequency[Hz]:'')

#ene=input(''2ˆ(?):'') #nsample
#nsamp=2∗∗int(ene) #nsample

minutes = input(''Measurement Duration[m]:'')
seconds = input(''Measurement Duration[s]:'')
duration = timedelta(0,int(seconds),0,0,int(minutes))

time.sleep(1)

MEASUREMENT CONFIGURATION
bus.write byte data(address, MODE REGISTER,

MEASURE MODE)
alem=bus.read byte data(address, MODE REGISTER)
if alem == MEASURE MODE:

print(''CORRECTLY CONFIGURED MODE'')
time.sleep(0.2)
bus.write byte data(address, BW REGISTER,

BANDW XHZ)
allm=bus.read byte data(address, BW REGISTER)
if allm == BANDW XHZ:

print(''BANDWIDTH CORRECTLY CONFIGURED'')
time.sleep(0.2)
bus.write byte data(address, SCALE REGISTER,

RANGE XG[0])
alum=bus.read byte data(address, SCALE REGISTER)
if alum == RANGE XG[0]:

print(''SCALE CORRECTLY CONFIGURED'')

print(str(RANGE XG[1]))

time.sleep(1)

TRANSFORM THE STRING FREQUENCY INPUT
TO DATETIME

milsec = float(1000.0/float(freqInput))
if milsec==1000:

period=timedelta(0,1)
elif milsec%1==0:

period=timedelta(0,0,0,int(milsec))
else:

period=timedelta(0,0,(milsec-int(milsec))∗1000,
int(milsec))

CREATING LIST WHERE DATA WILL BE
RECORDED WITH APPEND

tempo=[]
accdata=[]
t=0
time.sleep(1)
start control
while True:

init = input(''Start Data Acquisition (y/n):'')
if init == ''y'':

break
else:

pass
LOOP DATA ACQUISITION
print('Start of Data Acquisition')
previousMillis = datetime.now()
start = datetime.now()
endloop=datetime.now()+duration
while datetime.now().time() <endloop.time():

currentMillis = datetime.now()

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167 Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020

e20200167-10 An acquisition system framework for mechanical measurements

if (currentMillis - previousMillis >= period):
previousMillis = datetime.now()
accdata.append([[bus.read byte data(address,

0x32),bus.read byte data(address, 0x33)],[bus.
read byte data(address,

0x34),bus.read byte data(address, 0x35)],[bus.
read byte data(address,

0x36),bus.read byte data(address,0x37)]])
#accdata.append([[bus.read byte data(address,

0x36),bus.read byte data(address, 0x37)]])
tempo.append(datetime.now())

end=datetime.now()
acqt = end−start
print('|−−−−−− End of Data Acquisition −−−−−− |')

CONVERSION OF INPUTS IN LSB AND MSB FOR
GRAVITY

for i in range(len(tempo)):
for j in range(0,3):

accdata[i][j] = convert LSBandMSB(accdata[i][j]) ∗

RANGE XG[1]
FILE OPENING
ttime=[]
opentime = datetime.now()
nome = opentime.strftime('ADXL Data'+'(%d|%m|%Y %

H: %M: %S)')
saida = open(nome+''.csv'',''w'')

for i in range(len(tempo)):
saida.write(str(i+1)+'';'')

MEASUREMENT NUMBER
saida.write(str(tempo[i].time())+'';' ') # TIME
saida.write(str((tempo[i]−tempo[0]).total seconds())+'';'')

Time from start to
measurement

saida.write(str(accdata[i][0])+'';'')
Accelerometer X

saida.write(str(accdata[i][1])+'';'')
Accelerometer y

saida.write(str(accdata[i][2])+'';'')
Accelerometer z

saida.write(str(acqt)+''\n'')
ttime.append((tempo[i]−tempo[0]).total seconds())

saida.close()

'''−−−−−−−−− Important definitions −−−−−−−−−'''
acc=transpose(accdata)
sig=acc[2]
time step=acqt.total seconds()/len(sig)
Fs=1/time step
'''−−−−−−− Starting to calculate FFT −−−−−−−'''
from scipy import fftpack
sample freq = fftpack.fftfreq(sig.size, d=time step)

generates sampling frequencies
sig fft = fftpack.fft(sig) # calculates the fast

Fourier transform
pidxs = where(sample freq> 0) # Only the

positive part of the spectrum seràutilizada.
freqs = sample freq[pidxs]
power = abs(sig fft)[pidxs]

print (''| Fininish FFT'')
'''−−− Find the frequency according to the peak −−−'''
N freq=int(input('======== Enter number of

frequencies to find:'))

xcoords=zeros((N freq))
DT=int(len(freqs)/N freq)

for i in range(N freq):
fr=freqs[(i)∗DT: DT∗(i+1)]
xcoords[i]=fr[argmax(power[(i)∗DT: DT∗(i+1)])]

'''−−−−−−−−− Name to be identified −−−−−−−−−'''
dataname=nome+''.csv''
figname = opentime.strftime('ADXL Figure '+'(%d|%m|%

Y %H: %M: %S)'+'.png')
specname=opentime.strftime('ADXL Specgram '+'(%d|%m

|%Y %H: %M: %S)'+'.png')
'''−−−−−−−−− Gràfico −−−−−−−−−'''
import matplotlib.pyplot as plt
plt.figure(1,figsize=[12,6])
plt.style.use('classic')

plt.subplot(2, 1, 1)
plt.plot(ttime,sig,color='#2f4875',linewidth=0.8)
plt.xlabel('Time [s]]')
plt.ylabel('Acceleration [g]')

plt.subplot(2, 1, 2)
plt.plot(freqs, power,color='#2f4875',linewidth=0.8)
plt.xlabel('Frequency [HZ]')
plt.ylabel('Power [dB]')
for xc in xcoords:

plt.axvline(x=xc,linestyle='−−
',linewidth=1,color='#FF4040',label=str(round(xc,4))

+'Hz')
plt.legend()
plt.grid(True)

plt.savefig(figname)
plt.show(block=False)
plt.pause(5)
plt.close()

plt.figure(2,figsize=[12,6])
plt.style.use('classic')

plt.subplot(2,1,1)
plt.plot(ttime,sig,color='#2f4875',linewidth=0.8)
plt.xlabel('Time [s]')
plt.ylabel('Acceleration [g]')
plt.subplot(2,1,2)
powerSpectrum,frequenciesFound,time,imageAxis=plt.

specgram(sig,Fs=Fs,noverlap=2
55,cmap='Spectral')
plt.xlabel('Time [s]')
plt.ylabel('Frequency [Hz]')
plt.savefig(specname)
plt.show(block=False)
plt.pause(5)
plt.close()

print (''| −−−−−− Figure Saved −−−−−− |'')

'''−−−−−−−−−Dropbox−−−−−−−−−'''
entrada=(figname,dataname,specname)

while True:
resp=input('Save in dropbox (y/n):\t')
if resp=='y':

name data=input('Enter data file name:\t')
name fig=input('Enter figure file name:\t')
name spec=input('Enter specgram file name: \t')

Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167

Barbosa et al. e20200167-11

saida = ('/E.R.A/'+name fig+opentime.strftime('(%d
|%m|%Y %H: %M:

%S)')+'.png','/E.R.A/'+name data+opentime.strftime('(%
d|%m|%Y %H: %M:

%S)')+'.csv','/E.R.A/'+name spec+opentime.strftime('(%d
|%m|%Y %H: %M:

%S)')+'.png')

print(''| −−− Start file writing in Dropbox −−− |'')
import dropbox

class TransferData:
def init (self, access token):

self.access token = access token
def upload file(self, file from, file to):

''''''upload a file to Dropbox using API v2
''''''
dbx = dropbox.Dropbox(self.access token)

with open(file from, 'rb') as f:
dbx.files upload(f.read(), file to)

def main():
access token =

'bCzFzRUXC2AAAAAAAAAAeA XpUcnbr7s6CklT0oFYc
CxaJ11xnpDvDytIcEg8hrt'

transferData = TransferData(access token)

for i in range(3):
file from = entrada[i]
file to = saida[i]
API v2
transferData.upload file(file from, file to)

if name == ' main ':
main()

break
elif resp=='n':

break
else:

pass
print (''| −−−−−− Completely Finish −−−−−− |'')

MMA7455
#!/usr/bin/env python 3.5.3
import smbus2 as smbus
from datetime import datetime, timedelta
import time
from numpy import∗

bus = smbus.SMBus(1) # Bus for Revision 2 boards
address = 0x1d# Sensor i2c address

PARAMETERS AND RECORDS IN HEXADECIMAL
MMA7455

ACCEL 2G = 0x05 # measurement mode and scales
ACCEL 4G = 0x59
ACCEL 8G = 0x41
SCALE MULTIPLIER 2G = 4/1024
SCALE MULTIPLIER 4G = 8/1024
SCALE MULTIPLIER 8G = 16/1024
MODE SCALE REGISTER = 0x16 #mode and scale
CONTROL1 = 0x18 # bandwidth control
BW RATE 62 5HZ = 0x00 # bandwidth
BW RATE 125HZ = 0x80
scale mult=0

FUNCTIONS
def LSBandMSB 10bits(data):

value = (data[1] \& 0x03) ∗ 256 + data[0]
if value > 511:

value −= 1024
return value

def option scale(scale):
if scale == int(2):

return [ACCEL 2G,SCALE MULTIPLIER 2G]
elif scale == int(4):

return [ACCEL 4G,SCALE MULTIPLIER 4G]
elif scale == int(8):

return [ACCEL 8G,SCALE MULTIPLIER 8G]

def option banda(banda):
if banda == int(62):

return BW RATE 62 5HZ
elif banda == int\eqref{GrindEQ 125 }:

return BW RATE 125HZ

USER INPUTS

RANGE XG=int()
scale = int(input(''Scale [2,4,8]:''))
RANGE XG = option scale(scale)

BANDW XHZ=int()
banda = int(input(''Bandwidth [62.5, 125]:''))
BANDW XHZ = option banda(banda)

freqInput = input(''Measuring frequency[Hz]:'')

#ene= input(''2ˆ(?):'') #nsample
#nsamp=2∗∗int(ene

minutes = input(''Measuring duration[m]:'')
seconds = input(''Measuring duration[s]:'')
duration = timedelta(0,int(seconds),0,0,int(minutes))

MEASUREMENT CONFIGURATION
bus.write byte data(address, CONTROL1, BANDW XHZ)
allm=bus.read byte data(address, CONTROL1)
if allm == BANDW XHZ:

print(''BANDWIDTH CORRECTLY CONFIGURED'')
time.sleep(0.2)
bus.write byte data(address, MODE SCALE REGISTER,

RANGE XG[0])
alum=bus.read byte data(address,

MODE SCALE REGISTER)
if alum == RANGE XG[0]:

print(''CORRECTLY CONFIGURED SCALE AND
MODE'')

print(str(RANGE XG[1]))
time.sleep(1)

TRANSFORM THE STRING FREQUENCY INPUT
TO DATETIME

milsec = float(1000.0/float(freqInput))
if milsec==1000:

period=timedelta(0,1)
elif milsec%1==0:

period=timedelta(0,0,0,int(milsec))
else:

period=timedelta(0,0,(milsec−int(milsec))∗1000,int
(milsec))

CREATING LIST where data will be recorded with
append

tempo=[]

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167 Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020

e20200167-12 An acquisition system framework for mechanical measurements

accdata=[]
t=0
time.sleep(1)

N freq=int(input('========= Enter the number of
frequencies to find:'))

while True:
init = input(''Start Data Acquisition (y/n):'')
if init == ''y'':

break
else:

pass

LOOP DATA ACQUISITION
previousMillis = datetime.now()
start= datetime.now()
endloop=datetime.now()+duration
while datetime.now().time() < endloop.time():

currentMillis = datetime.now()
if (currentMillis − previousMillis >= period):

previousMillis = datetime.now()
accdata.append([[bus.read byte data(address,0x00),bus.
read byte data(address,

0x01)],[bus.read byte data(address, 0x02),bus.
read byte data(address,

0x03)],[bus.read byte data(address, 0x04),bus.
read byte data(address, 0x05)]])

tempo.append(datetime.now())

end=datetime.now()
acqt = end−start
print('End of Data Acquisition')
CONVERSION OF INPUTS IN LSB AND MSB FOR

GRAVITY
for i in range(len(tempo)):

for j in range(0,3):
accdata[i][j] = LSBandMSB 10bits(accdata[i][j]) ∗

RANGE XG[1]
CSV FILE OPENING
ttime=[]
opentime = datetime.now()
nome = opentime.strftime('MMA Data'+'(%d|%m|%Y %H

: %M: %S)')
saida = open(nome+''.csv'',''w'')

for i in range(len(tempo)):
saida.write(str(i+1)+'';'') # MEASUREMENT

NUMBER
saida.write(str(tempo[i].time())+'';'') # TIME
saida.write(str((tempo[i]−tempo[0]).total seconds())+'';'')

Time from start to
measurement

saida.write(str(accdata[i][0])+'';'') # Accelerometer X
saida.write(str(accdata[i][1])+'';'') # Accelerometer y
saida.write(str(accdata[i][2])+'';'') # Accelerometer z
saida.write(str(acqt)+''\n'')
ttime.append((tempo[i]−tempo[0]).total seconds())

saida.close()

'''−−−−−− Important definitions −−−−−−'''
acc=transpose(accdata)
sig=acc[2]
time step=acqt.total seconds()/len(sig)
Fs=1/time step
'''−−−−−− Starting to calculate FFT −−−−−−'''
from scipy import fftpack
sample freq = fftpack.fftfreq(sig.size, d=time step)

generates sampling frequencies
sig fft = fftpack.fft(sig) # calculates the fast

Fourier transform
pidxs = where(sample freq > 0) # Only the

positive part of the spectrum
will be used.
freqs = sample freq[pidxs]
power = abs(sig fft)[pidxs]

print (''| Fininish FFT'')
'''−−−−−− Find frequency peak −−−−−−'''
xcoords=zeros((N freq))
DT=int(len(freqs)/N freq)

for i in range(N freq):
fr=freqs[(i)∗DT: DT∗(i+1)]
xcoords[i]=fr[argmax(power[(i)∗DT: DT∗(i+1)])]

'''−−−−−− Figure name −−−−−−'''
dataname=nome+''.csv''
figname = opentime.strftime('MMA Figure '+'(%d|%m| %

Y %H: %M: %S)'+'.png')
specname=opentime.strftime('MMA Specgram '+'(%d |%m

| %Y %H: %M: %S)'+'.png')
'''−−−−−−Grafic−−−−−−'''
import matplotlib.pyplot as plt
plt.figure(1,figsize=[12,6])
plt.style.use('classic')

plt.subplot(2, 1, 1)
plt.plot(ttime,sig,color='#2f4875',linewidth=0.8)
plt.xlabel('Time [s]')
plt.ylabel('Acceleration [g]')

plt.subplot(2, 1, 2)
plt.plot(freqs, power,linewidth=0.8)
plt.xlabel('Frequency [HZ]')
plt.ylabel('Power')
for xc in xcoords:

plt.axvline(x=xc,linestyle='−−
',linewidth=1,color='#FF4040',label=str(round(xc,4))

+'Hz')
plt.legend()
plt.grid(True)

plt.savefig(figname)
plt.show(block=False)
plt.pause(5)
plt.close()

plt.figure(2,figsize=[12,6])
plt.style.use('classic')

plt.subplot(2,1,1)
plt.plot(ttime,sig,color='#2f4875',linewidth=0.8)
plt.xlabel('Time [s]')
plt.ylabel('Acceleration [g]')
plt.subplot(2,1,2)
powerSpectrum,frequenciesFound,time,imageAxis=plt.

specgram(sig,Fs=Fs,noverlap=255,cmap='Spectral')
plt.xlabel('Time [s]')
plt.ylabel('Frequency [Hz]')
plt.savefig(specname)
plt.show(block=False)
plt.pause(5)
plt.close()

print (''| −−−−−− Figures Saved −−−−−− |'')

Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167

Barbosa et al. e20200167-13

'''−−−−−− Dropbox −−−−−−'''
entrada=(figname,dataname,specname)
while True:

resp=input('Save in dropbox (y/n):\t')
if resp=='y':

name data=input('Enter data file name:\t')
name fig=input('Enter figure file name:\t')
name spec=input('Enter specgram file name: \t')
saida = ('/E.R.A/'+name fig+opentime.strftime('(%d
|%m|%Y %H: %M:

%S)')+'.png','/E.R.A/'+name data+opentime.strftime('(%
d|%m|%Y %H: %M:

%S)')+'.csv','/E.R.A/'+name spec+opentime.strftime('(%d
|%m|%Y %H: %M:

%S)')+'.png')

print(''| −−− Start file writing in Dropbox −−− |'')
import dropbox

class TransferData:
def init (self, access token):

self.access token = access token
def upload file(self, file from, file to):

''''''upload a file to Dropbox using API v2
''''''
dbx = dropbox.Dropbox(self.access token)

with open(file from, 'rb') as f:
dbx.files upload(f.read(), file to)

def main():
access token =

'bCzFzRUXC2AAAAAAAAAAeA XpUcnbr7s6CklT0oFYc
CxaJ11xnpDvDytIcEg8hrt'

transferData = TransferData(access token)

for i in range(3):
file from = entrada[i]
file to = saida[i]
API v2
transferData.upload file(file from, file to)

if name == ' main ':
main()

break
elif resp=='n':

break
else:

pass

print (''| −−−−−− Completely Finish −−−−−− |'')

MPU6050
#!/usr/bin/env python 3.6
import smbus2 as smbus
from datetime import datetime, timedelta
import time
from numpy import∗

bus = smbus.SMBus(1) # Defines Bus as object of class
Smbus

address = 0x68 # Hexadecimal Address of Accelerometer
#PARAMETERS AND RECORDS IN HEXADECIMAL

MPU6050
ACCEL 2G = 0x00 # Scales
ACCEL 4G = 0x08

ACCEL 8G = 0x10
ACCEL 16G = 0x18
SCALE MULTIPLIER 2G = 4/65535 #Multiply for G
SCALE MULTIPLIER 4G = 8/65535
SCALE MULTIPLIER 8G = 16/65535
SCALE MULTIPLIER 16G = 32/65535
BW RATE 260HZ = 0x00
BW RATE 184HZ = 0x01
BW RATE 94HZ = 0x02
BW RATE 44HZ = 0x03
BW RATE 21HZ = 0x04
BW RATE 10HZ = 0x05
BW RATE 5HZ = 0x06
SCALE REGISTER = 0x1C #Controls scales
BW REGISTER = 0x1A #Controls bandwidth
MODE REGISTER = 0x6B #Controls measurement

mode
MEASURE MODE = 0x00
−− Functions −−
def convert LSBandMSB(raw val):

convert val = (raw val[0]<<8) + raw val[1]
if (convert val>=0x8000):

return −((65535 - convert val) + 1) #MAIOR
NUMERO PARA 16BYTES: 2ˆ16

else:
return convert val

ON MPU6050 MSB COMES BEFORE LSB AND
DATA IS IN 16BITS

def option scale(scale):
if scale == int(2):

return [ACCEL 2G,SCALE MULTIPLIER 2G]
elif scale == int(4):

return [ACCEL 4G,SCALE MULTIPLIER 4G]
elif scale == int(8):

return [ACCEL 8G,SCALE MULTIPLIER 8G]
elif scale == int(16):

return [ACCEL 16G,SCALE MULTIPLIER 16G]

def option banda(banda):
if banda == int(5):

return BW RATE 5HZ
elif banda == int(10):

return BW RATE 10HZ
elif banda == int(21):

return BW RATE 21HZ
elif banda == int(44):

return BW RATE 44HZ
elif banda == int(94):

return BW RATE 94HZ
elif banda == int(184):

return BW RATE 184HZ
elif banda == int(260):

return BW RATE 260HZ

USER INPUTS
RANGE XG=int()
scale = int(input(''Scale [2,4,8,16]:''))
RANGE XG = option scale(scale)

BANDW XHZ=int()
banda = int(input(''Bandwidth [5, 10, 21, 44, 94, 184,

260]:''))
BANDW XHZ = option banda(banda)

freqInput = input(''Measuring frequency[Hz]:'')

#ene= input(''2ˆ(?):'') #nsample
#nsamp=2∗∗int(ene) #nsample

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167 Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020

e20200167-14 An acquisition system framework for mechanical measurements

minutes = input(''Duração da Medição[m]:'')
seconds = input(''Duração da Medição[s]:'')
duration = timedelta(0,int(seconds),0,0,int(minutes))

time.sleep(1)

MEASUREMENT CONFIGURATION
bus.write byte data(address, MODE REGISTER,

MEASURE MODE)
alem=bus.read byte data(address, MODE REGISTER)
if alem == MEASURE MODE:

print(''CORRECTLY CONFIGURED MODE'')
time.sleep(0.2)
bus.write byte data(address, BW REGISTER,

BANDW XHZ)
allm=bus.read byte data(address, BW REGISTER)
if allm == BANDW XHZ:

print(''BANDWIDTH CORRECTLY CONFIGURED'')
time.sleep(0.2)
bus.write byte data(address, SCALE REGISTER,

RANGE XG[0])
alum=bus.read byte data(address, SCALE REGISTER)
if alum == RANGE XG[0]:

print(''SCALE CORRECTLY CONFIGURED'')

print(str(RANGE XG[1]))

time.sleep(1)

TRANSFORM THE STRING FREQUENCY INPUT
TO DATETIME

milsec = float(1000.0/float(freqInput))
if milsec==1000:

period=timedelta(0,1)
elif milsec%1==0:

period=timedelta(0,0,0,int(milsec))
else:

period=timedelta(0,0,(milsec−int(milsec))∗1000,int(
milsec))

Creating list where data will be saved with append
tempo=[]
accdata=[]
t=0
time.sleep(1)

N freq=int(input('======== Enter number of
frequencies to find:'))

while True:
init = input(''Start Data Acquisition (y/n):'')

if init == ''y'':
break

else:
pass

LOOP DATA ACQUISITION
print('Start of Data Acquisition')

previousMillis = datetime.now()
start= datetime.now()
endloop=datetime.now()+duration

while datetime.now().time() <endloop.time():
currentMillis = datetime.now()
if (currentMillis - previousMillis >=period):

previousMillis = datetime.now()
accdata.append([[bus.read byte data(address,0x3B),

bus.read byte data(address, 0x3C)],
[bus.read byte data(address, 0x3D),
bus.read byte data(address, 0x3E)],

[bus.read byte data(address, 0x3F),

bus.read byte data(address, 0x40)]])
tempo.append(datetime.now())

end=datetime.now()
acqt = end−start

print('End of Data Acquisition')
CONVERSION OF INPUTS IN LSB AND MSB FOR

GRAVITY
for i in range(len(tempo)):

for j in range(0,3):
accdata[i][j] = convert LSBandMSB(accdata[i][j]) ∗

RANGE XG[1]
FILE OPENING
ttime=[]
opentime = datetime.now()
nome = opentime.strftime('MPU data'+'(%d|%m|%Y %H:

%M: %S)')
saida = open(nome+''.csv'',''w'')

for i in range(len(tempo)):
saida.write(str(i+1)+'';'') # MEASUREMENT

NUMBER
saida.write(str(tempo[i].time())+'';'') # TIME
saida.write(str((tempo[i]−tempo[0]).total seconds())+'';'')
saida.write(str(accdata[i][0])+'';'') # Accelerometer X
saida.write(str(accdata[i][1])+'';'') # Accelerometer y
saida.write(str(accdata[i][2])+'';'') # Accelerometer z
saida.write(str(acqt)+''\n'')
ttime.append((tempo[i]−tempo[0]).total seconds())

saida.close()

#Fourier Transform
acc=transpose(accdata)
sig=acc[2]
time step=acqt.total seconds()/len(sig)
Fs=1/time step
from scipy import fftpack
sample freq = fftpack.fftfreq(sig.size, d=time step)

generates sampling frequencies
sig fft = fftpack.fft(sig) # calculates the fast

Fourier transform
pidxs = where(sample freq > 0) # Only the

positive part of the spectrum
will be used.
freqs = sample freq[pidxs]
power = abs(sig fft)[pidxs]

print (''|Fininish FFT'')

xcoords=zeros((N freq))
DT=int(len(freqs)/N freq)

for i in range(N freq):
fr=freqs[(i)∗DT: DT∗(i+1)]
xcoords[i]=fr[argmax(power[(i)∗DT: DT∗(i+1)])]

FILE NAMES TO BE SAVED IN SD
dataname=nome+''.csv''
specname=opentime.strftime('MPU Specgram '+'(%d|%m|

%Y %H: %M: %S)'+'.png')
figname = opentime.strftime('MPU Figure '+'(%d|%m|%

Y %H: %M: %S)'+'.png')

GRAPH
import matplotlib.pyplot as plt
plt.figure(1,figsize=[12,6])
plt.style.use('classic')

Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167

Barbosa et al. e20200167-15

plt.subplot(2, 1, 1)
plt.plot(ttime,sig,color='#2f4875',linewidth=0.8)
plt.xlabel('Time [s]')
plt.ylabel('Acceleration [g]')

plt.subplot(2, 1, 2)
plt.plot(freqs, power,color='#2f4875',linewidth=0.8)
plt.xlabel('Frequency [HZ]')
plt.ylabel('Power [dB]')
for xc in xcoords:

plt.axvline(x=xc,
linestyle='−−',
linewidth=1,
color='#FF4040',
label=str(round(xc,4))+'Hz')

plt.legend()
plt.grid(True)

plt.savefig(figname)
plt.show(block=False)
plt.pause(5)
plt.close()
SPECTROGRAM:
plt.figure(2,figsize=[12,6])
plt.style.use('classic')

plt.subplot(2,1,1)
plt.plot(ttime,sig,color='#2f4875',linewidth=0.8)
plt.xlabel('Time [s]')
plt.ylabel('Acceleration [g]')
plt.subplot(2,1,2)
powerSpectrum,frequenciesFound,time,imageAxis=plt.

specgram(sig,
Fs=Fs,
noverlap=255,
cmap='Spectral')

plt.xlabel('Time [s]')
plt.ylabel('Frequency [Hz]')
plt.savefig(specname)
plt.show(block=False)
plt.pause(5)
plt.close()

print (''| −−−−−−− Figure Saved −−−−−−− |'')
CLOUD STORAGE:
entrada=(figname,dataname,specname)
while True:

resp=input('Save in dropbox (y/n):\t')
if resp=='y':

name data=input('Enter data file name:\t')
name fig=input('Enter figure file name:\t')
name spec=input('Enter specgram file name: \t')
saida = ('/E.R.A/'+name fig+opentime.strftime('(%d
|%m|%Y %H: %M:

%S)')+'.png',
'/E.R.A/'+name data+opentime.strftime('(%d|%m

|%Y %H: %M:
%S)')+'.csv',

'/E.R.A/'+name spec+opentime.strftime('(%d|%m
|%Y %H: %M:

%S)')+'.png')

print(''| −−−− Start file writing in Dropbox −−−− |'')
import dropbox
class TransferData:

def init (self, access token):
self.access token = access token

def upload file(self, file from, file to):
''''''upload a file to Dropbox using API v2
''''''
dbx = dropbox.Dropbox(self.access token)

with open(file from, 'rb') as f:
dbx.files upload(f.read(), file to)

def main():
access token = 'PUT THE TOKEN OF THE
ACCOUNT YOU WANT TO

SAVE HERE'
transferData = TransferData(access token)

for i in range(3):
file from = entrada[i]
file to = saida[i]
API v2
transferData.upload file(file from, file to)

if name == ' main ':
main()

break
elif resp=='n':

break
else:

pass

print (''| −−−− Completely Finish −−−− |'')

References

[1] P. Avitabile, Experimental modal analysis—A simple
non-mathematical presentation, available in: https://
www.uml.edu/docs/s-v-Jan2001 Modal Analysis tcm18-
189939.pdf.

[2] M.L. Chandravanshi and A.K. Mukhopadhyay, in Pro-
ceedings of the ASME 2013 International Mechanical
Engineering Congress and Exposition (San Diego, 2013).

[3] W. He and J. Liu, Active Vibration Control and Stability
Analysis of Flexible Beam Systems (Springer, Beijing,
2019).

[4] C. Ratcliffe, D. Heider, R. Crane, C. Krauthauser, M.K.
Yoon and J.W. Gillespie, Composite Structures 82, 61
(2008).

[5] S.B. Chaudhury, M. Sengupta and K. Mukherjee, Inter-
national Journal of Scientific Engineering and Research
(IJSER) 2, 3 (2014).

[6] D.M. Lima, P.A. López-Yánez and M.A Pereira, Lat.
Am. j. solids struct. 16, 15 (2019).

[7] P.S. De Brito and Humberto Varum, Accelerometers:
Principles, Structure and Applications (Nova Science
Pub, New York, 2013).

[8] D.K. Fisher and P.J. Gould, Modern Instrumentation 1,
8 (2012).

[9] A. D’Alessandro, R. D’Anna, L. Greco, G. Passafiume,
S. Scudero, S. Speciale and G. Vitale, in IEEE Inter-
national Symposium on Inertial Sensors and Systems—
INERTIAL (Moltrasio, 2018).

[10] Y. Xiuping, L. Jia-Nan and F. Zuhua, in 8th Interna-
tional Conference on Intelligent Computation Technol-
ogy and Automation—ICICTA (Nanchang, 2015).

[11] L. Liu, D. Zheng, X. Liu, Chinese Journal of Medical
Instrumentation 39, 330 (2015).

DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167 Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020

https://www.uml.edu/docs/s-v-Jan2001_Modal_Analysis_tcm18-189939.pdf
https://www.uml.edu/docs/s-v-Jan2001_Modal_Analysis_tcm18-189939.pdf
https://www.uml.edu/docs/s-v-Jan2001_Modal_Analysis_tcm18-189939.pdf

e20200167-16 An acquisition system framework for mechanical measurements

[12] S. Yan-Ping, G. Mao-fa, A. Bin, Z. Jian-yu and Z. Xu-jie,
Journal of Measurement Science & Instrumentation 5,
19 (2014).

[13] Y.-g. Gu, Y.-j. Shi, X.-j. Zhou and C.-h. Shi, Manufac-
turing Automation 32, 15 (2010).

[14] B.V.S. Krishna, J. Oviya, S. Gowri and M.A. Varshini,
in Second International Conference on Science Tech-
nology Engineering and Management—ICONSTEM
(Chennai, 2016).

[15] R. Singh, A. Gehlot, L.R. Gupta, B. Singh and M. Swain,
Internet of Things with Raspberry Pi and Arduino (CRC
Press, London, 2019).

[16] S. Ambre, M. Masurekar, S. Gaikwad, in Modern
Approaches in Machine Learning and Cognitive Science:
A Walkthrough. Studies in Computational Intelligence
edited by V. Gunjan, J. Zurada, B. Raman and G. Gan-
gadharan (Springer, Cham, 2020), p. 1, v.885.

[17] M. Varanis, A.L. Silva, P.H. Brunetto and R.F. Gregolin,
Rev. Bras. Ensino F́ıs. 38, 1301 (2016).

[18] M. Varanis, A.L. Silva, A.G. Mereles, Rev. Bras. Ensino
F́ıs. 40, e1304 (2017).

[19] M. Varanis, A. Silva, A. Mereles and R. Pederiva, J Braz.
Soc. Mech. Sci. Eng. 40, 527 (2018).

[20] T.T Duc, T.L Anh and H.U. Dinh, in International
Conference on Advances in Computational Mechanics
(Springer, Singapore, 2017).

[21] J.M. Mahoney and R. Nathan, in ASEE Annual Con-
ference and Exposition, Conference Proceedings (Colum-
bus, 2017).

[22] C. Reddy, S. Shenoy, R. Sharma and S. Ramesh, Vibro-
engineering PROCEDIA 29, 1 (2019).

[23] A. Devices, Adxl345 datasheet, available in: https://
www.analog.com/media/en/technical-documentation/
data-sheets/ADXL345.pdf

[24] https://invensense.tdk.com/wp-content/uploads/2015/
02/MPU-6000-Datasheet1.pdf, accessed in 04/03/2020.

[25] https://www.nxp.com/docs/en/data-sheet/MMA7455
L.pdf, accessed in 04/03/2020.

Revista Brasileira de Ensino de F́ısica, vol. 42, e20200167, 2020 DOI: https://doi.org/10.1590/1806-9126-RBEF-2020-0167

https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://www.nxp.com/docs/en/data-sheet/MMA7455L.pdf
https://www.nxp.com/docs/en/data-sheet/MMA7455L.pdf

	Introduction
	Framework Overview and Setup
	Raspberry-Pi
	MEMS sensors
	Mechanical system
	Python programming
	Data acquisition
	Data conversion
	Data storage
	Signal processing

	Experimental Procedure
	Results
	Final Remarks

