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A short note on the buoyant force in nonuniform
gravitational fields
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Lima and Monteiro [1] derived the buoyant force in a nonuniform gravitational field by applying a gradient
version of the divergence theorem to the surface integral of the pressure forces [2]. Here it is outlined an alternate
approach in the framework of fluid mechanics, based on the energy formulations of the equations of state for
compressible fluids.
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In a paper by Lima and Monteiro [1] it was shown that
the validity of the Archimedes’ principle (AP) extends
to nonuniform gravitational fields. Those authors con-
sidered an arbitrarily-shaped body fully submerged in
a fluid (homogeneous or stratified) in a nonuniform
gravitational field and made use of a gradient version
of the divergence theorem applied to the surface integral
of the pressure forces [2], leading to a volume integral
that represents the weight of the displaced fluid.
Locally, the buoyant force field per volume element

d Vf of the displaced fluid can be expressed as

dB = −∇p dVf = −ρg dVf = −dWf , (1)

where p = p (r) and ρ = ρ (r) are pressure and mass
density nonuniform scalar fields and g = g (r) is a
nonuniform gravitational vector field; the buoyant force
is compared to the weight per volume element of the
displaced fluid dWf ; vectors B and Wf are in opposite
direction to each other. Equation (1) has a corresponding
integral form in equation (7) of Lima and Monteiro [1].
From equation (1) the pressure field plays the role of
an effective scalar potential associated with the buoyant
force. The body (fully submerged) of weight Wb =∫

Vf
ρb g d Vf experiences a net force per volume element

dFb = dWb + dB = (ρb − ρ) g d Vf ≡ ρ′ g d Vf , (2)

where ρb(r) is the mass density of the body and we
consider a “deviation” ρ′ = ρb − ρ from base state ρ.
Accordingly, we call pFb

the effective scalar potential
associated with the net force acting on the body:
∇pFb

= − (ρ′/ρb) g (note that the RHS coincides with
the relative gravity).

Extending to the product ρ′(r) g (r) the integrability
condition over Vf assumed in [1] for ρ (r) g (r) (continu-
ous function of r in all points of Vf ) we find for the net
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force experienced by the body

Fb =
∫

Vf

ρ′ g d Vf = −
∫

Vf

ρb∇pFb
d Vf (3)

and revert to all the known results proved valid in [1]
in both uniform and nonuniform gravitational fields. In
particular, from equation (1) B = −Wf , which is the
AP as reformulated by Lima and Monteiro (buoyant
force “directed oppositely to the weight of the displaced
fluid”. . . “measured at the same place where fluid has
been displaced”) [1]. From equation (2) and equation (3):

– at equilibrium (Fb = 0) B = −Wb, so, equation
(1) follows from equation (2) as a special case;

– out of balance (Fb 6= 0) the body will sink (for
Fb ·Wb > 0) or float (for Fb ·Wb < 0).

Other expected results could also be derived, as Stevin
and Pascal laws, and so on.
Lima and Montero also remarked that “the poten-

tial energy minimization technique cannot be used for
deriving the AP in these cases since it works only
for incompressible fluids” [1]. At a closer look this
difficulty can be overtaken through a thorough definition
of the potential energy (PE) in compressible fluids. In
fluid mechanics the equations of state are susceptible
of various equivalent formulations, based on internal
energy or other thermodynamic potentials, each of which
employs a different mix of mechanical and thermal
variables. These formulations are suitable for various
purposes, including the study of stability conditions.
In the formulation based on internal energy, pressure
p or density ρ are the mechanical variables and entropy
s or temperature Θ the thermodynamic ones. For our
purposes it will suffice to consider only the variability of
p or ρ.
For an ideal fluid in an external gravitational potential

Φ the non-kinetic part of the energy density is ρ (u+Φ),
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where u = u(s, p) is the internal energy per unit
mass (see, e.g., [3]). Exact local expressions for PE
density in compressible and incompressible fluids have
been obtained since four decades from the very basic
principles of fluid mechanics [4–6]. As a starting point
consider the function

B(r, s, p) = Φ(r) + u(s, p) + p0(r)
ρ(s, p) , (4)

that is a rework of the non-kinetic part of the energy
density per unit mass. In equation (4) p(r) is the actual
value of the pressure and p0(r) the pressure profile
function in non-perturbed state. As the PE is always
defined relative to a reference, we shall work with the
quantity obtained by subtracting from B(r, s, p) its value
B(r0, s, p(r0)) at a reference point. It is convenient to
express this new quantity, denoted by the symbol Π,
in terms of the enthalpy h(s, p) = u(s, p) + p/ρ and
decompose it in the following two terms:

Π1 = h(s, p)− h(s, p0(r))− p− p0(r)
ρ

, (5)

Π2 = Φ(r)− Φ(r0) + h(s, p0(r))− h(s, p0(r0)). (6)

Π1 is the “elastic” part of Π. It has been called
“Available Elastic Energy” (AEE) [4, 5] and represents
the work (of compression/expansion) required to bring
an (undisplaced) fluid element from the reference state
with pressure po(r) to its actual value p (r) under an
adiabatic pressure perturbation p′ = p − p0. Π1 can
also be interpreted as an intermediate “reservoir” in
the conversion between kinetic energy and Π2, which
in turn is the part of PE density available for conversion
[4]. Known as “Available Potential Energy” (APE),
the latter represents the work (against buoyant forces)
required to move the fluid element from a reference state
position to its actual position [4]. The sum Π = Π1 +Π2
is the (total) PE density per unit mass.
It should now be observed that the application of

the PE minimization technique requires not to consider
merely the gravitational potential of the (solid+fluid)
system, like, e.g., in [7], but to take into account all the
components of PE, notably Π1 and Π2, which provide
information on the state of the fluid. In order to apply
the method properly, the derivatives of Π1 and Π2 have
to be calculated separately for the two components as
they depend on different independent variables.
The derivative of Π1, which depends on p, is evaluated

by taking the limit for p→ p0 of the ratio

Π1(p)−Π1(p0)
p− p0

= h(s, p)− h(s, p0)
p− p0

− 1
ρ
���p− p0

���p− p0
,

then using the identity hp = 1/ρ (where the subscript
denotes partial derivative), and finally setting the deriva-
tive dΠ1/d p = 0 to obtain:

dΠ1

dp
= v(s, p0)− v(s, p) = 0 (7)

(where v = 1/ρ is the volume per unit mass). From equa-
tion (7) we immediately see that the minimum-energy
condition forΠ1 is only satisfied in incompressible fluids.
This result is less significant as it was shown in [5] that
Π1 = 0 everywhere in the incompressible limit.
For Π2 the independent variables are the coordinates

xi of the volume element of the fluid, so, in this case,
the ratios to consider are of the following form:

Π2(r)−Π2(r0)
xi − xi

0
= Φ(r)− Φ(r0)

xi − xi
0

+h(s, p0)− h(s, p0(r0))
xi − xi

0
.

Setting the derivatives ∂Π2
/
∂xi = 0 we obtain:

∂Π2

∂xi
= ∂Φ

∂xi
+ ∂h(s, p)

∂p
· ∂p
∂xi

= dΦ

dxi
+ 1
ρ
· ∂p
∂xi

= 0

or, in vector form,

∇Π2 = ∇Φ+ 1
ρ0
· ∇p0 = 0, (8)

that is the hydrostatic equilibrium equation, equivalent
to equation (1) (remembering that ∇Φ = −g ). The 0
subscript indicates that the reference state is hydrostatic
equilibrium. The condition expressed by equation (8)
can be introduced a priori to obtain the potentials, as
in [5], or, on the reverse, obtained from the potentials as
we did.
The energy formulation in terms of potentials has

further advantages: the positive-definiteness of both Π1
and Π2 [4, 5], and their convexity as functions of
their explicit variables for compressible fluids [5]. The
convexity corresponds to the condition for static stability
to small perturbations (see, e.g., [8]).
The case (solid+fluid) can be traced back to the

previous argument with a simple trick. As the hydro-
static balance is assumed as reference state, imagine the
fully submerged solid (bounded by a rigid impermeable
surface) held in place by an external force −Fb opposite
to the unbalanced resulting net force Fb. Under a
pressure disturbance, equation (7) still holds locally for
Π1 in the case of rigid body, thought of as a special
limiting case of fluid. As no energy change is involved,
we put this case aside.
As for Π2, equation (8) continue to hold locally in the

form

ρb∇Φe +∇pb = 0, (9)

if we substitute an effective potential Φe = Φ − pFb

in place of Φ, assuming the counterbalancing force
−Fb to be a conservative force of the same type of
weight Wb, namely −

∫
Vf
ρb∇Φed Vf = −Fb + Wb

and −
∫

Vf
ρb∇ΦdVf = Wb. It is also assumed that

the object and the environment experience the same
pressure, so that ∇pb = ∇p (condition that is called
“rapid adjustment” between external and internal pres-
sure). Then, exploiting equation (8), equation (9) can be
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rearranged to give

(ρ− ρb)∇Φ = (ρb − ρ) g = ρ′ g = 1
Vf

Fb, (10)

that is equivalent to equation (3) if Fb is a constant
force. Note that equation (9) or (10) is also valid when
the body is thought to enclose within its surface a
fluid other than the environment it is immersed in.
In this case the body exhibits a variety of behaviors
depending on the density lapse rates of the two fluids,
enclosed and external. As the densities are functions
of r the level of neutral buoyancy (LNB) is obtained
as solution of the equation ρ′(r) = 0 for some r, if
any. The stability to vertical displacements of a fluid
element in a bulk can be analyzed quite easily, even
without requiring mathematics (see, e.g., [9]). As a
rule of thumb, if the bulk has the higher density lapse
rate, it exhibits a convex effective potential towards the
immersed fluid element, which is accordingly vertically
stable; vice versa, with inverted lapse rates, the effective
potential looks concave and the current vertical position
attained by the fluid element either out of balance or
unstable.
We have an example of vertical stability considering

a balloon with semi-rigid casing ascending in a column
of highly compressible air. Should the balloon (assumed
of invariable volume) reach a LNB, climbing further
it encounters less dense air. As a result, the upthrust
weakens and the balloon is eventually brought down
by its own weight. In the descent, the air becomes
denser and denser until the upthrust resumes. The cycle
repeats and the balloon experiences a series of vertical
oscillations around the LNB.
A classical example of vertical instability is demon-

strated by the toy known as Cartesian diver. The air
trapped in the diver (highly compressible) react to the
pressure variations of the surrounding water (which is
assumed incompressible) changing in volume for the
same mass. If the diver rises the pressure acting on
it decreases and the the trapped air will expand. As
a result, the diver becomes positively buoyant, rising
more and more quickly. Conversely, if the diver drops
the pressure it feels increases and the air bubble shrinks;
the diver becomes less buoyant and the drop will accel-
erate more and more. In both cases a departure from
equilibrium is experienced by the diver.
More formally, from eq. (10) the acceleration of the

fully submerged body due to the effect of the scalar
potential pFb

associated to the unbalanced force is
expressed by

ρ′

ρb
g = −∇pFb

= Fb

ρbVf
.

This allows you to check immediately that the method
we have followed yields the correct buoyant force
depending on the relative gravity of the body on the
LHS.

For vertical displacements the LNB(s) solution(s) of
ρb(z) = ρ(z) corresponds (correspond) to the extrema of
the effective potential pFb

, calculated from

∂pFb

∂z
= ρ′

ρb
gz = ρ′vb gz = 0.

Said z0 an extremum corresponding to one LNB
solution, it is a minimum or a maximum of the effective
potential depending on the sign of the second derivative

∂2pFb

∂z2 = ∂

∂z
(ρ′vb gz).

Assuming gz ' gz(z0) around z0 and vb ' v(z0) +
(∂vb/∂z)z0∆z the problem reduces to the determination
of the sign of the relative lapse rate (∂ρ′/∂z)z0 . Remem-
bering that ρ′ = ρb − ρ, in the case of a solid object
(ρb ' const), like a balloon, vertically displacing on an
atmosphere with air density decreasing with the altitude
((∂ρ/∂z) < 0) the density lapse rate of the air bulk
largely prevails. Then (∂ρ′/∂z) ' −(∂ρ/∂z) > 0, the
effective potential exhibits a minimum (it looks like a
convex function) and the object attains vertical stability.
It is straightforward to show that in the proximity of
z0 the effective potential pFb

is a quadratic function
of the displacement z − z0. This accounts for the LNB
oscillations of the body.

Conversely, for a bubble of a compressible fluid
vertically displacing on a liquid column (case of the
Cartesian diver) the density lapse rate of the bulk is
quite negligible, so that (∂ρ′/∂z ' ∂ρb/∂z) < 0. The
extemum of the effective potential is now a maximum
(the potential looks like a concave function), indicating
that at z = z0 the equilibrium position is unstable.
It may seem surprising that such a long-standing and

well-established physical principle such as the AP –
arguably the oldest physical law – is still a subject
of current investigations. Its validity has been widely
confirmed at the mesoscopic and macroscopic scales.
Recently [10] the local AP has been derived micro-
scopically, in the framework of statistical mechanics,
confirming the generalized form of the principle worked
out by Lima and Montero [1], valid for any non-uniform
pressure field. On the other hand, has been shown [11]
that AP suffers limitations in the nanoworld.
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