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Rather interesting trigonometric equations arise when considering a Josephson junction obtained by embedding
a Pac-Man shaped superconducting island in between two superconducting electrodes. In the present work we
unfold these equations, written in terms of the superconducting phase difference between the two electrodes, and
find the current-phase relation and the maximum superconducting current of the Josephson junction network. The
solution of the trigonometric equations defining the superconducting current state of the system can be proposed
to advanced high-school students or to undergraduate students in an interdisciplinary lecture.
Keywords: Josephson junction, Quantum mechanics, Trigonometry.

1. Introduction

A Josephson junction is a macroscopic quantum system:
its properties can be detected by a classical measuring
instrument, even though its superconducting current
states possess an intrinsically non-classical nature. B.
D. Josephson was the first to describe the properties of
superconducting junctions [1] by deriving the dynamical
equations that are now named after him. For the “the-
oretical predictions of the properties of a supercurrent
through a tunnel barrier, in particular those phenomena
which are generally known as the Josephson effects”, the
scientist received the Nobel prize in 1973.

In more details, a Josephson junction (JJ) is a system
made of two weakly coupled superconductors, S1 and S2.
By defining the macroscopic wave function of the first
and second electrode as ψ1 and ψ2, respectively, we may
write:

ψ1 = |ψ1| eiφ1 (1a)

ψ2 = |ψ2| eiφ2 , (1b)

where φ1 and φ2 are the superconducting phases of the
first and the second electrode, respectively, and where
the amplitude |ψk| (k = 1, 2) is equal to

√
Nk, where

Nk is the density of Cooper pairs in the k-th electrode
[2]. A more detailed discussion on the properties of super-
conductors and on the form of Eq. (1a-b) will be given
in Section 2.

One could consider a tunnel junction, in which S1 and
S2 are separated by a very thin insulating barrier, as
shown in fig. 1. The superconducting current I flowing in
the JJ can be written, according to Josephson equations
[2], as follows:

I = IJ0 sinφ (2)
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Figure 1: Schematic representation of a tunnel Josephson junc-
tion consisting of two superconductors, S_1 and S_2, separated
by a very thin insulator. A voltage V can be present across the
junction and the current I flows in the two electrodes, which are
both connected to the external “classical” world.

where IJ0 is the maximum value the superconducting
current can attain in the JJ, and where φ = φ2 − φ1
is the superconducting phase difference. The same rela-
tion can be written for the supercurrent flowing through
a small-area contact point between two superconduct-
ing electrodes (point-contact JJ) [3]. Equation (2) is
also referred to as current-phase relation (CPR) of the
Josephson junction.

Furthermore, in case an explicit time-dependence of
the superconducting phase is present, a voltage V is
detectable between the two electrodes, given by [3]:

V = Φ0

2π
dφ

dt
, (3)

where Φ0 = h/2e is the elementary flux quantum, ex-
pressed as the ratio of Planck’s constant h and of the
absolute value of the Cooper-pair charge 2e.

The main physical properties of the JJ can be captured
by means of a rather immediate analytical approach was
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first proposed by Feynman [4] and successively refined
by H. Ohta [5]. Ohta’s model has been proven useful
in deriving the Josephson equations for a tri-layer sys-
tem (double-barrier Josephson junction), in which the
sandwiched superconductor is considered to be a pure
quantum system [6].

The physics of Josephson junctions can be presented at
high-school and undergraduate level by means of simple
demonstrations or by mechanical analogs [7-9] as it will
discussed in Section 3. In this way, the beauty of quantum
mechanics can be appreciated by direct measurements or
by referring to the familiar properties of pendula. Rarely,
however, it has been possible to present simple networks
of Josephson junctions showing analytic properties that
can be proposed in high-school physics courses.

In the present work, a brief account of the basic prop-
erties of superconductors is given in Section 2. A short
discussion on the analogies between simple pendula and
overdamped Josephson junctions is given in section in
Section 3. The constitutive equations for the Pac-Man
Josephson junction (PMJJ), obtained by embedding a
Pac-Man shaped superconducting island (see fig. 2) in
between two superconducting electrodes, are written in
Section 4. Starting from the derived equations, in Section
5 we see that they give rise to rather interesting expres-
sions for the CPR, which can be obtained by solving
basic trigonometric identities. To the best of the author’s
knowledge, PMJJ have never been studied in the past. In
Section 6, a generalization of the findings of the preceding
section to multi-Pac-Man systems is made. Conclusions
are dawn in Section 7.

2. Superconductivity in Brief

In 1911 Kamerlingh Onnes, in his laboratory in Leiden,
first noticed that the resistivity of mercury (Hg) van-
ished completely below 4.2K. Some other metals and
compounds were also observed to make the same transi-

Figure 2: A tri-layer Josephson junction obtained by embedding
a Pac-Man shaped superconducting island in between two su-
perconducting electrodes.The three small Josephson junctions
are indicated as reddish butterflies.

tion from a “normal” state to a “superconducting” state
below a critical temperature Tc which depended on the
particular substance considered [10]. Years later, Meiss-
ner and Ochsenfeld [11] noticed that superconductors
are perfect diamagnets; i.e., the magnetic induction B in
these materials is exactly zero for temperatures T < Tc.
In this way, the magnetization M can be written as
M = −H, which means that the magnetic suscepti-
bility is χ = −1. The Bardeen, Copper and Schrieffer
(BCS) theory of superconductivity [12], published in
1957, finally established that condensation of electron
pairs (Cooper pairs) in a coherent macroscopic state
would explain most of the experimental properties of
superconductors. A Cooper pair consists of two electrons
with opposite spin and opposite momenta coupled via
an effective electron-electron interaction mediated by lat-
tice vibrations. Because of the bosonic character of the
zero-spin Cooper pairs, all these may condensate in a
macroscopic state whose wave-function is characterized
by a complex number whose phase plays an important
role in determining the superconducting properties, as
we shall see, referring to Josephson junction.

Early attempts to grasp the essential properties of the
superconducting state were made by F. London and H.
London in 1935 [13] and by Ginzburg and Landau in
1950 [14]. The former authors relied essentially on clas-
sical physics and on a two-fluid model, one normal one
superconducting, in order to describe the behaviour of
a superconductor in the presence of an electromagnetic
field. The Ginzburg-Landau theory of superconductivity,
on the other hand, took into account quantum effects. In
order to do this, the authors considered an order param-
eter Ψ (~r), a complex function depending on the position
~r, for describing the two “phases”, the normal (N) phase
and the more ordered superconducting (S) phase. They
also hypothesized that the systems would suffer a second-
order phase transition at T = Tc. According to a previ-
ously developed theory by Landau [15], in a second-order
phase transition the order parameter changes continu-
ously, while its underlying symmetry does not, so that
the system goes abruptly from one less ordered state to
a more ordered at T = Tc as the temperature decreases
from T > Tc to T < Tc. An example of a second-order
phase transition is given by the ferromagnetic transition
at the Curie point. However, how would one reconcile
this feature with the quantum mechanics requirement,
by which the system of superconducting electrons has
to possess an effective wave-function? The most simple
way to do this is to consider the same order parameter
Ψ (~r) as the effective wave-function of superconducting
electrons. By having hypothesized this function to be
complex, we can express Ψ (~r) in its trigonometric form,
so that we may write:

Ψ (~r) = |Ψ (~r)| eiφ, (4)

which is just what we wrote for the two superconductors
in Eq. (1a-b), where we had specified that the supercon-
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ducting phase φ and the modulus |Ψ (~r)| of the order
parameter can attain different values in two adjacent
superconductors. In Eq. (1a-b) we have also specified
that, for a homogenous superconductor, we have:

|Ψ (~r)| =
√
Ns

2 , (5)

where Ns is the density of Cooper pairs. Therefore, since
Ψ (~r) must vary continuously with the temperature, Ns

is non-null for T < Tc and zero for T ≥ Tc. Furthermore,
we may notice that the intuition of Ginzburg and Lan-
dau, i.e., that an effective single wave-function for all
electrons can be adopted for the superconducting state,
is consistent with the observation made at a later time
by Bardeen, Cooper, and Schrieffer in the BSC theory, in
which the zero-spin Cooper pairs condensate in just one
macroscopic quantum state. We may finally state that,
for the purposes of the present work, it is not necessary
to dwell further into the theory of superconductivity.

3. Pendula and Josephson Junctions

Let us now consider the simplest circuital model for a
Josephson junction and let us see how mechanical analogs
[7-9] can be justified by means of the Resistively Shunted
Junction (RSJ) model [16]. Let us then may imagine to
bias our JJ by means of a current I. When this current
is lower than the maximum Josephson current IJ0 of
the junction, a Zero-Voltage State (ZVS) is realized:
current may flow in the JJ without energy loss, so that
a zero voltage is measured at the junction electrodes.
This situation can be described by considering a circuital
analog in which an ideal element is present in one branch.
In this element a Josephson current IJ , described by
means of Eq. (2), flows. In this way, for I < IJ0, we have:

I =IJ= IJ0 sinφ (6)

In Eq. (6) we can see that the current I cannot exceed
IJ0, having the sine function an upper bound equal to +1.
Notice also that, by Eq. (6), a constant superconducting
phase across the JJ, φ = sin−1

(
I

IJ0

)
, can be measured.

A constant phase gives, according to Eq. (3), V = 0
across the junction electrodes, as hypothesized from the
beginning.

However, we could as well choose to inject a current
higher that IJ0 in the junction. What would happen in
that case? The ideal element would not be able to absorb
all the injected current, as we may see from Eq. (6),
being now I > IJ0. Therefore, at least a second branch
must be present in the circuital analog. In addition, this
branch should mimic a Resistive State (RS), i.e. should
provide a voltage V 6= 0 across the junction electrodes
for I > IJ0. The simplest way to realize this condition
consists in having a resistive branch in parallel with
the ideal Josephson element, as in fig. 3. Therefore, for
I > IJ0, a residual current flows in the resistive branch,

Figure 3: Resistively Shunted Junction model: a Josephson
junction is seen as a circuit containing a resistive branch in
parallel with an ideal Josephson element.

a voltage V 6= 0 appears across the junction electrodes,
and a time dependent superconducting phase must be
present across the JJ.

By now applying Kirchhoff current law to the circuit
analog, we may write:

I =IJ+ IR = IJ0 sinφ+ V

R
, (7)

where we have used the second identity in Eq. (6). By
now making use of Eq. (3), we may write Eq. (7) in the
following form:

Φ0

2πR
dφ

dt
+ IJ0 sinφ = I. (8)

The above equation is similar to the equation of an
overdamped pendulum [17-18] in which φ represents the
angular displacement. In order to make a rather simple
correspondence between mechanical and electromagnetic
quantities, let us consider the overdamped pendulum
of mass m and length l represented in Fig. 4, in which
we take the angular displacement to be equal to θ. Let
the pendulum be subject to an external torque M0. By
neglecting the inertial term of the system, assuming that
the damping and the gravitational effects are predomi-
nant, and by not considering buoyancy for the sake of
simplicity, we may write the torque equation as follows:

FRl +mgl sin θ = M0, (9)

where FR = βl dθ
dt is the viscous force, β being related to

the coefficient of viscosity η of the liquid through Stoke’s

Figure 4: A pendulum in a viscous fluid. Buoyancy effects are
neglected, while the weight mg and the viscous force F_R are
shown. A torque M_0 is applied to the system.
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law [19], so that β = 6πηr, with r the radius of the sphere
of mass m. By substituting the expression of FR = βl dθ

dt
in Eq. (9), we can finally write:

βl2
dθ

dt
+mgl sin θ = M0, (10)

in such a way that a direct correspondence between
the properties of the mechanical system and the elec-
trodynamic quantities in Eq. (8) can be easily found
by inspection. By Eq. (8) or, alternatively, by Eq. (10),
the dynamic properties of a current-biased overdamped
Josephson junction can be found. Furthermore, the static
properties of these systems can be recovered by setting
dφ
dt = 0 in Eq. (8) and dθ

dt = 0 in Eq. (10).
The analogy here illustrated can be useful in under-

standing the properties a superconducting quantum de-
vice by means of a rather simple and well-known mechan-
ical system.

4. The Pac-Man Junction: The
Equations

Let us derive the equations for the stationary supercon-
ducting currents in the Pac-Man JJ in fig. 2. In the latter
figure, the three small overdamped JJs [16] are taken to
be identical for simplicity and are indicated as reddish
butterflies, labelled as JJk (k = 1, 2, 3). In the junctions
JJ1 and JJ2 the same current flows. As a matter of fact,
according to Eq. (2) we may write:

I1= I2= IJ0 sin (φ2 − φ1) . (11)

The current I3 flowing in JJ3 is given by:

I3 = IJ0 sin (φ3 − φ2) . (12)

By current conservation, we may set I3=I1+ I2, so that,
by Eq. (11) and (12), we have:

sin (φ3 − φ2) = 2 sin (φ2 − φ1) . (13)

In order to define experimentally meaningful quantities,
we set:

θ = φ3 − φ1; φ=φ2 − φ1, (14)

where θ is the superconducting phase difference across
the whole PMJJ and φ is the superconducting phase
difference between the middle and the first electrode.
While the first quantity θ determines the CPR of the
overall PMJJ, the quantity φ is to be determined by
means of the current-conservation relation in Eq. (13)
and by the condition of minimum energy for the system.
In this respect, we recall that, as it happens in a over-
damped pendulum [18], the energy related to a small JJ,
in which the superconducting phase difference across the
two electrodes is γ, can be written as follows [16]:

EJ = −EJ0 cos γ, (15)

where EJ0 = IJ0Φ0
2π . In the case of the PMJJ system, we

have the sum of three terms which, according to Eq. (15),
together with the definition of Eq. (14), can be written
as follows:

EJ = −EJ0 cos (θ − φ) −2EJ0 cosφ. (16)

The conditions for the existence of a minimum of EJ , by
taking θ fixed, are thus the following:

∂EJ

∂φ
= 0 → 2 sinφ− sin (θ − φ) = 0. (17a)

∂2EJ

∂φ2 > 0 → cos (θ − φ) +2 cosφ > 0. (17b)

Eq. (17a-b) are the conditions to be satisfied, in order
to obtain the supercurrent flowing in the PMJJ. In our
case, we would like to determine the CPR of the system,
namely, the relation I3 =I (θ), where I (θ) is an unknown
function of the variable θ.

Finally notice that, while Eq. (17a) corresponds exactly
to the current conservation condition already written in
Eq. (13), Eq. (17b) represents an additional constraint
which we should consider. Solutions of Eq. (17a-b) will
be sought in the following section.

5. The Current-Phase Relation of the
Pac-Man Junction

Let us now find the current-phase relation of the PMJJ
by solving Eq. (17a) under the condition given by Eq.
(17b). By trigonometric identities, we may rewrite Eq.
(17a) as follows:

(2+ cos θ) sinφ= sin θ cosφ. (18)

By now squaring both members of Eq. (18), we get the
following relation:

sin2 φ= sin2 θ

5 + 4 cos θ . (19)

From Eq. (19) we can thus write:

sinφ= |sin θ|√
5 + 4 cos θ

sign (sinφ) , (20a)

cosφ= 2 + cos θ√
5 + 4 cos θ

sign (cosφ) , (20b)

where the sign function sign (x) is equal to +1, if x > 0,
or to −1, if x < 0. In order to get a first condition on the
signs of sinφ and of cosφ, we may substitute the above
relations back into Eq. (18), finding:

sign (sinφ) sign (cosφ) = sign (sin θ) . (21)

We are now ready to complete our analysis by considering
Eq. (17b), which can be written in the following way:

( 2 + cos θ) cosφ+ sin θ sinφ > 0. (22)
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By substituting the solutions given in Eq. (20a) and (20b)
in the above expression, we get:

( 2 + cos θ)2 sign (cosφ)
+ sin2 θsign (sin θ) sign (sinφ) > 0. (23)

Taking into account Eq. (21), we may thus write:[
( 2 + cos θ)2 + sin2 θ

]
sign (cosφ) > 0. (24)

The above relation can be satisfied only for
sign (cosφ) > 0. Therefore, by Eq. (21) we have
sign (sinφ) = sign (sin θ). In this way, Eq. (20a) and
Eq. (20b) can be written as follows:

sinφ= sin θ√
5 + 4 cos θ

, (25a)

cosφ= 2 + cos θ√
5 + 4 cos θ

. (25b)

Having obtained the solution for sinφ and cosφ in terms
of θ, we can write the CPR of the system by means of
Eq.(12-14) as follows:

i (θ) = 2 sin θ√
5 + 4 cos θ

, (26)

where i (θ) =I3/IJ0. Representation of the CPR of a
PMJJ is given in fig. 5, where a comparison with the
CPR of a single JJ, namely i (θ) = sin θ, is shown. From
fig. 5 we notice that the CPR of a PMJJ exhibits a
maximum in the interval π

2 < θ < π. In fact, calculating
the derivative of i (θ) in Eq. (26) and by setting it equal
to zero, we have:

2 cos2 θ+5 cos θ+2 = 0 . (27)

By solving the above second degree algebraic equation,
both extrema (maximum and minimum) are found to
be given by cos θ = −1/2. Therefore, by considering Eq.
(26), we see that θ = 2π

3 is the maximum point and
θ = − 2π

3 the minimum point. By substituting the values
θ = ± 2π

3 in Eq. (26) we finally find that the maximum
and the minimum of the function i (θ) are +1 and −1,
respectively.

Figure 5: Current-phase relation (CPR) of a Pac-Man Josephson
junction (full blue line). The red dotted line represents the CPR
of a single Josephson junction.

6. The MultiPac-Man System

Let us now generalize the findings in the previous section
by considering the multi-Pac-Man system shown in fig.
6. In this system, N Josephson junctions are present in
between the electrode with superconducting phase φ1 and
the middle electrode, characterized by a superconducting
phase φ2. Therefore, by current conservation, we write,
as done for Eq. (13):

sin (φ3 − φ2) =N sin (φ2 − φ1) . (28)

Proceeding as in Section 2, the energy of the system is
written as follows:

EJ = −EJ0 cos (θ − φ) −NEJ0 cosφ, (29)

where the variables θ and φ are defined in Eq. (14). The
conditions for the existence of a minimum of EJ , by
taking θ fixed, in this case are the following:

∂EJ

∂φ
= 0 →N sinφ− sin (θ − φ) = 0. (30a)

∂2EJ

∂φ2 > 0 → cos (θ − φ) +N cosφ > 0. (30b)

By operating in the same way as in the previous section,
we therefore find:

sinφ= sin θ√
N2+1 + 2N cos θ

, (31a)

cosφ= N + cos θ√
N2+1 + 2N cos θ

. (31b)

The CPR of the system can now be found by means of
Eq. (28), together with the definition in Eq. (14), so that:

i (θ) =N sinφ= N sin θ√
N2+1 + 2N cos θ

, (32)

Figure 6: A tri-layer Josephson junction obtained by embedding
a multi-tentacle Pac-Man shaped superconducting island in
between two superconducting electrodes.The N small Josephson
junctions are indicated as reddish butterflies
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where, again, i (θ) =I3/IJ0. A graphical representation
of the CPR of a multi-PMJJ is given in fig. 7 for N = 1
(dashed line), N = 3 (full line), and N = 100 (dotted
line). The case in which N = 1 has also been treated in
ref. [6], so that the CPR represented by the dashed line
in fig. 7 is similar to the CPR of a tri-layer system in the
case the direct interaction between the outer electrodes
is neglected, and reads:

i (θ) = sin
(
θ

2

)
sign[cos

(
θ

2

)
] . (33)

The appearance of a sharp discontinuity in the CPR
of the PMJJ for N = 1 is a rather interesting feature,
arising mainly from the properties of the sign function
in Eq. (33).

In fig. 7 we also notice that the maximum points of
all curves tend to move toward θ = π

2 , as N increases.
In fact, by calculating the derivative of i (θ) in Eq. (32)
and by setting it equal to zero, we have:

N cos2 θ+
(
N2 + 1

)
cos θ+N= 0 . (34)

By solving the above second degree algebraic equa-
tion, both extrema (maximum and minimum) are found,
forN> 1, to be given by cos θ = −1/N . Therefore, con-
sidering Eq. (32), we see that θ = cos−1 (−1/N) is the
maximum point and θ = − cos−1 (−1/N) the minimum
point. In the limit for N → ∞, this solution tends to
θ = π

2 , as specified before. Therefore the CPR, for in-
creasing N , tend to get closer and closer to the sin θ
function, as if the complex network would behave just
like a single JJ in the limit for N → ∞.

By substituting the values of the maximum and mini-
mum points found from Eq. (34) in Eq. (32) we find that,
forN> 1, the maximum and the minimum of the func-
tion i (θ) are +1 and −1, respectively. Of course, the case
N = 2 treated in the previous section can be considered
as a particular case of the present more general analysis.
However, we feel that the simplicity of the analysis given
in the previous section can be used as a propaedeutic
approach to this interdisciplinary topic.

Figure 7: Current-phase relation (CPR) of a multi-Pac-Man
Josephson junction with N=1 (gray line), N=3 (blue line),
N=100 (orange line). The red dotted line represents the trigono-
metric function sinθ, which is superimposed to the orange line.

7. Conclusions

The current-phase relation of a Pac-Man Josephson junc-
tion (PMJJ), consisting of a Pac-Man shaped supercon-
ducting island embedded in two superconducting elec-
trodes, has been found. In studying the system, we re-
alized that the trigonometric equations defining the su-
percurrent state of the PMJJ are interesting either for
their physical meaning, either for the particular care one
needs to use to solve them analytically. Therefore, in
the present work a gradual approach to the solution of
these equations is presented. Starting from the case the
Pac-Man has only two contact point on the left electrode,
we found the analytic expression of the current-phase
relation (CPR) of the PMJJ, by following a strict step-
to-step solution. Successively, generalization to the case
of a multi-Pac-Man JJ is treated, in analogy to what
previously done for the simpler PMJJ. The current-phase
relations of the junction network show significant devi-
ations from the usual sine function characterizing the
CPR of single Josephson junctions. Extension of these
results to a multi-Pac-Man Josephson junction has been
given.

Therefore, the present work, besides presenting some
interesting features of superconducting devices, may also
be proposed to advanced high-school students or to under-
graduate college students in an interdisciplinary lecture,
provided some introductory remarks on superconduc-
tivity and Josephson devices are given, as suggested in
Sections 2 and 3. Finally, we remark that the mathemat-
ical rigour in treating trigonometric functions is coupled,
in this particular work, to an original application in the
field of Josephson junction networks, so that possible
future applications of these systems may be sought.
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