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A simplified description of bodies floating in the water
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The Archimedes’ principle and the concepts of equilibrium of forces and density are used to a simple theoretical
description of the process of body floating in the water. The analysis is performed for containers easily found in
quotidian and is based on the proportion among the air volume inside the container, the water volume within it
and on the volume of the container walls. In following, direct experimental demonstrations are proposed.
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1. Introduction

When a body is immersed, even if partially, in a fluid at
equilibrium it exerts on the fluid a pressure at all points
in contact with it. The fluid reacts (Newton’s third law)
by exerting a pressure on all points of the surface of the
body in contact with it, and this pressure is larger at
greater depths. For a vertical cylinder (or other symmet-
ric solid body), by symmetry, the horizontal component
of the resultant of forces on the body is null, and the
vertical component is directed upward and is named as
buoyant force of the fluid on the body and this phe-
nomenon constitutes the Archimedes’ principle (287-212
B.C.) [1–5]. For a more general case of a body with an
arbitrary shape we can also mathematically demonstrate
that the horizontal component of the resultant is null,
remaining only the vertical component [6]. Another case
that should be take into account is the case where a body
is fully submerged in a liquid with a face touching the
walls of a container. In this case the ’buoyant’ force is
not necessarily upward, and if the body is at the bottom
of the container (bottom case) the force is downward and
increases linearly with depth, as demonstrated in refer-
ence [6] and experimentally shown by Lima et al. [7]. The
Archimedes’ principle allows us to understand how a ship
constructed of metallic parts and that may weigh several
tons floats in the water, or as balloons and dirigibles
ascend in the air. Another application of Archimedes’
principle concerns the functioning of a hydrometer, which
is an instrument used for the measurement of the density
of liquids [8]. In this work, the Archimedes’ principle
plus the definition of density [9] are used for a simple
description of how containers found in daily life float or
not in the water. The analysis is based on the relation
among the ratios volume of air within the container to
the total volume; volume of water within the container to
the total volume; volume of container walls to the total
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volume, and on the fraction of the total volume that is
submersed. And then, after the theoretical description, a
simple experimental demonstration on floating bodies is
proposed.

2. The body floats (or not) in the water

Let us suppose that a body floating in the water be a
closed container with its interior filled with a part of air
and a part of water. Therefore, we can write that its
total volume is the sum of the volumes of air and water
inside it with the volume of its walls,

Vcont = Vair + Vwater + Vwalls. (1)

Let us consider that the air volume occupies a fraction
f1 of the total volume of the container, the volume of
water occupies a fraction f2 of the total volume, and its
walls occupy a fraction f3 of the total volume. Thus, we
can write that

f1 = Vair

Vcont
, f2 = Vwater

Vcont
and f3 = Vwalls

Vcont
,

(2)
and therefore

f1 + f2 + f3 = 1. (3)

Note that by definition we have

0 ≤ f1 < 1, 0 ≤ f2 < 1 and 0 < f3 ≤ 1.
(4)

To say that the container floats on the water surface
means that the sum of the vertical forces is null:

E = P, (5)

where P is the weight of the container, and E is the
buoyancy.

Copyright by Sociedade Brasileira de Física. Printed in Brazil.

www.scielo.br/rbef
http://orcid.org/0000-0002-2108-4616
mailto:edup2112@gmail.com


e20190066-2 A simplified description of bodies floating in the water

The weight of a body is given by the product of its mass
by the gravitational acceleration g,

P = (mair + mwater + mwalls)g, (6)

where mair is the mass of air within the container, mwater
is the mass of water, and mwalls is the mass of its walls.
According to Archimedes’ principle, the buoyant force is
an upward force that a body immersed in a fluid experi-
ences, and is given by the weight of the fluid displaced
by the body [3]. The volume of displaced fluid (water
in this case) corresponds to the volume of the container
that is submerged.1 Thus,

E = (mass of displaced fluid)g. (7)

Recalling that the density of a body (ρ) is defined as
the ratio between its mass and its volume,2

ρwater = mass of displaced water (mdisplaced)
volume of displaced water (Vdisplaced) ,

or

mdisplaced = ρwater.Vdisplaced = ρwater.fVcont, (8)

considering that a fraction f of the volume of the con-
tainer is submersed. Note that by definition

0 < f ≤ 1. (9)

So, the buoyant force can be written

E = ρwater.f.Vcont.g. (10)

Inserting Eqs. (6) and (10) in (5) results

mair + mwater + mwalls = ρwater.fVcont, (11)

and expressing the masses as a function of densities and
volumes we obtain

ρair.Vair + ρwater.Vwater + ρwalls.Vwalls = ρwater.fVcont

or yet, replacing the ratios given in (2) and solving to f
we have

f = ρair

ρwater
f1 + f2 + ρwalls

ρwater
f3,

or

f = Af1 + f2 + Bf3, (12)
1When a body floats in the water it is also partially submerged in
the air, and therefore the upthrust due to air must be considered.
Nevertheless, as the density of air is much smaller than the density
of water, we will neglect this contribution to the total upthrust.

2The concept of density applies to an object or to a substance. Thus,
to a glass container filled with water we can define the density
of the object (glass plus water), the density of the glass and the
density of the water.

where

A = ρair

ρwater
and B = ρwalls

ρwater
(13)

are the densities of the air and the material constituting
the container walls relative to the density of the water.

Finally, considering Eq. (12) and more the fact that
f1 + f2 + f3 = 1 we get

f1 = 1 − f − (1 − B)f3

1 − A
(14)

and

f2 = −A + f + (A − B)f3

1 − A
(15)

respectively to the ratios air volume/container volume
and water volume/con-tainer volume as a function of the
densities of air and material which forms the container
walls relative to the density of the water, and also as
a function of the fraction of the submersed container
volume.

To say that the container sinks means that

P > E. (16)
Now, provided that the container is fully submersed, the
volume of displaced water is equal to the volume of the
container and in this case we have

mair + mwater + mwalls > ρwater.Vcont, (17)
or

ρair.Vair + ρwater.Vwater + ρwalls.Vwalls > ρwater.Vcont

or yet, with the ratios given in (2) and (13) we have

Af1 + f2 + Bf3 > 1, (18)
or

f ′ > 1, with f ′ = Af1 + f2 + Bf3. (19)
We can note that the expression to f ′ is the same as the

expression to f (Eq.(12)). Thus, calling indiscriminately
f and f ′ of F we have

0 < F ≤ 1, the container floats, (20)
and

F > 1, the container sinks. (21)
At standard sea-level atmospheric pressure and ambi-

ent temperature the density of water is ρwater = 0.9982 g/cm3

and the density of air is ρair = 0.001204 g/cm3 [10]. Then,
the A parameter is very well established and is equal to
0.001206; and the parameter B depends on the material
from which the walls of the container are formed.

In the following we will analyze four general cases.
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1. The container is filled with air and water in a
certain proportion, f1 6= 0 and f2 6= 0. Let us then
call the ratio f1/f2 of r. With this, equations (14)
and (15) can be combined to eliminate f2:

F = rA + 1 + f3(−rA − 1 + B + rB)
1 + r

. (22)

The above equation tells us that F will be indepen-
dent of the value of f3 to

− rA − 1 + B + rB = 0, (23)

or

r = 1 − B

B − A
. (24)

And the corresponding value of F is

F = rA + 1
1 + r

=

(
1−B
B−A

)
A + 1

1 +
(

1−B
B−A

) = B. (25)

The above expressions indicate that there is a value
of the ratio f1/f2 which always gives the same value
of the quantity F for any value of the fraction of
the volume of the container walls relative to the
total volume, f3. Furthermore, as the ratio f1/f2
is by definition a positive number it means that
this result is only valid for containers whose wall
materials have densities smaller than that of water,
that is, B < 1 (see Eq. (24)) and therefore the
container always floats. Otherwise, for B > 1, we
obtain from (22) that the container only floats to

r ≥ (1 − B)f3

A − 1 + (B − A)f3
and

f3 ≤ r(1 − A)
r(B − A) + B − 1 (26)

2. The container is completely filled with water, f1 =
0.
From Eq. (14) we can write

1 − F − (1 − B)f3 = 0

or

F = 1 − (1 − B)f3. (27)

for B > 1 (glass, for example) 1 − B is always
negative, we see that F > 1 which means that the
container always sinks.
for B < 1 (polyethylene, for example) 1 − B is
always positive, we see that F < 1 which means
that the container always floats.

3. The container is completely filled with air, f2 = 0.
From Eq. (15) we can write

−A + F + (A − B)f3 = 0
or

F = A − (A − B)f3. (28)

Since A is always smaller than 1 and B < 1 or
B > 1, the value of F depends on the value of f3,
that is, the thicknesses of the walls of the container.
The body sinks to

f3 >
A − 1
A − B

,

and floats to
f3 ≤ A − 1

A − B
.

4. The container is a solid block, with no air and no
water inside it, f1 = f2 = 0 and f3 = 1.
We can see directly from Eqs. (12), (14) or (15)
that

F = B, (29)

which corresponds to the expected general case,
that is, the body sinks to

B > 1,

and floats to
B ≤ 1.

In Fig. 1 is shown as the quantity F varies as a function
of the ratio air volume/water volume (r = f1/f2) for
containers of walls formed by polypropylene (ρ = 0.92
g/cm3) and common glass (ρ = 2.6 g/cm3), and at fixed
values of fraction of the volume of the walls in relation
to the total volume, f3. For polypropylene it can be
observed that the container always floats (F < 1) to any
proportion between the volume of air and the volume of
water. It can be also observed that this buoyant force is
larger (smaller values of F ), as smaller is the fraction of
the volume of the walls in relation to the total volume
(f3), and that is a value of the ratio f1/f2 that always
provides the same value of the quantity F for any value
of f3 as the above case i. For the glass it can be seen
that the container always floats only for values of ratio
between the volume of the walls and the total volume
(f3) smaller than 0.01 (containers with very thin walls),
and always sinks to values of f3 greater than 0.39. At
f3 = 0.2 the container sinks up to a certain value of r and
then starts to float. Whether or not the container floats
depends on the values of f3 and r, according to the limits
given by expressions (26). Another behavior that can be
noticed is that for both materials the quantity F tends
to the value of the density of the wall material relative to
the density of the water, as the container becomes more
and more massive (f3 → 1).
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Figure 1: The quantity F as a function of the ratio volume
of air/volume of water in the container. Curves are shown for
values of f3 equal to 0.01, 0.2, 0.4, 0.6, 0.8 and 0.9. Bottom,
polypropylene; top, common glass.

In Fig. 2 is shown as the quantity F varies as a function
of the ratio volume of walls/volume of container (f3) for
containers of walls formed of polypropylene and common
glass, and at fixed values of the ratio air volume/water
volume (f1/f2). Once again, it can be seen that the
container formed of polypropylene always floats (F < 1)
to any proportion between the volume of air and water
and for any fraction of the volume of the walls in relation
to the total volume, and this buoyant force is greater at
greater values of the proportion of air in relation to water
within the container. For the glass the container always
sinks to values of the ratio air volume/water volume
smaller than 0.02; at greater r the container floats or
not according to the limits given in (26). Figure 2 also
shows a linear behavior of the quantity F with the ratio
of the volume of the walls to the total volume of the
container for both polypropylene and glass, and for both
materials the quantity F tends to the value of the density
of the wall material relative to the density of the water,
according to Eq. (29), as the container becomes more
and more massive (f3 → 1).

3. The connexion with experiment – A
simple demonstration

In everyday life we find containers mainly made of alu-
minium, glass and plastics (cans and bottles of soft
drinks and food, bottles of medicines and supplements,
etc.). Among the plastic containers the most common
are formed of polyethylene terephthalate (PET), high
density polyethylene (HDPE), low density polyethylene
(LDPE), poly(vinyl) chloride (PVC), polypropylene (PP)
and polystyrene (PS). Plastic containers can generally
be identified by observing the existence of a triangle of

Figure 2: The quantity F as a function of the ratio volume of
the walls/volume of the container. Curves are shown for values
of r = f1/f2 equal to 0.02, 1 and 10. Bottom, polypropylene;
top, common glass.

rounded vertices with a number inside it, as shown in
Tab. 1.

A basic demonstration of the principles described in
section 2 consists in to obtain some containers formed
by the materials listed in Tab. 1 and proceed as follows:

• We completely fill an aluminium can, a glass bottle
or PET container with water and drop it on the
surface of the water (from a box or a deep enough
bucket). It can be seen that the they sink com-
pletely into the water, as the case 2 described in
page 3 (ρ > 1, B > 1, F > 1).

• We completely fill a container of HDPE or polypropy-
lene with water and drop it onto the surface of the
water. It can be seen that both containers float
in the water, according to the case 2 described in
page 3 (ρ < 1, B < 1, F < 1).

• We put an empty aluminium can (i.e., filled only
with air) of very thin walls on the surface of the
water. It can be seen that the can floats in the
water, as described in the case 3 (f3 < A−1

A−B ).
• We put an empty container made of polypropylene

(or HDPE or LDPE) on the surface of the water.
It can be seen that the container always floats
regardless of the thickness of its walls, provided
that A−1

A−B is always greater than 1.
• We put an empty glass bottle on the surface of

the water. As in the previous case we observe that
the bottle floats in the water if its walls are very
thin, according to the case 3 described in page 3
(f3 < A−1

A−B ).
• Now we place an empty glass container with very

thick walls (some perfume glasses have this charac-
teristic). We observe in this case that the container
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Table 1: Densities of some materials commonly used in the production of containers [10].
Name Symbol/Acronym Code density

(g/cm3)
Steel – – 7.8
Aluminium Al – 2.7
Common glass – – 2.4–2.8
Polyethylene terephthalate PET 1 1.3–1.4
High Density Polyethylene HDPE 2 0.95–0.97
Poly(vinyl) Chloride PVC 3 1.39–1.42
Low Density Polyethylene LDPE 4 0.92–0.93
Polypropylene PP 5 0.91–0.94
Polystyrene PS 6 1.06–1.12

sinks, since for the glass it is reached the condition
f3 > A−1

A−B = 0.384, according to case 3 described
in page 3.

• We put solid blocks made of glass and polypropy-
lene on the water. The block of glass sinks and the
block of polypropylene floats according to case 4.

• A last demonstration consists in to take an empty
container formed of a material having a density
greater than 1 and that floats on water. We gradu-
ally add water into the container, that is, we reduce
the ratio f1/f2, until the container sinks. This be-
havior can be seen at the top of Figs. 1 (from right
to left) and 2 (from bottom to top).

4. Final remarks

The Archimedes’ principle, the concept of force equilib-
rium, and the definition of density are used for a simple
description of the phenomenon of body floatation in the
water. The analysis is carried out for containers com-
monly found in daily life and is based on the proportion
among the volume of air inside the container, the volume
of water inside it and the volume of the material of its
walls, and also on the fraction of the total volume of the
container that is submersed. Then, simple experimental
demonstrations of easy performing and very low cost are
proposed.
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