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Beyond the massless approximation: The rotation of a
heavy tourniquet with a load on one end
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Using dynamical approach, we consider the strain distribution in the rotating heavy tourniquet with a load
on one end for the case of its small deformations (small angular velocities of the rotation). It appears that the
tension force is maximum at the endpoint, where the tourniquet connects to the vertical axis of rotation, and
decreases quadratically along the tourniquet length. We conclude that if the tourniquet mass m is not negligible
against the load mass M , its effect may be expressed by adding to the mass M the fraction 1/3 of the mass m.
Keywords: Rotating heavy tourniquet, small deformations, tension force.

1. Introduction

The scientific ideal physics models are one of the most
common classes of concepts, which are considered in
the high school course of physics [1]. Among them the
limit transition abstractions play a key role, i.e. the
models constructed by limit transitions for the selected
number of characteristics to their maximum, minimum
or constant values [2]. For example, in the model of
a rigid body one approaches its hardness to infinity.
Within the model of an ideal gas the molecule sizes
and the values of interaction forces between them are
tended to zero. For the model of uniform vector field
its vector-valued function is assumed to be independent
of the spatial coordinates, i.e. it is constant in direction
and modulus. Such idealizations describe the behaviour
of real physical objects not only qualitatively but also
(most importantly) quantitatively.

The correctness of the applicability of a particu-
lar model depends on the specific physical situation
itself and, strictly speaking, should be determined by
means of a physical experiment. However, for educa-
tion purposes the accuracy of a model, i.e. the errors
arising as a consequence of neglecting several factors
considered to be insignificant in the construction of
the model can be estimated theoretically within the
extended model taking into account these neglected
factors.

One of the most important limit transition models is
the model of massless object, in which its mass is equal
to zero. There are many illustrations of using massless
approximation in physics education. For example, the
study of an Atwood’s machine usually simplify the
problem considering the pulley and string as massless
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objects. Tarnopolski [3] has taken into account their
finite masses, while analysing the motion of the two
weights. He concluded that a non-zero pulley mass leaves
this motion uniformly accelerated. At the same time, a
non-zero string mass causes an increase in acceleration
with time.

Another important example have been considered
by Galloni and Kohen [4]. They have investigated the
influence of the spring mass on its static and dynamic
effects. In this paper, we consider the similar issue,
namely, we explore the strain distribution in the rotating
heavy tourniquet with a load on one end. The study
of strain distribution along some non-rigid bodies has
already been carried out earlier in a number of education
research papers [5–7]. The consideration of this problem
will be useful for the undergraduates studying the basics
of elasticity theory.

2. The Problem

Let us consider the homogeneous tourniquet of mass
m and natural (initial) length l0 with stiffness (elastic
constant) k = ES0/l0 [8], where E is the Young’s
modulus, S0 is the initial cross-sectional area of the
tourniquet. One of its end is fixed on a smooth
(frictionless) table, and point mass M is attached to
the other end. We assume that the tourniquet uniformly
rotates in horizontal plane with an angular velocity
of ω. If the resulting horizontal force acting on each
element of the tourniquet much greater than the gravity
force then the tourniquet can be represented by a
horizontal line, whose deformation has only horizontal
displacement, neglecting any vertical deformation (this
is achieved in the case of sufficient angular speed).
Let x be the horizontal coordinate of some cross-section
before stretching (Figure 1). In this case, according to
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Figure 1: Geometry of the problem.

Figure 2: The geometric characteristics of the elongation
deformation.

the Hooke’s law, the absolute value of tension force T⃗ at
the cross-section with coordinate x is equal to [4]:

T (x) = ES0
du

dx
= kl0

du

dx
. (1)

where u(x) = x′(x) − x > 0 is the elongation of the
tourniquet element of length x (Figure 2). Equation (1)
(the linear theory) is valid for small deformations, where
u(x) ≪ x and du ≪ dx.

In the reference frame associated with the rotating
tourniquet, the equilibrium equation of its infinitesimal
element dx, according to Figure 1 (in this figure, the
width d of the tourniquet is greatly exaggerated (d → 0),
so that the reader can clearly discern all the x compo-
nents of the forces acting on the element dx) has the
following form:

T + dT + Fcentrifugal − T = 0. (2)

During rotation, the element dx is located from the
axis of rotation by the distance x + u(x). Then, the
centrifugal force will be:

Fcentrifugal = dmω2[x + u(x)] ≈ dmω2x, (3)

and

dT (x) ≈ −dmω2x, (4)

where dm = (m/l)dx ≈ (m/l0)dx is the mass of the
infinitesimal element dx of the tourniquet. Here we use
the approximate equality l ≈ l0, which is valid under
the linear elasticity theory (l is the total length of the
rotating tourniquet (the final length)).

Using equations (1) and (2), we get:

d2u

dx2 = −mω2

kl2
0

x. (5)

Hence

du

dx
= −mω2

2kl2
0

x2 + C1. (6)

Since T (l0 + u(l0)) = Mω2(l0 + u(l0)) ≈ T (l0) ≈
Mω2l0, then using equations (1) and (6), we obtain:

Mω2

k
= −mω2

2k
+ C1. (7)

Then, the integration constant:

C1 =
(

M + m

2

) ω2

k
. (8)

Therefore, in the case of m ̸= 0 the deformation is
inhomogeneous (du/dx ̸= const). Considering equations
(1), (6), and (8), we get:

T (x) =
(

M + m

2

)
ω2l0 − mω2

2l0
x2. (9)

The equation (9) tells us that the tension force is max-
imum at the endpoint, where the tourniquet connects to
the vertical axis of rotation, and decreases quadratically
with increasing x-coordinate.

Considering again equations (6) and (8), we derive:

u(x) = −mω2

6kl2
0

x3 +
(

M + m

2

) ω2

k
x + C2. (10)

At x = 0 u = 0. Then C2 = 0. Applying equation
(10), we find the total elongation:

∆l − l − l0 = u(l0) =
(

M + m

3

) ω2l0
k

. (11)

3. Conclusions

Galloni and Kohen [4] have concluded that if the spring
mass m is not negligible against the mass M suspended
at its end, its effect for the static case may be expressed
by adding to the mass M the fraction 1/2 of the spring
mass. In the dynamic case of the oscillating load, this
fraction is approximately equal to 1/3. Our calculations
show that for the case of rotating heavy tourniquet
with a load on one end, such a fraction makes exactly
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third part of the tourniquet mass, when determining the
total elongation. This circumstance can be physically
explained by the presence of the centrifugal force acting
on each element dx of the tourniquet due to its non-
zero mass. This leads to the fact that the resulting
elongation is somewhat increased compared to the ideal
case m = 0.

References

[1] E. Etkina A. Warren and M. Gentile, Phys. Teach. 44, 34
(2006).

[2] M. Weisberg, J. Philos. 104, 639 (2007).
[3] M. Tarnopolski, Phys. Teach. 53, 494 (2015).
[4] E.E. Galloni and M. Kohen, Am. J. Phys. 47, 1076 (1979).
[5] A.P. French, Phys. Teach. 32, 244 (1994).
[6] G. Lancaster, Phys. Educ. 18, 217 (1983).
[7] J.D. Serna and A. Joshi, The College Mathematics

Journal 42, 389 (2011).
[8] E. Baumgart, Injury 31, 14 (2000).

DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0010 Revista Brasileira de Ensino de Física, vol. 45, e20230010, 2023


	Introduction
	The Problem
	Conclusions

