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The Schrödinger equation for an isotropic three-dimensional harmonic oscillator is solved using ladder operators.
The starting point is the shape invariance condition, obtained from supersymmetric quantum mechanics.
Generalized ladder operators can be constructed for the three spherical spatial coordinates. Special emphasis
is given to the adaptation made to each of these coordinates. The approach used is general and is indicated as an
alternative method to solve the Schrödinger equation.
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1. Introduction

The harmonic oscillator is one of the most fundamental
systems studied in quantum mechanics [1–3]. As a first
model, any behavior of oscillatory physical systems
near the equilibrium position can be described by the
harmonic oscillator [1–3], such as, for instance, diatomic
molecules and solids.

In the present work, the Schrödinger equation for the
three-dimensional (3D) harmonic oscillator is solved by
using the spherical coordinates. An algebraic approach
is used to factorize the differential equations and ladder
operators are built for each coordinate [4, 5]. This
approach is general and it can be used to solve the
Schrödinger equation exactly, fitting into the context
of Supersymmetric Quantum Mechanics (SQM) [6]. The
development of SQM [7, 8] has contributed to increase
algebraic methods [9] applied to quantum mechani-
cal problems and the shape invariance property has
an underlying algebraic structure associated with Lie
algebras [5, 10–13]. The isotropic spherical harmonic
oscillator can be used as an introductory problem for
formalism and for the construction of generalized ladder
operators.

The approach, by using SQM to solve the Schrödinger
equation, has already been applied to study different
problems, such as, barrier penetration [14], exactly
solvable coupled-channels problems [15] and the study
of coherent states for unidimensional potentials [16–18].
The supersymmetric formalism has been used to obtain
the solution of the Schrödinger equation for the one-
dimensional harmonic oscillator [19] and for the har-
monic oscillator with a position dependent mass [20],
besides also being applied to the Dirac oscillator [21].
Furthermore, the use of generalized ladder operators
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for shape invariant potentials has also been successfully
explored to different potentials such as the Coulomb
potential and the harmonic oscillator [4, 22, 23]. Howe-
ver, the use of these ladder operators for analyzing the
radial and the angular coordinates in the same formalism
can be further explored. In our best knowledge, this
approach was made just for the Coulomb potential [24].

Bazeia and Das [25] solve the Schrödinger equation
for the angular coordinate θ and identify the lad-
der operators for the Legendre equation. In addition,
Dutt et al. [26] explore the shape invariance for the
θ-component of the spherical harmonics. However, they
do not explore the relations between the shape invari-
ance parameters and the other quantum numbers of the
system to determine the harmonic oscillator eigenvalues.

The Schrödinger equation for the ϕ coordinate has
been little explored in the literature using generali-
zed ladder operators. This equation is similar to the
particle in a box problem and it has a hidden shape
invariance [27]. In the current case, from the boundary
conditions, two distinct solutions can be obtained. The
linear combination of these solutions results in the
general solution for this coordinate [24].

In the next section, we introduce the formalism
used to construct the generalized ladder operators. In
Section 3, the radial Schrödinger equation for the three-
dimensional harmonic oscillator is solved using this ap-
proach, while in Section 4 the solution to the Schrödinger
equation for the angular coordinate θ is determined. In
Section 5, the solution to the angular coordinate ϕ is
obtained. Finally, Section 6 brings the conclusions.

2. Methodology

The one-dimensional Schrödinger equation can be writ-
ten as:

Hψn(x) = Eψn(x), (1)
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where the Hamiltonian operator can have the convenient
form of:

H = − d2

dx2 + V (x), (2)

where }2 = 2m = 1, for simplicity. There is no restriction
on the nature of the coordinate x, i.e. it can be cartesian
or not. In Equation (2), V (x) represents the potential
and other functions of the respective coordinates, as, for
instance, the centrifugal term for the radial coordinate
in a central force potential [1].

In a non-relativistic system described by the Schrödin-
ger equation – Equation (1) – the supersymmetric quan-
tum mechanics can be constructed if the Hamiltonian
operator H can be factorized in terms of the bosonic
operators [4, 8]:

A± = ∓ d

dx
+W (x; a0). (3)

These bosonic operators are defined in terms of the
superpotential W (x; a0), which is a function of the
position and a set of space-independent parameters
{a0}. The first supersymmetric partner Hamiltonian is
obtained by:

H+ = H − E0 = A+A−, (4)

where E0 is the ground state eigenvalue. The second
supersymmetric partner Hamiltonian is obtained by
changing the bosonic operators:

H− ≡ A−A+. (5)

The operators H+ and H− have the same energy
spectra, except for the ground state of the Hamiltonian
H+, for which there is no corresponding state in the H−
spectrum.

From equation (4), the factorization of the Hamilto-
nian H leads to the Ricatti equation [28]:

W 2(x; a0)− d

dx
W (x; a0) = V (x)−E0 ≡ V +(x; a0), (6)

in which the superpotential is defined. The correspon-
ding potential V −(x; a), obtained from equation (5),
satisfies:

W 2(x, a0) + d

dx
W (x; a0) ≡ V −(x; a0). (7)

The shape invariance condition [6] imposes that:

R(a1) = V −(x; a0)− V +(x; a1), (8)

where the remainder R(a1) is independent of the coor-
dinates, V + is defined with respect to parameter a1 and
V − with respect to parameter a0. These parameters are
usually related to each other by a translation:

a1 = a0 + η, (9)

in which η corresponds to the translation step.
Since the transformation of the parameters involves

a translation, we can define the translation operators
T±(a0), as usual, as:

T+(a0) = exp

(
η
∂

∂a0

)
(10)

and

T−(a0) = exp

(
−η ∂

∂a0

)
. (11)

From the bosonic operators A±, equation (3), and the
translation operators T±, the generalized creation and
annihilation operators can be composed as [4, 5]:

B+(x; a0) ≡ A+(x; a0)T+(a0) (12)

and

B−(x; a0) = T−(a0)A−(x; a0). (13)

The operators B± have the usual algebraic structure
of ladder operators, as indicated in reference [5]. In
this sense, the factorization method can be used to
solve the Schrödinger equation with the shape-invariant
potentials [4, 29]. Thus, the ground state eigenfunction
ψ0(x; a0) can be obtained from the application of the
generalized annihilation operator B− in ψ0(x; a0):

B−(x; a0)ψ0(x; a0) = T−(a0)A−(x; a0)ψ0(x; a0) = 0.
(14)

A−(x; a0)ψ0(x; a0) = 0 is a sufficient condition to
validate the equality in the equation (14). Then, the
ground state eigenfunction is written as:

ψ0(x; a0) ∝ exp(−
∫
W (x; a0)dx) (15)

This relation between the ground state eigenfunction
and the superpotential is commonly found in the su-
persymmetric approach [8, 30]. Furthermore, the excited
states are obtained by the application of the generalized
creation operator in the ground state eigenfunction:

ψn(x; a0) = [B+(x; a0)]nψ0(x; a0). (16)

To determine the eigenvalues, we start from the shape
invariance condition, equation (8), and the operators
given by equations (10) and (11):

R(an) = T+(a0)R(an−1)T−(a0), (17)

in which

an = a0 + nη (18)

is a generalization of the relation between the parameters
a1 and a0 given by equation (9). In the same way, it can
be written as:

R(an)B+(x; an) = B+(x; an)R(an−1). (19)
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The commutation relation between operators H+ and
(B+)n can be determined from the definitions, equati-
ons (12) and (13) and the shape invariance condition,
equation (8) [4–6]. Then, this gives:

[H+, (B+(x; a0))n]
= R(a1)(B+(x, a0))n +R(a2)(B+(x, a0))n

+ (B+(x; a0))2[H+, (B+(x; a0))n−2]. (20)

Repeating the procedure n times, until [H+, (B+

(x, a0)n−n] = 0, this commutation relation becomes:

[H+, (B+(x; a0))n] =
(

n∑
k=1

R(ak)
)

(B+(x; a0))n
.

(21)

Introducing the commutator in the eigenfunction
ψ0(x; a0) and noting that for this state H+ψ0(x; a0) = 0,
gives:

H+[B+(x; a0)]nψ0(x; a0)

=
(

n∑
k=1

R(ak)
)

[B+(x; a0)]nψ0(x; a0). (22)

Notice that ψ0(x; a0) is the ground state of
the Hamiltonian H+ with a null eigenvalue. Thus,
[B+(x; a0)]nψ0(x; a0) is an eigenfunction of H+ with
eigenvalue (

∑n
k=1R(ak)). Therefore, the energy eigen-

values from the original Hamiltonian, equation (2), are
obtained by:

En = E0 +
(

n∑
k=1

R(ak)
)
, (23)

where the E0 in this equation is added from the first
factorization, equation (4).

In the following sections, the 3D harmonic oscillator is
analyzed and the differential equations for each spherical
coordinate are solved using the approach described in
this section.

3. The Radial Coordinate

The Schrödinger equation for the any spherically sym-
metric potential can be separated into three differential
equations, one equation for each spherical coordinate:
r, θ, ϕ.

The Schrödinger equation for the radial coordi-
nate is [1]:
d

dr

(
r2 d

dr
R(r)

)
− 2m

}2 [V (r)− E]R(r) = l(l + 1)R(r).

(24)
From the substitution of the R(r) function by ψ(r) =

rR(r), equation (24) is written as:

− }2

2m
d2ψ(r)
dr2 +

[
V (r) + }2

2m
l(l + 1)
r2

]
ψ(r) = Eψ(r).

(25)

Then, the radial Hamiltonian for harmonic oscillator can
be identified as:

H = − d2

dr2 + r2 + l(l + 1)
r2 , (26)

in which, for simplicity, it is adopted that }2 = 2m = 1.
The Hamiltonian (26) can be factorized, for each value

of l, by using the superpotential [4]:

W (r, l) = r − (l + 1)
r

. (27)

It is worth noting that the quantum number l is used as
the parameter a, so that a0 = l. The first supersymme-
tric Hamiltonian is obtained from equation (4):

H+ = − d2

dr2 + r2 + l(l + 1)
r2 − 2l0 − 3 = H −E(l)

0 . (28)

From this equation, we obtain:

E
(l)
0 = 2l + 3. (29)

The supersymmetric partner of the Hamiltonian in
equation (28) is:

H− = − d2

dr2 + r2 + (l + 1)(l + 2)
r2 − 2l − 1. (30)

The shape invariance condition, equation (8),
provides:

R(l1) = r2 + (l0 + 1)(l0 + 2)
r2 − 2l0 − 1

− r2 − l1(l1 + 1)
r2 + 2l1 + 3. (31)

To obtain R(l1) independent of the spatial coordinate r,
we must get l1 = l0 + 1, implying that η = 1 and so:

R(l1) = 4. (32)

It would also be possible to take l1 = −l0 − 2 to
fulfill the shape invariance condition in equation (31).
However, this condition leads to a non-normalizable
eigenfunction and it is discarded.

For the kth parameter, we have lk = l0 + k from
equation (18) and the remainder can be written as:

R(lk) = −2(lk − k)− 1 + 2(lk − k) + 2 + 3 = 4. (33)

Then, the energy spectrum can be obtained from equa-
tion (23), by using equations (29) and (33):

E(l)
n = E

(l)
0 +

n∑
k=1

R(lk) = 2l + 3 + 4n. (34)

In this case, the generalized ladder operators for the
radial coordinate are:

B+(r; l) =
[
− d

dr
+ r − (l + 1)

r

]
exp

(
∂

∂l

)
(35)
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Table 1: Radial eigenfunctions and energy eigenvalues for the spherical harmonic oscillator.

n ψ
(l)
n E

(l)
n

0 rl+1e−
r2
2 2l + 3

1 (2r2 − 2l − 3)rl+1e−
r2
2 2l + 7

2 [4r4 − 4(5 + 2l)r2 + 4l2 + 16l + 15]rl+1e−
r2
2 2l + 11

3 [8r6 − 12(7 + 2l)r4 + 6(5 + 2l)(7 + 2l)r2 − 8l3 − 60l2 − 142l − 105]rl+1e−
r2
2 2l + 15

and

B−(r; l) = exp

(
− ∂
∂l

)[
d

dr
+ r − (l + 1)

r

]
. (36)

The ground state eigenfunction for each l is obtained
by the substitution of the superpotential, equation (27),
into equation (15):

ψ
(l)
0 (r; l) ∝ rl+1e−

r2
2 . (37)

Excited state eigenfunctions are calculated by the
action of the generalized creation operator, equation
(35), on the above eigenfunction as indicated in equation
(16) [4]. Table 1 shows, as an example, the ground state,
the first three excited states and their respective eigen-
values for an arbitrary value of l. The eigenfunctions
are not normalized. In this approach, the eigenfunctions
must be normalized at the end. The results are the
same as those obtained by other methods, as can be
seen in Ref. [3].

4. The Angular Coordinate θ

Although not directly related to the energy eigenvalue,
the equation expressed in the angular coordinate θ can
also be solved by the approach described in Section 2.
The equation for this coordinate is [1]:

1
sinθ

d

dθ

(
sinθ

d

dθ
Θ(θ)

)
+
(
l(l + 1)− m2

sin2θ

)
Θ(θ) = 0.

(38)

In a more convenient form, this equation is equivalent
to:

d2

dθ2 Θ(θ) + cot(θ) d
dθ

Θ(θ) +
[
l(l + 1)− m2

sin2(θ)

]
Θ(θ) = 0.

(39)

Equation (39) can be rewritten by the substitution
introduced in Ref. [26], changing the variable θ through
a function θ = f(z), resulting in:{

d2

dz2 +
[
−f
′′(z)
f ′(z) + f ′(z)cot[f(z)]

]
d

dz

+f
′2(z)

[
l(l + 1)− m2

sin2[f(z)]

]}
Θ(z) = 0. (40)

To eliminate the first derivative, it is supposed that:

− f
′′(z)
f ′(z) + f ′(z)cot[f(z)] = 0, (41)

which is solved by [26]:

θ ≡ f(z) = 2arctg(ez). (42)

Thus, equation (40) can be written as:[
− d2

dz2 − l(l + 1)sech2(z)
]

Θ(z) = −m2Θ(z). (43)

The Hamiltonian from equation (43) has the same
mathematical structure as the asymmetric Rosen-Morse
potential, and it can be factorized by the superpoten-
tial [26, 30, 31]:

W (z; a0) = a0tanh(z). (44)

This way, the first supersymmetric partner is:

H+ = − d2

dz2 + a2
0[1− sech2(z)]− a0sech

2(z) = H − ε(z)
0 .

(45)

From this equation, we can obtain the eigenvalue ε(z)
0 =

−a2
0 = −l2.

The supersymmetric partner (equation ((5))) of the
Hamiltonian (45) is:

H− = − d2

dz2 + a2
0[1− sech2(z)] + a0sech

2(z). (46)

The shape invariance condition, equation (8),
provides:

R(a1) = a2
0 − a2

1 + (a2
1 − a2

0 + a0 + a1)sech2(z). (47)

To obtain R(a1) independent on the z coordinate we
must impose that a1 = a0 − 1. This condition implies
that η = −1, equation (9), and so:

R(a1) = 2a1 + 1. (48)

There is another possibility. Choosing a1 = −a0
fulfills the shape invariance condition in equation (47).
However, this condition leads to a non-normalizable
eigenfunction.
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For the kth parameter, the shape invariance condition
results in:

R(ak) = a2
k−1 − a2

k = [a0 − (k − 1)]2 − [a0 − k]2

= 2(a0 − k) + 1. (49)

The eigenvalues can be obtained from equation (23):

ε
(z)
j = −l2 +

j∑
k=1

[2(l − k) + 1] = −(l − j)2
. (50)

Note that these eigenvalues are not the energy of the
system.

A comparison between equations (50) and (43) iden-
tifies that ε(z)

j = −m2, leading to the relation between
the parameters m, j and l:

j = l ±m. (51)

This relation implies that m is an integer and
−l ≤ m < 0 or 0 ≤ m ≤ l. Since j is an index of the
sum in equation (50), j > 0.

Summing up, for this coordinate, the generalized
ladder operators are:

B+(z; l) =
[
− d

dz
+ l tanh(z)

]
exp

[
− ∂
∂l

]
(52)

and

B−(z; l) = exp

[
∂

∂l

] [
d

dz
+ l tanh(z)

]
. (53)

In this case, the “ground state” eigenfunction is obtai-
ned by substitution of equation (44) into equation (15):

Θ0(z; l) ∝ sechl(z), (54)

It is possible to come back to the original coordinate, θ,
by using some algebra. The eigenfunction in the original
variable can be written as:

Θ0(θ; l) ∝ sinl(θ). (55)

The generalized creation operator, equation (52), ap-
plied in the ground state eigenfunction (54) results in the
other eigenfunctions for the original problem [24, 26, 30],
equation (38). The eigenvalues analysis implies that
m = 0,±1,±2,±3, . . . ,±l, as expected.

5. The Angular Coordinate ϕ

The Schrödinger equation for the angular coordinate
ϕ is [1]:

− d2

dϕ2 Φ(ϕ) = m2Φ(ϕ). (56)

This equation is similar to the Schrödinger equation for
a particle in an infinite square well. However, boundary

conditions are different in these two cases. For the 3D
harmonic oscillator, the variable ϕ must be periodical,
i.e., Φ(ϕ) = Φ(ϕ + 2π), while, for the unidimensional
infinite square well, the eigenfunction must be null at
the walls [1–3]. In addition, we note that the quantum
number m is the same as in the previous section,
provided by the separation of variables process.

A hidden shape invariance was identified in this kind
of problem [27], i.e., a special choice of the parameters
a is necessary to identify this invariance and to solve
equation (56). The procedure requires parameter a0 to
be explicitly written in the superpotential. Furthermore,
there are two superpotentials that satisfy the Ricatti
equation (6) with a null potential (obtained from equa-
tion ((56))) and each one leads to a different solution
for the differential equation. The linear combination of
these solutions allows us to obtain the exponential form,
usually presented for the ϕ variable [1–3].

The first possible solution for the Ricatti equation (6)
with V (ϕ) = 0 is obtained with the following superpo-
tential:

W (ϕ; a0) = a0tan(ϕ), (57)

leading to the supersymmetric partner Hamiltonians:

H+ = − d2

dϕ2 + a0(a0 − 1)sec2(ϕ)− a2
0 (58)

and

H− = − d2

dϕ2 + a0(a0 + 1)sec2(ϕ)− a2
0. (59)

The shape invariance condition provides:

R(a1) = [a0(a0 + 1)− a1(a1 − 1)]sec2(ϕ) + a2
1 − a2

0.

(60)

By defining the superpotential, equation (57), with
a0 = 1 or a0 = 0, these values of a0 allow for the facto-
rization of the Hamiltonian in equation (56), leading to
the interpretation that the system is not shape-invariant,
which characterizes it as a hidden shape invariance [26].
This invariance is evident if the dependence of the
parameter a0 is explicitly stated in the superpotential.

To have R(a1) independent of the spatial coordinate
ϕ, we must have a1 = a0 + 1, implying η = 1 and so:

R(a1) = 2a0 + 1, (61)

where the kth parameter is given by:

R(ak) = 2k + 1. (62)

From equations (58) and (62) and now allowing
a0 = 1, we obtain:

m2
n = 1 +

n∑
k=1

(2k + 1) = (n+ 1)2
. (63)
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The index n can be suppressed from equation (63),
i.e., m = ±1,±2,±3, . . . , and the sign ± naturally
appears by applying the square root to equation (63).
It would also be possible to take a0 = 0. This allows
the factorization of the Hamiltonian present in equation
(56), leading to null eigenvalues for all states, i.e., m = 0.

The first eigenfunction can be obtained directly from
equation (15) with the superpotential (57):

Φ0(ϕ; a0) ∝ cosa0(ϕ), (64)

and the generalized ladder operators are written as:

B+(ϕ; a0) =
[
− d

dϕ
+ a0tan(ϕ)

]
exp

[
η
∂

∂a0

]
, (65)

B−(ϕ; a0) = exp

[
−η ∂

∂a0

] [
d

dϕ
+ a0tan(ϕ)

]
. (66)

The action of the generalized creation operator
leads to:

Φ1(ϕ; a0) ∝ cosa0(2ϕ) (67)

and after |m| applications, we get:

Φm(ϕ; a0) ∝ cosa0(mϕ), (68)

with m = 0, 1, 2, 3 . . . and a0 = 1.
The second possible solution of the Ricatti equation

(6) for this problem is obtained by a superpotential
written as:

W (ϕ; a0) = −a0cot(ϕ), (69)

leading to the supersymmetric partner Hamiltonians:

H+ = − d2

dϕ2 + a0(a0 − 1)csc(ϕ)− a2
0, (70)

and

H− = − d2

dϕ2 + a0(a0 + 1)csc(ϕ)− a2
0. (71)

The shape invariance condition is given by:

R(a1) = [a0(a0 + 1)−a1(a1−1)]csc(ϕ) +a2
1−a2

0, (72)

which is satisfied by the same condition as before a1 =
a0 + 1, leading to the same eigenvalues, equation (63).

With the superpotential given by equation (69) we
obtain the eigenfunction:

Φ0(ϕ; a0) ∝ sina0(ϕ), (73)

and the generalized creation and annihilation operators:

B+(ϕ; a0) =
[
− d

dϕ
− a0cot(ϕ)

]
exp

[
η
∂

∂a0

]
, (74)

B−(ϕ; a0) = exp

[
−η ∂

∂a0

] [
d

dϕ
− a0cot(ϕ)

]
. (75)

The action of |m| times the generalized creation
operator results in:

Φm(ϕ; a0) ∝ sina0(mϕ), (76)

where m = 0, 1, 2, 3 . . . and a0 = 1.
The generalized solution is a linear combination of

equations (68) and (76):

Φm(ϕ; a0) = C1cos
a0(mϕ) + C2sin

a0(mϕ) ∝ eimϕ,

(77)

where a0 = 1, C1 and C2 are constants and m =
0, 1, 2, 3 . . . . The exponential form in equation (77) is
the usual shape for the ϕ-component dependence on
spherical harmonics [1–3].

6. Conclusion

In this paper, an algebraic method to solve the
Schrödinger equation, based on a generalization of lad-
der operators, is presented. The methodology presented
determines the eigenfunctions and the energy eigenva-
lues of a bond-state Schrödinger equation for any shape-
invariant potential. The approach adopted consists in
the construction of generalized ladder operators due
the shape invariance condition obtained from SQM
formalism.

Solutions for the three spherical coordinates of the
three-dimensional harmonic oscillator are obtained. For
the ϕ-component, a hidden shape invariance is identified.
So, the solution for ϕ requires more attention to provide
the correct result, as shown in Section 5.

Usually, only the radial part of the Schrödinger equa-
tion is obtained through the methodology presented
here. Recently, the authors [24] proposed a similar
approach to obtain the hydrogen eigenvalues and ei-
genfunctions. As expected, the solutions in that case
and in the present analysis are the same obtained from
the standard calculation, for example, from Frobenius
method.

In short, the energy eigenvalues for the harmonic oscil-
lator are obtained from equation (34) and the restricti-
ons on the quantum numbers l and m are identified. The
eigenfunctions Ψn,l,m(r, θ, ϕ) = ψn,l(r)Θl,m(θ)Φm(ϕ)
are determined from the generalized creation operator
applied in the base eigenfunctions. Notice that for the
angular coordinate θ it is necessary to use the relation
between the z and θ, to get the usual eigenfunctions. For
the ϕ coordinate, the eigenfunctions are obtained by a
linear combination of the trigonometric functions.

Finally, we observe that the formalism presented here
to obtain the exact solution from the three-dimensional
isotropic harmonic oscillator can be used to study other
quantum mechanical problems.
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