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The interaction between light and metals or heavily doped semiconductors is largely determined by
their free conduction electrons. The frequency and wave vector dependent complex dielectric function is
an essential ingredient of the description of its optical and transport properties. The aim of this paper
is to give a didactic introduction how the conduction electrons in solids responds to an external time
dependent electric field and to make a comparison between Drude and Lindhard dielectric function
models for the electron gas. In within framework of Lindhard model we derived an expression for dielectric
function that is similar to the familiar Drudes’s formula. In particular, the differences and similarities
between the complex conductivity obtained from the two models are analyzed.
Keywords: dielectric function, Drude model, Lindhard model.

As propriedades f́ısicas de metais e semicondutores dopados são em grande parte determinadas pelos
seus elétrons de condução. A função dielétrica é uma quantidade f́ısica fundamental no estudo das
propriedades óticas e de transporte desses materiais. Neste artigo discutimos de forma introdutória como
os elétrons de condução em um sólido respondem à presença de um campo elétrico externo bem como
realizamos uma comparação entre os modelos de Drude e de Lindhard no cálculo da função dielétrica de
um gás de elétrons em um sólido. Em particular, as expressões para a condutividade complexa obtida
dos dois modelos são analisadas e comparadas.
Palavras-chave: função dielétrica, modelo de Drude, modelo de Lindhard.

1. Introduction

In some solids, namely metals and doped semicon-
ductors, a few loosely bound valence electrons are
assumed to be completely detached from their atoms
and move around throughout the material forming
an electron gas. In this model, we consider that
the positive ions core form a uniform positive back-
ground. The optical response of these materials can
be described by means of a frequency and wave
vector dependent complex dielectric function ε(~q, ω)
of the electron gas, which is an essential ingredi-
ent of the description of the transport and optical
properties of solids [1]. Here, we will first review
some of the basic aspects of response function, with
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particular emphasis on relationship between electric
susceptibility and dielectric function.

In a material media the relationship between the
electric displacement ~D(~r, t) and the electric field
~E(~r, t) is given by (in cgs system)

~D(~r, t) = ~E(~r, t) + 4π ~P (~r, t) , (1)

where ~P (~r, t) is the macroscopic polarization (dipole
moment per unit volume) that represents the re-
sponse of the medium to an external electric field.
This response for linear media that exhibit temporal
and spatial dispersion, i.e., the response at position
~r and time t to an electric field ~E(~r′

, t
′) at position

~r
′ and time t′ is given by
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Pi(~r, t) =
∑

j

∫
d3r

′
∫
χij(~r, ~r′

, t, t
′)Ej(~r′

, t
′)dt′

,

(2)
where i and j refers to the components of the po-
larization ~P and electric field ~E and χij are the
components of the second rank tensor called elec-
tric susceptibility. For homogeneous medium the
response function depends only on ~r − ~r′ and Eq.
(2) can be written as

Pi(~r, t) =
∑

j

∫
d3r

′
∫
χij(~r−~r′

, t− t′)Ej(~r′
, t

′)dt′
,

(3)
The above equations simplify significantly by tak-

ing the Fourier transform. Considering an unitary
volume of the sample, an electromagnetic field can
be written as a superposition of monochromatic
plane waves which components are given by

Ei(~r, t) =
∑

~q

∫ ∞
−∞

dω

2πEi(~q, ω) exp[ı(~q·~r−ωt)] , (4)

where ~q and ω are the wavevector and the angular
frequency, respectively and ~E(~q, ω) is the Fourier
transform of the electric field ~E(~r, t) that is given
by

~E(~q, ω) =
∫
d3r

∫ ∞
−∞

~E(~r, t) exp[−ı(~q · ~r − ωt)]dt .

(5)
Similar equations apply to the electric displace-

ment ~D(~r, t) and macroscopic polarization ~P (~r, t).
Using this results the Eq. (1) becomes

Di(~q, ω) = Ei(~q, ω) + 4πPi(~q, ω) . (6)

Similarly, we can turn the convolution in Eq. (3)
into multiplication, as we show in Appendix A

Pi(~q, ω) =
∑

j

χij(~q, ω)Ej(~q, ω) , (7)

Using Eq. (7) into Eq. (6) we have

εij(~q, ω) = 1 + 4πχij(~q, ω) , (8)

where εij are the components of the dielectric tensor.
For an isotropic and homogeneous medium the

susceptibility and dielectric tensors become scalars.

With these assumptions the Eqs. (7) and (8) can be
written as

~P (~q, ω) = χ(~q, ω) ~E(~q, ω) , (9)

ε(~q, ω) = 1 + 4πχ(~q, ω) , (10)

Only isotropic and homogeneous medium will be
considered in this work, and then ε(~q, ω) is a scalar
complex function, i.e., ε(~q, ω) = ε′(~q, ω) + ıε′′(~q, ω).

Let us see the physical meaning of the real and
imaginary parts of the dielectric function. The real
part determines the amount of polarization when
the material is subjected to an electric field while
the imaginary part determines the amount of ab-
sorption inside the medium. Also, the real and imag-
inary parts of the dielectric function are related by
the Kramers-Kronig relations which are typical of
physical systems which obey causality and linearity
conditions [2].

There have been many approximations to the
dielectric function. Here we present two dielectric
models. In Section 2 we present the Drude ap-
proach which is the simplest model of the frequency-
dependent dielectric function of metals and semi-
conductors. Advances in quantum mechanics led
to a more rigorous treatment for an electron gas
system and in Section 3 we present the Lindhard
model. The aim of this paper is to make a com-
parison about characteristics between Drude and
Lindhard dielectric function expressions.

2. Dielectric function from the Drude
model

Three years after the discovery of the electron
by J. J. Thomson in 1897, Paul Drude developed a
model which provides an effective description of the
transport and optical properties of solids [3]. The
Drude model is applied mainly to metals, but it is
equally applicable to heavily doped semiconductors.
It is assumed that each atom in a metal loses its
valence electrons and becomes a positively charged
ion. In a solid the discrete levels of the free atoms
are broadening into bands. In metals the highest
band containing electrons is called conduction band
which is filled with electrons that originates from the
atom’s outermost orbitals [4]. In the Drude model,
these electrons do not interact with each other and
are scattered randomly by ionic cores, i.e., the con-
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duction electrons are considered as independent and
quasi-free particles.

We want to know how the conduction electrons
respond to an external probe like a time depen-
dent electric field. The motion of these electrons
is damped via collisions that occur with a charac-
teristic collision frequency γ = 1/τ where τ is an
average relaxation time, which for a typical metal
is the order of 10−14 s.

The equation of motion can be written as

m∗~̈r +m∗γ~̇r = −e ~E(t) . (11)

where r is the ensemble average of the displacement
of the conduction electrons, m∗ is the electron effec-
tive mass that incorporate the band structure of the
material and −e is the electronic charge. The second
term proportional to the drift velocity represents
the frictional force and the dots denote differenti-
ation with respect to time. Drude model can be
extended by adding a restoring force, which consti-
tutes the Drude-Lorentz model, (see, for example,
the reference [5]).

In the long wavelength limit q → 0 we can write
the electric field as

~E(t) =
∫ ∞
−∞

dω

2π
~E(ω) exp (−ıωt) , (12)

with similar equation for ~r(t). Inserting the above
Fourier representation for ~E(t) and ~r(t) into Eq.
(11) we obtain

~r(ω) = e ~E(ω)
m∗(ω2 + ıγω) . (13)

The displaced electrons, due to the electric field,
contribute to the macroscopic polarization ~P =
−ne~r, where n is the density of charge carriers.
Taking the Fourier transform we get using Eq.(13)

~P (ω) = − ne2

m∗(ω2 + ıγω)
~E(ω) . (14)

We get from Eq.(9)

χ(ω) = − ne2

m∗(ω2 + ıγω) (15)

and from Eq.(10)

εD(ω) = 1−
ω2

pl

ω2 + ıγDω
(16)

where the subscript D refers to Drude and

ω2
pl = 4πne2

m∗
(17)

is the plasma frequency of the free electron gas
which behaves as a critical value for propagation of
the radiation through a material. At frequencies ω
above ωpl the absorption is small and the radiation
can propagate. At frequencies ω below ωpl there
will be absorption and the radiation will drop off
exponentially through a material. We can express
ωpl in terms of an energy ~ωpl, where ~ is the Planck
constant. The energy quanta of these collective os-
cillations of the electron plasma are called plasmons,
which, for noble metals is of the order of 10 eV .

The Drude model considers only the conduction
electrons. To account the net contribution from the
positive ion cores we can introduced the parameter
ε∞. Then it is possible to rewrite the Eq. (16) as

εD(ω) = ε∞ −
ω2

pl

ω2 + ıγDω
. (18)

The dielectric function in Eq.(18) can be decom-
posed into real ε′ and imaginary part ε′′

ε′D(ω) = ε∞ −
ω2

pl

ω2 + γ2
D

, (19)

ε′′D(ω) =
ω2

plγD

ω(ω2 + γ2
D)

. (20)

The imaginary part of the dielectric function di-
verges when ω → 0. This is an unphysical behaviour.

Despite its simplicity, the Drude model parame-
ters has been utilized to fit experimental results [6],
in particular in terahertz time-domain spectroscopy
(THz-TDS) [7], which is a contactless technique in
which the properties of solids are probed with short
pulses of terahertz radiation. However, a more realis-
tic description of the electron gas system requires a
quantum mechanical model. In the next Section we
present the Lindhard model for dielectric function.

3. Dielectric function from the Lindhard
model

A more rigorous quantum mechanics treatment of
many-electron systems was carried out by Lindhard
in 1954, which used the Random-Phase Approxima-
tion (RPA). He derived a formula for the dielectric
function that described both the collective behavior
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at small q values and the single-particle excitations
at large q values.

A deduction to Lindhard dielectric function can
be found in Refs [1, 8, 9]. Here we quote the final
expression which is given by

εL(~q, ω) = ε∞

−V (q)
∑

~k

f(~k + ~q)− f(~k)
E(~k + ~q)− E(~k)− ~(ω + ıs)

, (21)

where V (q) = 4πe2/q2 is the Fourier transform of
the Coulomb potential, f(~k) is the Fermi-Dirac dis-
tribution function, E(~k) is the electron energy, s is
a positive infinitesimal constant and the subscript
L refers to Lindhard. The Eq.(21) is a general ex-
pression that includes spatial dispersion (q depen-
dence) and temporal dispersion (ω dependence). The
Eq.(21) can be used also for nonequilibrium distri-
bution functions [10].

Analytical closed expressions for the Lindhard
dielectric function at finite temperature are hardly
to obtain [11]. General analytic expression can be
evaluated analytically for the two limiting cases. For
T = 0 [9] where the Fermi-Dirac distribution is the
unit-step function and high temperature limits [11]
where the distribution function is aproximated as
Maxwell-Boltzmann distribution.

In order to obtain a similar Drude expression we
will replace in the Eq.(21) the infinitesimal constant
s by a finite parameter γL which is a phenomeno-
logical decay constant. Then, Eq.(21) yields

εL(~q, ω) = ε∞

−V (q)
∑

~k

f(~k + ~q)− f(~k)
E(~k + ~q)− E(~k)− ~(ω + ıγL)

. (22)

The equation above can be rewritten as

εL(~q, ω) = ε∞

−2V (q)
∑

~k

f(~k)[E(~k + ~q)− E(~k)]
~2(ω + ıγL)2 − [E(~k + ~q)− E(~k)]2

.

(23)

In the long wavelength limit q → 0 the quantity
E(~k+~q)−E(~k) can be neglected in the denominator
of (23), that can be written

εL(~q, ω) = ε∞ − 2V (q)
∑

~k

f(~k)[E(~k + ~q)− E(~k)]
~2(ω + ıγL)2 .

(24)
Using parabolic band approximation and consid-

ering the high temperature limit for the distribution
function, the Eq. (24) becomes (we present the de-
tails in Appendix B)

εL(ω) = ε∞ −
ω2

pl

(ω + ıγL)2 (25)

where ωpl is the plasma frequency given by Eq.(17).
Eq. (25) is the central equation of this paper and
can be compared with Eq.(18). If we compare the
Drude formula, Eq.(18), with the Lindhard formula,
Eq. (25), one sees that an advantage of the second
expression is that it does not diverge when ω → 0.
In the case of negligible damping the Eqs. (18) and
(25) coincide.

The real and imaginary parts of this complex
dielectric function are given by

ε′L(ω) = ε∞ −
ω2

pl(ω2 − γ2
L)

(ω2 + γ2
L)2 , (26)

ε′′L(ω) =
2ω2

plγLω

(ω2 + γ2
L)2 . (27)

We can see from the above equations that the real
part ε′L(−ω) = ε′L(ω) is an even function and the
imaginary part ε′′L(−ω) = −ε′′L(ω) is an odd function,
a well-known property of dielectric function [12].
Other mathematical properties will be explored in
Appendix C.

The interesting feature of this result is the fact
that the imaginary part does no diverge when ω → 0,
unlike what happens in the Drude model.

The frequency dependencies of the real and imag-
inary parts of the dielectric function are shown in
Figures 1 and 2, respectively. Black lines results
from Drude model, Eqs. (19) and (20), while the
red lines was obtained using the Lindhard model,
Eqs. (26) and (27). The parameters used were n =
7.8×1015 cm−3 (the same value of the reference [13]),
γD = 0.96 THz γL = 0.48 THz, ε∞ = 10.89 and
m∗ = 0.067me (parameters of Gallium Arsenide).

From Figures 1 and 2 we can see that for large
frequency values there is little difference between
Drude and Lindhard predictions for the dielectric
function. On the other hand, there is a great dif-
ference in the predictions of the two models in the
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Figure 1: Real part of the dielectric function of the Drude
(black line) and Lindhard (red line) models as a function
of frequency for n = 7.8 × 1015 cm−3 (the same value
of the reference [13]), γD = 0.96 THz γL = 0.48 THz,
ε∞ = 10.89 and m∗ = 0.067me. The black line is obtained
from Eq.(19) and the red line is obtained from Eq.(26).

Figure 2: Imaginary part of the dielectric function as a
function of frequency. The black line is obtained from Drude,
Eq.(20), and the red line is obtained from Lindhard model,
Eq.(27). The parameter values are the same as in Figure 1.

low frequency region, which can be confronted with
experiments in terahertz time-domain spectroscopy
(THz-TDS)

4. Conductivity

It is often convenient to express the response of
the electron gas in terms of the conductivity σ(ω),
which is directly related to the dielectric function

ε(ω). From Maxwell’s equations, we can obtain the
follow relationship between ε(ω) and σ(ω) [3](in cgs
system)

ε(ω) = ε∞ + 4πı
ω
σ(ω) (28)

that can be rewritten as

σ(ω) = − ıω4π [ε(ω)− ε∞] . (29)

Measurements of the complex conductivity of
moderately doped semiconductors, using terahertz
time-domain spectroscopy, has been widely reported
[6, 13,14].

Using the expressions for the dielectric function
given by the Drude and Lindhard models we can
write the conductivity as

4.1. Drude Model

σ′D(ω) = σoDγ
2
D

ω2 + γ2
D

(30)

σ′′D(ω) = σoDγDω

ω2 + γ2
D

(31)

where

σoD = ne2

m∗γD
(32)

4.2. Lindhard Model

σ′L(ω) = 4σoLγ
2
Lω

2

(ω2 + γ2
L)2 (33)

σ′′L(ω) = 2σoLγLω(ω2 − γ2
L)

(ω2 + γ2
L)2 (34)

where

σoL = ne2

2m∗γL
(35)

5. Results and remarks

Figures 3 and 4 show the frequency dependence of
the real and the imaginary parts of the complex con-
ductivity, respectively, calculated from Drude (black
line) and Lindhard models (red line). In Figure 3 is
shown the real part of the conductivity calculated
from Eq.(30) (black line) and Eq.(33) (red line).
Figure 4 shows the imaginary part calculated from
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Figure 3: Real part of the complex conductivity as a func-
tion of frequency calculated from Drude and Lindhard mod-
els. Black line: Real part calculated from Eq.(30). Red line:
Real part calculated from Eq.(33). The parameter values
are the same as in Figures 1 and 2.

Figure 4: Imaginary part of the complex conductivity as
a function of frequency calculated from Drude and Lind-
hard models. Black line: Imaginary part calculated from
Eq.(31). Red line: Imaginary part calculated from Eq.(34).
The parameter values are the same as in Figures 1 and 2.

Eq.(31) (black line) and Eq.(34) (red line). The pa-
rameter values are the same as in Figures 1 and
2.

From the above results, we can to highlight the
following characteristics:

1 - In the Drude model the real part of the con-
ductivity has a finite value for ω = 0 while in the
Lindhard model this value vanish for ω = 0, i.e.,

σ′D(ω = 0) = σoD (36)

and

σ′L(ω = 0) = 0 (37)

2 - In the Drude model the imaginary part of the
conductivity is always positive, while in the Lind-
hard model the imaginary part of the conductivity
is negative for values in the range 0 < ω < γL. The
negative imaginary conductivities are reported in
semiconductors nanomaterials [15].

3 - In the Lindhard model, the real part of the
conductivity exhibits a maximum at ω = γL before
it drops to zero for ω → 0, while the imaginary part
is null at ω = γL, i.e., σ′′L(ω = γL) = 0.

4 - Our expressions, derived from the Lindhard
model, provide significantly better agreement with
experimental results for complex conductivity than
the Drude model. See, for example, Figure 3 from
Reference [6] where we can observe that the shape
of the experimental points, in the low frequency
region, is better comparable to that obtained from
Lindhard model.

6. Conclusion

The response of the material medium to the elec-
tromagnetic fields can be described in terms of the
frequency and wavevector dependent complex di-
electric function and conductivity.

In this work in within framework of Lindhard
model we have presented an expression for dielectric
function, Eq. (25), that is similar to the familiar
Drudes’s formula, Eq.(18). For large ω there is little
difference between Drude and Lindhard predictions
for the dielectric function expressions. However, for
ω → 0 the Drude model predict that the imaginary
part tends to infinity. In contrast, the expression
derived from the Lindhard model does not diverge
in this limit.

In summary, in this manuscript we presented an
equation for the dielectric function which, on the
one hand, as simple as Drude’s equation but, on the
other hand, is finite for all values of ω, including zero.
Starting from this equation, we derive expressions
for the complex conductivity from the Lindhard
model that provide significantly better agreement
with experimental results for conductivity than the
Drude model.
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Appendix A

The components of Pi(~r, t) and Ei(~r, t) can be writ-
ten as

Pi(~r, t) =
∑

~q

∫ ∞
−∞

dω

2π Pi(~q, ω) exp[ı(~q · ~r − ωt)] ,

(A.1)

Ei(~r, t) =
∑

~q

∫ ∞
−∞

dω

2πEi(~q, ω) exp[ı(~q · ~r − ωt)] ,

(A.2)
Using (A.1) and (A.2) in Eq. (3) we get

∑
~q

∫ ∞
−∞

Pi(~q, ω) exp[ı(~q · ~r − ωt)]dω

=
∑

j

∑
~q

∫
d3r

′
∫ ∞
−∞

dt
′
χij(~r − ~r′

, t− t′)

×
∫ ∞
−∞

dωEj(~q, ω) exp[ı(~q · ~r′ − ωt′)] (A.3)

Making the change of variables ~r − ~r′ = ~r
′′ and

t− t′ = t
′′ we obtain

∑
~q

∫
dω exp[ı(~q · ~r − ωt)][Pi(~q, ω)

−
∑

j

χij(~q, ω)Ej(~q, ω)] = 0 (A.4)

where

χij(~q, ω) =
∫
d3r

′′
∫
dt

′′
χij(~r′′

, t
′′)

× exp[−ı(~q · ~r′′ − ωt′′)] . (A.5)

From Eq.(A.4) we obtain

Pi(~q, ω) =
∑

j

χij(~q, ω)Ej(~q, ω) , (A.6)

which is Eq.(7).

Appendix B

Eq.(25) is derived as follows. Transforming the sum
over ~k in an integral by the known rule

∑
k →

(2/8π3)
∫
d3k the Eq.(B.5) becomes

εL(~q, ω) = ε∞ −
V (q)

2π3~2(ω + ıγL)2

×
∫
f(~k)[E(~k + ~q)− E(~k)]d3k . (B.1)

where V (q) = 4πe2/q2. Using parabolic band ap-
proximation, i.e.,

E(~k + ~q)− E(~k) = ~2

2m
(
2~k · ~q + ~q2

)
, (B.2)

and spherical coordinates d3k = 2πk2dk sin θdθ,
where θ is the angle between ~k and ~q, we obtain

εL(~q, ω) = ε∞ −
V (q)q2

2m∗π2(ω + ıγL)2

×
∫
f(~k)k2dk sin θdθ. (B.3)

Considering the high temperature limit the dis-
tribution function can be written as [8]

f(k) = 4π3n~3

(2πm∗kBT )3/2 exp
(
−~2k2

2m∗kBT

)
(B.4)

where n is the density of charge carriers, kB is the
Boltzmann constant and T is the absolute tempera-
ture.

Using (B.4) in (B.3) we obtain after integration
in angular part

εL(~q, ω) = ε∞ −
16π3ne2~3

πm(2πm∗kBT )3/2
1

(ω + ıγL)2

×
∫ ∞

0
exp (−αk2)k2dk . (B.5)

where α = ~2/(2m∗kBT ). Since∫ ∞
0

exp (−αk2)k2dk = π1/2

4α3/2 (B.6)

we obtain

εL(ω) = ε∞ −
ω2

pl

(ω + ıγL)2 (B.7)

which is Eq.(25).

Appendix C

Let us now show that the expressions found using
Lindhard model, obeys certain important properties
such as the sum rule for conductivity and Kramers-
Kronig relation.
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1. Sum rule for the conductivity

The sum rule for the real part of the conductivity
is expressed as

∫ ∞
0

Re[σ(ω)]dω =
∫ ∞

0
σ′(ω)dω = πne2

2m (C.1)

Making use of the Eq.(33), we have

∫ ∞
0

σ′L(ω)dω = 4σoLγ
2
L

∫ ∞
0

ω2

(ω2 + γ2
L)2dω (C.2)

Using

∫ ∞
0

x2

(x2 + a2)2dx = π

4a (C.3)

we obtain

∫ ∞
0

σ′L(ω)dω = πne2

2m (C.4)

2. Kramers-Kronig relation

From the Kramers-Kronig relations we obtain

∫ ∞
0

ωIm[ε(ω)]dω =
∫ ∞

0
ωε′′(ω)dω = π

2ω
2
pl .

(C.5)
Making use of the Eq.(20)

∫ ∞
0

ωε′′L(ω)dω = 2ω2
plγL

∫ ∞
0

ω2

(ω2 + γ2
L)2dω (C.6)

Using the Eq.(C.3) we obtain
∫ ∞

0
ωε′′L(ω)dω = π

2ω
2
pl (C.7)

Acknowledgments

Financial support from CAPES is kindly acknowl-
edged. The author thanks for hospitality of the
NanoSpectroscopy Laboratory (LabNS) at Physics
Department of the UFMG where this work was fin-
ished. The author also wishes to thank to Aroldo
Ribeiro for graphics.

References

[1] Martin Dressel and George Grüner, Electrodynamics
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(Editora Campus, Rio de Janeiro, 1994), 3rd ed.,
cap. 22.

[6] Martin Dressel and Marc Scheffler, Ann. Phys. 15,
535 (2006).

[7] Ronald Ulbricht, Euan Hendry, Jie Shan, Tony F.
Heinz and Mischa Bonn, Rev. Mod. Phys. 83, 543
(2011).

[8] Hartmut Haug and Sthepan W. Koch, Quantum
Theory of the Electronic Properties of Semiconduc-
tors (World Scientific, Singapore, 1994), 3rd ed., p.
97.

[9] G.D. Mahan, Many-Particle Physics (Plenum, New
York, 1987).

[10] A.V. Andrade-Neto, A.R. Vasconcellos, R. Luzzi
and V.N. Freire, Appl. Phys. Lett. 85, 4055 (2004).

[11] A.V. Andrade-Neto, arXiv:1412.5705 (2014).
[12] L.D. Landau, E.M. Lifshitz and L.P. Pitaevskii,

Electrodynamics of Continuous Media (Butterworth-
Heinenann, Oxford, 1984), 2a ed., v. 8, p. 266.

[13] N. Katzenellenbogen and D. Grischkowsky, Appl.
Phys. Lett. 61, 840 (1992).

[14] Han-Kwang Nienhuys and Villy Sundstrom, Appl.
Phys. Lett. 87, 012101 (2005).

[15] James Lloyd-Hughes and Tae-In Jeon, J. Infrared,
Milim. Terahertz Waves 33, 871 (2012).

Revista Brasileira de Ensino de F́ısica, vol. 39, nº 2, e2304, 2017 DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2016-0206


	Introduction
	Dielectric function from the Drude model
	Dielectric function from the Lindhard model
	Conductivity
	Drude Model
	Lindhard Model

	Results and remarks
	Conclusion

