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Within the framework of Information Theory, the existence of correlations between two random variables means
that we can obtain information about one of them, just by measuring or observing the other random variable.
In certain cases, this kind of relationship allows obtaining information about a variable even when the other is
separated by a very large distance, that is, the process of obtaining information is non-local, an example (if not
the only) is the quantum entanglement. These features of correlations make it interesting and important to study,
classify and quantify them. The correlations are classified into classical correlations and quantum correlations,
in addition they are quantified through the mutual information. Here we will present a natural way to define
classical mutual information and then we will generalize it to the quantum case. Furthermore, every term in the
definitions of mutual information will be interpreted using the concepts of classical and quantum entropy.
Keywords: Information entropy, Correlations, Mutual information.

Dentro del marco de la Teoría de la información, que exista correlación entre dos variables aleatorias significa
que podemos obtener información de una de ellas, tan solo midiendo u observando a la otra variable. En ciertos
casos, este tipo de relación permite obtener información de una variable aún cuando la otra esté separada una
distancia muy grande, es decir que el proceso de obtención de información puede ser no local, un ejemplo (si no el
único) es el entrelazamiento cuántico. Este tipo de características hace que sea interesante e importante estudiar,
clasificar y cuantificar las correlaciones. Estas se clasifican en correlaciones clásicas y correlaciones cuánticas,
además se cuantifican a través de la información mutua, definida tanto como para sistemas clásicos como para
sistemas cuánticos. Presentaremos un camino natural a la definición de la información mutua clásica para luego
generalizarla al caso cuántico. Además, cada término en las definiciones de información mutua será interpretado
usando los conceptos de entropía clásica y cuántica.
Palabras clave: Entropía de la información, Correlaciones, Información mutua.

1. Introduction

The concept of information is too broad to be captured
completely by a single definition. Furthermore, questions
about what information is, can easily lead us down the
dark path of metaphysics. Andrade says [1]: “Informa-
tion in its semantic connotation is creations of meanings,
which means that it becomes evident when it has been
received and has caused some kind of modification in
the receptor. In a pragmatic way, it can be said that it
is every difference that makes a difference”. Hence, since
only the differences allow us to perceive the information,
we will not be able to quantify the information directly
but rather through its variation, it means, through the
gain or lack of information. Therefore a measure of
information should satisfy this intuitive notions about
information [2]. Shannon defined a quantity called
Shannon entropy [3–5] which has many properties (see
the general properties of entropy in ref. [6]) that agree
with a consistent measure of information. For any
probability distribution, Shannon entropy also called
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classical entropy, measures the lack of information to
determine the outcome of that probability distribution.
We can use these ideas, for example, to measure the

lack of information to determine a message consisting
of letters from a certain vocabulary. In this case, each
letter of the message is independent from the other.
However, if we consider that the message was sent
in a certain language (Shannon did that analysis for
English, see Ref. [7]), hence we would be introducing
constraints on the letters of the message. Let us see an
example to be clear, suppose that we received a message
consisting of letters from a vocabulary and we know
that the first letter is “p”, knowing this will not give
us information about the next letter. In other words,
our lack of information about the second letter will not
vary after know the first letter. However, if we know
that the message was sent in English and the first letter
of the message is “p”, if we know English then we will
know that the next letter must be a vocal, i.e., “a, e, i,
o, u” or the letters “r”, “l” or “s” and not other. This
means that knowing the first letter (letter “p”) allow us
to reduced the uncertainty about the second letter. To
visualize better the idea let us see the next extreme case:

Copyright by Sociedade Brasileira de Física. Printed in Brazil.

www.scielo.br/rbef
https://orcid.org/0000-0001-7629-500X
emailto:marcelo.tisoc.m@uni.pe


e20220055-2 Mutual Information: A way to quantify correlations

In English, if the first letter is “q”, then, we know with
certainty that the next letter must be “u”. Summarizing,
in certain languages, the first letter gives us information
about the second letter. It means that this two letters are
correlated. Hence whether one random variable contains
information about other, then both random variables are
correlated [8].

The natural question is, how to quantify correlations?
The last example shows us that correlations are inti-
mately linked to entropy of information and hence, a
consistent measure of correlations must be defined in
function of entropy. Mutual Information was proposed to
quantify correlations between two random variables [2].
Since in physics we have two kind of systems, i.e.,
classical systems and quantum systems, hence in this
article we will work also with two kind of correlations,
classical correlations and quantum correlations [9]. Due
to this dichotomy, it is necessary to define the mutual
information not only for classical systems but also for
quantum systems. For didactic reasons, we will first
study Classical Entropy in Section 2.1 and then we will
generalize it to the quantum level in Section 2.2.

Finally in Section 3.1 we define two equivalent def-
initions for classical mutual information and in the
next Section 3.2, we generalize those definitions to the
quantum case and we will see that they are no longer
equivalent.

2. Entropy in Information Theory

2.1. Classical entropy

In order to quantify the information contained in a
classical random variable, first we have to answer the
following question: Which function should we use to
quantify the information contained in an event?

Suppose that we want to quantify the information con-
tained in the event m, which happens with probability
pm. It is worth to note that something that happens
frequently (it means that its probability of happening
is high) will not be interesting. For example [10], dawn
is an usual event, and even though sunrise is beautiful
and tells us that the day is beginning, it does not bring
us new information. On the other hand if it is 12 noon
and suddenly the night begins, someone will be surprised
until they noticed that a solar eclipse is happening, this
event, that does not occur frequently (it means that
its probability of happening is low) is telling us a lot
of information. In short, a highly probable event does
not bring us too much information while an unlikely
event bring us a lot of information, this is because it
causes us more surprise. This reasoning tells us that
the information Hm contained in a single event m is
monotonically decreasing with respect to the probability
pm, i.e., for two events m and n, if pm > pn then
Hm < Hn.
Now that we have the relationship between the infor-

mation Hm and the probability pm of a single event, in

order to construct a function that quantifies information
we have to give a minimum requirements that it must
to satisfy. Let’s see:
For two independent events m and n, its informations

Im and In must be additive, i.e., Imn = Im + In. If
we consider the events as a random variables, from
probability theory [11], the joint probability of two inde-
pendent random variables is the product of individual
probabilities, i.e., pmn = pmpn. The only function that
satisfies this condition is the logarithm function. Then
the information of a single event, also called self-entropy,
is defined as follows.

Definition 2.1 The self-entropy of a single event m
with probability pm is

Hm := log(1/pm) = − log(pm). (1)

The self-entropy quantify the surprise or information
contained in a single event.

However, as we are interested in a set of events, we will
consider a random variable

X = {xm|m = 1, 2, . . . ,M}. (2)

The law probability, i.e., the probability pm of occur-
rence of event xm is

pm = P (X = xm), (3)

where the probabilities {pm} satisfy the following con-
ditions

0 ≤ pm ≤ 1 and
M∑
i

pm = 1. (4)

Then, the classical entropy of the random variable X is
the weighted average of the self-entropies of each single
event, it is

H(X) = H(p1, . . . , pm, . . . , pM ) :=
M∑
m

pmHm. (5)

Finally, using equation (1), we get the well known
relation of classical entropy, also known as Shannon
entropy. This is because it was first introduced by
Shannon [5].

Definition 2.2 The classical entropy H(X) of one dis-
crete random variable X with sample space X and
probability law P (X = x) = px is:

H(X) = −
∑
x∈X

px log2(px). (6)

The Shannon entropy H(X) quantifies the uncertainty
or lack of information to determine which event x from
the set of events X of the random variable X will occur.
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To have a better insight of Shannon entropy, we will
consider the experiment of tossing a coin. This experi-
ment have two possible results, we could obtain heads
or tails. We use the random variable X to assign real
numbers to each result, for example the number 1 for
heads and number −1 for tails. Therefore, we have a
probability law who assign the probability 1/2 to value
1 (heads) and probability 1/2 to value −1 (tails). We can
see a scheme of this experiment in Figure 1a. Here the
classical entropy of the random variable X is H(X) = 1
and it is quantifying the lack of information about which
result we will get after tossing a coin.
But what if we have two random variables? Given two

random variables, X with the set of possible outcomes
{xi} and Y with the set of possible outcomes {yi}, we
define the joint probability distribution:

P (X = x, Y = y) ≡ pxy. (7)

With corresponding marginal probability distributions

P (X = x) = px =
∑

y

pxy,

P (Y = y) = py =
∑

x

pxy.

(8)

The degree of correlation between the random variable
X and Y is encoded in their joint probability distribution
and best quantified within the framework of Shannon
entropy [9]. The lack of information about the mixture
of two random variables is quantified through the joint
entropy defined as follows.

Definition 2.3 The Joint Entropy of two random vari-
ables X and Y is:

H(A,B) = −
∑
xy

pxy log pxy, (9)

where pxy is the joint probability.

2.1.1. Classical conditional entropy

Now, from classical entropy we will derive an important
quantity to study correlations. Its name is conditional
entropy and to make its definition intuitive we will
perform the following thought experiment.
Let’s suppose that Alice wants to communicate with

Bob and she sends a message to him. This is equivalent
to say that Alice sends a random variable X to Bob,
the possible outcomes are {x}x∈X with probability law
P (X) = px where X is the support1 of random variable
X. She sends the message X through a noisy telephone
and therefore what Bob will receive will be the random
variable Y whose possible outcomes are {y}y∈Y with
probability law P (Y ) = py, where Y is the support of Y .

1 The support of a random variable is the subset of elements which
are not mapped to zero.

The natural question that arises is: From the message Y
that Bob receives, how much information will he need to
determine the message X that Alice sent?
To analyze this, let’s see the case when Alice sends

X =x and Bob receives Y = y. The probability that this
happens is the joint probability pxy. Then, the probabil-
ity that Bob receives the message Y = y, considering all
the possible messages sent by Alice is

py =
∑

x

pxy. (10)

If Bob receives the message Y = y, the probability that
Alice sent the message X =x is the conditional probabil-
ity denoted by px|y, and defined from joint probability,
known as Bayes rule [12].

pxy = pypx|y = pxpy|x. (11)

On the other hand, from Bob’s point of view, once
he receives Y = y, the uncertainty about the Alice’s
message X, will be the entropy of X given the message
Y = y. This is the Shannon entropy of the conditional
probability px|y

H(X|Y = y) = −
∑

x

px|y log px|y. (12)

Using this, finally we can define the conditional entropy.

Definition 2.4 The classical conditional entropy of
random variable X given that the value of random
variable Y is known, is defined as the weighted average
of every possible outcome of message Y = y, this is

H(X|Y ) =
∑

y

pyH(X|Y = y). (13)

Replacing equation (12) and using Bayes rule (equation
(11)) in definition of conditional entropy (equation (13))
we get

H(X|Y ) = −
∑
xy

pxy log pxy +
∑
xy

pxy log py, (14)

and given that py =
∑

x pxy. Then classical conditional
entropy can be written as

H(X|Y ) = H(X,Y )−H(Y ). (15)

This result gives us a better insight of classical con-
ditional entropy, since the right side of the equality
tells us that conditional entropy quantifies the remaining
uncertainty about the composite random variable (X,Y )
after subtracting the uncertainty about Y .

2.2. Quantum entropy

In the quantum case, an analogous experiment of tossing
a coin is the measurement of the spin of an isolated
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Figure 1: Analogous experiment in the classical case and in the
quantum case show us the analogy between classical entropy and
quantum entropy. The spin, as it have two eigenvectors, it have
two possible results, for this reason is considered as a quantum
coin. (a) Experiment of tossing a coin. The classical entropy
H(X) quantifies our uncertainty about whether the result will
be 1 (heads) or −1 (tails). (b) Experiment of observing the
spin of a particle. The quantum entropy S(ρ) quantifies our
uncertainty about whether the result will be |↑〉 (up) or |↓〉
(down).

electron, which is a fermion2, described by the state
|ψ〉 = |↑〉Z√

2 + |↓〉Z√
2 . Due to the quantum nature of the

spin, we will not know a priori the outcome of the
experiment. Quantum mechanics only provides us a
probability distribution, which is modeled by the density
operator ρ. In our example, state |ψ〉, we only have the
following two possible results: the outcome “spin up”
with probability 1/2 and the outcome “spin down” with
probability 1/2.

Here, quantum entropy will quantify the uncertainty
about the outcome of this quantum observation. In
other words, quantum entropy quantifies our lack of
information to determine what result we will get after
performing a measurement of a certain observable.
A scheme of this process is draw in Figure 1b.

To formalize these ideas within the framework of
quantum mechanics and in order to have a well-defined
von Neumann entropy, the formalism of the density
operator is necessary. The density operator ρ acts on a
Hilbert space H and belongs to the space D(H), where
D(H) is the set of operators that satisfies the following
two conditions (for further reading see ref. [13, 14]).

• The density operator ρ ∈ D(H) is a positive semi-
definite operator, i.e.:

〈φ| ρ |φ〉 ≥ 0, (16)

where |φ〉 is an arbitrary vector in state space.

2 A fermion is a particle with half-integer spin and that satisfies
the Pauli exclusion principle.

• The density operator ρ ∈ D(H) has trace equal to
one, i.e.:

Tr(ρ) = 1. (17)

As the density operator is a positive operator (it implies
that density operators are hermitian see ref. [14], page
71) and its trace is unitary, we can write

ρ =
∑

x

px |x〉 〈x| . (18)

Here the set {px} are the eigenvalues of ρ and {|x〉} its
eigenvectors, which form an orthonormal basis.
The fact that density operators are positive operators

implies px ≥ 0 and due to its trace is unitary we
have that

∑
x px = 1. Hence these density operators

can be seen as a generalization of random variables
and probability distributions within quantum physics.
Therefore, the quantum entropy first introduced by von
Neumann [15] is defined as follows.

Definition 2.5 The quantum entropy S(ρ) of a system
H described by the density operator ρ ∈ D(H) is

S(ρ) = −Tr(ρ log2 ρ) = −
∑

x

px log2 px, (19)

where Tr is the trace function and the set {px} are the
eigenvalues of ρ.

From this, it is easy to see that the von Neumann entropy
S(ρ) is equal to the Shannon entropy of the probability
distribution obtained from the set of eigenvalues of ρ,
i.e.,

S(ρ) = H({px}). (20)

As a reminder, the von Neumann entropy quantifies the
uncertainty about what outcome we would get as a result
of performing a measurement in a quantum system.
It is worth saying that we are considering the basis

2 for logarithms in both definitions of classical and
quantum entropy (equations (6) and (19) respectively).
This is because within the framework of Information
Theory, we usually work with bits (or qubits in the
quantum case), that is why it is necessary consider the
base 2. Henceforth, by convention, we will not write the
base 2, i.e., log2 := log.

3. Correlations

In information theory, two random variables A and B,
will be correlated if we can extract information about
one random variable by observing the other. In other
words, correlation implies that we can obtain informa-
tion about one variable, just by making measurements
on the other. For example, suppose that we have a
system composed of two particles and the total charge is
zero. If we separate one particle very far from the other,
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it is enough to observe the charge of a single particle to
know with certainty the charge of the other particle, let’s
say, we obtain that the charge of one particle is positive,
so we know that the charge of the other particle will
necessarily be negative, in order to satisfy the condition
that the total charge is zero.
Using the idea of information entropy, if A and B are

correlated then the reduction of uncertainty on A will
allows us to reduce the uncertainty about B. Given that
correlations are intimately related to the information
about a random variable or a quantum system, we will
study correlations using the framework of entropy of
classical information introduced by Claude Shannon,
and for quantum systems we will use the von Neumann
entropy.
We are considering two kinds of correlations, classical

and quantum correlations. A mathematical tool that
allows us to quantify the correlations between two ran-
dom variables is the Mutual Information [2]. In spite of
mutual information being originally a measure of classi-
cal correlations, a correct generalization of this quantity
will allows us to quantify total correlations [16, 17].

3.1. Classical mutual information

Classical Mutual information has a lot of equivalent
definitions. Here we will only show two of them. The
first one is defined as follows:

Definition 3.1 The Classical Mutual Information I of
two random variables A and B is

I(A,B) = H(A) +H(B)−H(A,B), (21)

where H(A,B) is the joint entropy.

This definition can be seen graphically in the Venn
diagram (Figure 2). Notice that the mutual information
I(A,B) corresponds to the intersection of the informa-
tion in A with the information in B. In order to under-
stand the mutual information I, it will be necessary
interpret the terms in the equality (equation 21).
The joint entropy H(A,B) between two random

variables can be interpreted as the lack of information
about the mixture of A and B. In this definition of
mutual information I (equation (21)), on the right side
of the equality, we have the sum of uncertainty about
random variable A plus the uncertainty about B, minus
the joint entropy of A and B. This subtraction can
be interpreted as the information gained if we would
know the random variable (A,B). Therefore the mutual
information quantifies the remain uncertainty about
random variable A and B if we do not take account the
uncertainty about the mixture random variable (A,B).
In other words, mutual information I quantifies the
shared information between random variables A and
B, this shared information can be seen as classical
correlations.
For the second equivalent definition of classical mutual

information we will use another name (we will use a

Figure 2: Venn diagram showing relationships between various
information measures associated with correlated random vari-
ables A and B. The intersection between the circle of individual
entropy H(A) and the circle of individual entropy H(B) shows
the equivalence between classical mutual information I(A,B)
and classical conditional mutual information J(A,B). The joint
entropy H(A,B) is the junction of entropy of random variables
A and B.

different letter) in order to distinguish the first definition
(equation (21)) from this second one.3

Definition 3.2 The Classical Conditional Mutual
Information J of two random variables A and B is

J(A,B) = H(A)−H(A|B), (22)

where H(A|B) is the conditional entropy.

Here, as we have shown in section (2.1.1), the conditional
entropy H(A|B) quantifies the lack of information about
the random variable A when random variable B is
known. And replacing the alternative form of conditional
entropy (equation (15)), i.e., H(A|B) = H(A,B) − H(B)
in equation (22), we obtain that conditional mutual
information J is

J(A,B) = H(A)−H(A,B) +H(B), (23)

and comparing with the first definition of mutual infor-
mation (equation (21)) we get the following important
equivalence

I(A,B) = J(A,B). (24)

It tells us that the definition of mutual information
I (def. 3.1) is equivalent to the definition of conditional
mutual information J (def. 3.2). In the next part we
will see that this will not happen in the quantum case.
In an ilustrative way, we can see better the equiva-
lence between I and J Eq. (24), in the Venn diagram
(Figure 2).

Therefore, there are two equivalent ways of measur-
ing classical correlations. The first one (definition 3.1)

3 The reason for distinguishing one from the other will be seen
later, in the quantum case.
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measures the classical correlations based on the differ-
ence between the sum of the local entropies and the
total entropy; the second one (definition 3.2) measures
the classical correlations between two random variables
based on how much information we can obtain about
one random variable by extracting information4 from
the other. It is remarkable that while for I we do not
have to know anything about the random variables, for
J we do have to know one of them.

3.2. Quantum mutual information

Now we will generalize both definitions for the classical
mutual information I and J to the quantum case. In
the previous section we worked with events relates to
classical discrete random variables. Here we will work
with a composite quantum system HAB = HA ⊗ HB

composed of two subsystems HA and HB , such that
independent measurements can be made on either part.
As we did for quantum entropy (section 2.2), it is
necessary to generalize the classical random variables A
and B to density operators acting on the Hilbert space
of the system and belonging to the space of positive and
unitary trace operators D(H), this is

A→ ρA ∈ D(HA),

B → ρB ∈ D(HB),

(A,B)→ ρAB ∈ D(HAB).

(25)

In the classical case, as we have seen in equation (8),
from the joint probability distribution pxy, the marginal
distributions can be obtained as a summation over the
variables x or y. The corresponding operation for density
matrices is the partial trace (see ref. [14] section 2.4.3),
that is

ρA = TrB ρ
AB =

∑
j

〈ψj | ρAB |ψj〉B ,

ρB = TrA ρ
AB =

∑
i

〈φi| ρAB |φi〉A ,
(26)

where |ψj〉B ∈ HB , |φi〉A ∈ HA and ρA (or ρB) is the
reduced state also known as the marginal state of ρAB

on subsystem A (or B). Therefore, the quantum entropy
of ρA is

S(ρA) = S(A) = −Tr
(
ρA ln ρA

)
, (27)

where we used the notation S(ρA) := S(A). The
quantum entropy ρB is defined in the same way.
Now we want to generalize the classical mutual infor-

mation I defined in equation (21) to the quantum case.
This generalizations seems to be natural, i.e., we simply
replaced the Shannon entropy H() for the quantum
entropy S():

4 Henceforth we will use observation, measuring or extract infor-
mation as synonyms.

Definition 3.3 The quantum Mutual Information I
between two quantum systems A and B, described respec-
tively by the density operators ρA ∈ D(HA) and ρB ∈
D(HB) is defined as

I(A,B) := S(A) + S(B)− S(A,B), (28)

where S(A,B) = −Tr
(
ρAB ln ρAB

)
is the quantum

entropy of the composite system described by ρAB ∈
D(H).

Here the quantum mutual information I is quantifying
the total correlations between systems A and B. These
definitions tells us that if the total correlations are not
zero, i.e., I 6= 0, then the density matrix ρAB for the
entire system is not equal to the tensor product ρA⊗ρB

of the reduced density matrices. This means that the
correlations between system A and B are not included
in ρA⊗ ρB [8]. We can formalize this ideas following the
next theorem.

Theorem 3.4 The quantum mutual information I can
be written in the following form

I(ρAB) = S(ρAB ||ρA ⊗ ρB), (29)

where S(ρ||σ) = Tr(ρ log2 ρ) − Tr(ρ log2 σ) is the quan-
tum relative entropy.

The quantum relative entropy measures how close are
two density operators. Therefore, from equation (29)
we can interpret that the correlations between systems
A and B can be measured by measuring the distance
between ρAB and ρA ⊗ ρB .
The problem arises when we want to generalize the

second definition of conditional mutual information J
(equation (22)) to the quantum level. This is because, if
we do the same substitution for conditional entropy, as
before, i.e. substitute the classical entropy for the quan-
tum entropy in equation (15), the quantum conditional
entropy S(A|B) would be

S(A|B) = S(A,B)− S(B), (30)

and, if we consider a pure entangled state, for example,
the bell state |β00〉 = 1√

2 (|00〉 + |11〉), the density
operator would be ρAB = |β00〉 〈β00|. The quantum
entropy of the composite system is

S(A,B) = 0, (31)

while the quantum entropy of the subsystem B is

S(B) = 1
2 ln 2. (32)

Replacing this results in Eq. (30), we can see that the a
priori5 generalization could lead to a negative quantum

5 It is because we just replace the classical entropy for the quantum
entropy, without taking into account the quantum phenomena.
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conditional entropy. In our example of the particular
case of a pure entangled state, we get that

S(A|B) = −1
2 ln 2 < 0. (33)

Due to entropy quantifies the uncertainty (or the lack of
information) about a state, a negative entropy is difficult
to interpret.6 In other words, the fact that S(A) = 0,
means that we do not have uncertainty (or we have
all the information) about the state A, so it is hard
to see how this quantity could be negative. Therefore,
due to the necessity of quantum conditional entropy
in the generalization of quantum conditional mutual
information J , we have to find another way to define
the quantum conditional entropy in a consistent form.

3.2.1. Quantum conditional entropy

Olivier and Zurek [16] proposed the following way
to generalize the quantum conditional entropy. Since
the classical conditional entropy H(A|B) (defined in
equation (13)) quantifies the remain uncertainty about
the variable A when B is known. Within the quantum
theory framework, stating that B is known is ambiguous,
since to know the state of the system we have to
perform a measurement, which implies that we have
to specify a set of measurement operators on the state
space of the system. Therefore, a consistent definition
of quantum conditional entropy requires us to specify a
set of measurements performed in one subsystem. For
example, we will choose the set of measurements {PB

j }
performed on subsystem B. Here the index j serves to
specify the j-th outcome of the measurement as a result
of the measurement Pj . Following the measurement
postulate of quantum mechanics [14, 19, 20], the state
of the composite system ρAB , once the measurement
operator IA⊗PB

j is performed, will collapse to the state

ρA|P B
j =

(IA ⊗ PB
j )ρAB(IA ⊗ PB

j )
TrAB [(IA ⊗ PB

j )ρAB ]
. (34)

Here IA is the identity operator in the state space of
system A and the notation ρA|P B

j represents the state of
system A due the measurement operator IA ⊗ PB

j .
The probability of observing the outcome j-th is:

pj = TrAB(PAB
j ρAB). (35)

Therefore, the von Neumann entropy of this state
S(ρA|P B

j ), can be interpreted as the uncertainty about
the system A once the measurement operator PB

j is
performed. However, we are interested in a complete
set of measurement operators {PB

j }. Thus, to construct
the conditional entropy we have to weight the entropies
S(ρA|P B

j ) with their respective probabilities pj .

6 N. Cerf [18] interpret the negative entropy as virtual information.
He and other people use the idea of negative entropy to do
calculations in the information on black holes.

Definition 3.5 The quantum conditional entropy of
system A given the set of measurements {PB

j } performed
on system B, is defined as

S(A|{PB
j }) =

∑
j

pjS(ρA|P B
j ), (36)

where ρA|P B
j is the state7 to which the composite system

collapses after the measurement PB
j .

There are infinitely many sets of measurements we can
perform on B. For the sake of simplicity we will consider
the set of one-dimensional projectors.8 As we want to
learn as much as possible about system A by measuring
system B, then we will choose the set that makes
S(A|{PB

j }) minimum. It is clear that the upper bound
on this quantum conditional entropy is S(A), while the
lower bound is zero.

Finally, we can give the quantum generalization of the
conditional mutual information J as follows.

Definition 3.6 The quantum Conditional Mutual
Information J between two quantum systems A and
B, described respectively by the density operators ρA ∈
D(HA) and ρB ∈ D(HB) is defined as

J (A,B){P B
j
} := S(A)− S(A|{PB

j }), (37)

where {PB
j } is a complete set of measurements perform

on system B.

This quantity represents the information gained about
subsystem A as a result of the set of measurements
{PB

j } performed on subsystem B. Recall that the mea-
surements that we are considering are one-dimensional
projector operators. Therefore, obtaining information
from A only performing measurements on B tells us
that there exists correlations. Otherwise, if there are
no correlations, then the conditional entropy would be
S(A|{PB

j }) = S(A) and therefore J = 0. That is
why quantum conditional mutual information serves to
quantify correlations, but what kind of correlations?
Since definition of J (equation (37)) needs us to perform
a complete measurement on B, due to the nature of
the measurement process, the state ρAB of system AB
will collapse to a quantum classical state where the
marginal density operator on B will be a classical state
in the sense that it will not be disturb by certain local
measurements in system B (see ref. [21, 22]). It implies
that the subsystem B will have classical nature, hence
the correlations between A and B will be classical.
Therefore the quantum conditional mutual information
J quantifies the classical correlations between quantum
systems A and B.

7 The state ρAB of the composite system will collapse to the state

ρ
A|PB

j =
PB

j ρABPB
j

pj
, with probability pj = TrAB(PBj ρ

AB) when
the measurement PBj is performed.
8 The one-dimensional projectors are those operators with only
one nonzero eigenvalue.
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4. Final Considerations

In order to have a better understanding of the difference
between quantum mutual information and quantum
conditional mutual information we will show an example.
Suppose that we have the following quantum state ρAB

describing a system composed of two subsystems A and
B and that depends on the variable c ∈ [0, 1] :

ρAB = (1 + c)
4 I− c |β11〉 〈β11| , (38)

where I is the identity operator in the state space
HA ⊗ HB , i.e., I := IA ⊗ IB and |β11〉 = |01〉−|10〉√

2 is
a bell state (see ref. [14], sec. 1.3.6). If we perform the
calculation of mutual information I from equation (3.3)
and conditional mutual information J from equation
(3.6) using the state ρAB we will get respectively (see
ref. [23]):

I(ρAB) = (1− 3c)
4 log (1− 3c) + 3(1 + c)

4 log (1 + c).
(39)

J (ρAB) = (1− c)
2 log (1− c) + (1 + c)

2 log (1 + c).
(40)

From here is easy to see that, apart from the trivial
case c = 0, these quantities are different, i.e., I 6= J .
Therefore although at the classical case both definitions
of mutual information I and conditional mutual infor-
mation J are equal (Equation (24)), i.e.:

I(A,B) = J(A,B), (41)

in the quantum case, in general, they are no longer
equivalent, i.e

I(A,B) 6= J (A,B). (42)

This will become clear seeing the following upper
bounds. For the quantum mutual information I we have
the Araki-Lieb inequality [6]:

I(A,B) ≤ 2 min {S(A), S(B)}, (43)

while for the quantum mutual information J is easy to
see that

J (A,B) ≤ S(A). (44)

Therefore if I and J reach their upper bounds, i.e.,
I(A,B) = 2S(A) and J (A,B) = S(A). Then, the
difference will be

I(A,B)− J (A,B) 6= 0, (45)

which is the same than Eq. (42).
The natural question is, what does the difference

between the two quantum quantities I(A,B)−J (A,B)

signify, if anything? [24]. We have said that the Mutual
Information I(A,B) quantifies the total correlations,
and that the Mutual Information J (A,B) quantifies
classical correlations. Therefore, under certain condi-
tions, what remains from the subtraction of the total
correlations and the classical correlations, i.e. I(A,B)−
J (A,B), will be the quantum correlations [16].
On the other hand, we know that quantum entangle-

ment is a quantum correlation. Hence the question is
that if entanglement is the only type of quantum corre-
lation. Henderson and Vedral [17] claim that quantum
mutual information I quantity can be expressed as a
sum of classical correlations and entanglement. To prove
it, they defined the classical correlations of a composite
system by C(A,B) = S(A) − S(A|B) and quanti-
fied entanglement using the entanglement of formation
E(A,B) for mixed states [25, 26]. They discovered that
the sum C + E is mostly smaller than I [17]. In other
words, there is more to quantum correlations than just
entanglement when it comes to mixed states. For pure
states, entanglement and classical correlations are equal
to each other and the sum is then exactly equal to the
quantum mutual information I, what explains why I
is twice as big as the quantum mutual information J
(inequalities (43) and (44)).

In conclusion, both quantum mutual information I
and J allow us quantify directly the classical correla-
tions and total correlations and indirectly (subtracting
I − J ) the quantum correlations. It is remarkable
that entanglement is not the only type of quantum
correlations.
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